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Abstract: In this paper, simple models for the multiverse are analyzed. Each universe is viewed as
a path in a graph, and by considering very general statistical assumptions, essentially originating
from Boltzmann, we can make the set of all such paths into a finite probability space. We can then
also attempt to compute the probabilities for different kinds of behavior and in particular under
certain conditions argue that an asymmetric behavior of the entropy should be much more probable
than a symmetric one. This offers an explanation for the asymmetry of time as a broken symmetry
in the multiverse. The focus here is on simple models which can be analyzed using methods from
combinatorics. Although the computational difficulties rapidly become enormous when the size of
the model grows, this still gives hints about how a full-scale model should behave.
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1. Introduction

The problem of Time’s Arrow, or "the riddle of time", consists in the observation that on the
macroscopic level, time is asymmetric and directed (we can remember the past but not the future),
whereas on the microscopic level, all the laws of nature which are supposed to be responsible for
the macroscopic behavior, are essentially time-symmetric. So where does the asymmetry come from?
A general reference for this discussion is Zeh [1]. For a philosophical discussion of some of the traps
that physicists tend to fall into when investigating these matters, see Price [2].

Although there is still no consensus about what the answer to the riddle should be, a major
step towards a solution was taken already in the 19th century. In fact, it took the genius of Ludwig
Boltzmann [3] to realize that this has something to do with the fact that the universe during its
development passes from less probable states to more probable ones, and that this is very closely
related to the growth of the entropy as expressed by the second law of thermodynamics. However,
Boltzmann’s idea can by itself never fully explain time asymmetry for the simple reason that it already
has a direction of time built into it.

This paper is part of an approach, based on reformulating Boltzmann’s idea in a time symmetric
way. A clue to how this may be done is given by considering not just our own universe, but all possible
universes. Although quantum mechanics is in principle deterministic, from the point of view of an
observer there are always many possible different futures. For example, every quantum measurement
where the outcome is stochastic can be viewed as a fork in the road, where different outcomes
may rapidly diverge into different developments. And since the dynamic laws are essentially
time-symmetric, it seems reasonable to argue that from a local point of view, given any state of a
universe at any time, there should be many possible developments leading to higher entropy (and
very few leading to lower entropy) in both directions of time. As we will see however, this point of
view may be very well compatible with the idea that from a global point of view, in the set of all
universes, a monotonic behavior of the entropy is far more probable than a non-monotonic one.

Symmetry 2016, 8, 11; doi:10.3390/sym8030011 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/journal/symmetry


Symmetry 2016, 8, 11 2 of 10

This naturally leads us to consider models for the so called Time’s Arrow, where the asymmetry
of time is viewed as a broken symmetry in the symmetric space of all possible universes; it may be
that in 50% of all universes, the Arrow points in one direction, and in 50% of them it points in the
other. Still, each observer (confined to just one universe) will observe a definite direction of time.

In [4] and [5], the physical background for this approach is discussed in more detail, although
the methods used there are heuristic. In this paper I instead concentrate on very simple models
where it is possible to use exact combinatorial methods. However, the computational difficulties
rapidly become enormous, and even small examples of such models can be a challenge for modern
computer technology.

Let me state explicitly that the purpose of this paper is not to present new deep mathematical
results. Rather, it is the use of this kind of models in itself which is the issue. The calculations
here should mainly be considered as comparatively simple examples of how this kind of models
for the multiverse can be investigated. But in fact, analyzing such examples can give valuable hints
to what should be expected from a full-scale model. It is my personal belief that the best way to
make progress towards a solution of the riddle of time is to work in both directions; not only can
investigations of small models illuminate our understanding of the realistic case, but in the same
time our understanding and our ideas about the realistic case must be used to modify the models.

In particular, I will argue that although the simplest kind of model in this paper may be sufficient
to explain why a monotonic behavior of the entropy is much more probable than a behavior with low
entropy at both ends, it may still be that we need more complicated models to understand the relation
to other kinds of behavior, e.g., high entropy at both ends.

Hence, the real purpose of this paper is rather to introduce a new way of approaching the
question about the asymmetry of time. In the same time, this may also turn out to be a new area
where abstract mathematics and numerical computations can interact in a interesting way.

2. Mathematical Preliminaries

In this paper, the most essential tools come from graph theory. Since this is somewhat unusual
for cosmology in general and for the question of time asymmetry in particular, I will here summarize
the main facts that will be used. For a more complete treatment, see [6] and [7].

A graph G is determined by a set of V of nodes (or vertices) and a set E of edges, where each
edge e = [v1, v2] can be viewed as pair of nodes v1, v2 ∈ V, in which case we say that v1 and v2 are
connected by e. In an undirected graph, the roles of v1 and v2 are symmetric, but in this paper we will
mainly consider directed graphs, which means that the first node is the starting-point and the second
is the end-point of the edge. In this paper, the set V will always be finite.

A (directed) path [v1, v2, . . . , vm] from v1 to vm is a sequence of nodes with the property that
for each j = 1, 2, . . . , m− 1, the pair vj, vj+1 belongs to the set of (directed) edges of the graph. It is a
fundamental problem in graph theory to compute the number of paths starting at one given node and
and ending up at another one. For a general graph, this problem may be very difficult in the sense
that the number of computations to be carried out grows very rapidly with the size of the graph.
However, for graphs with additional properties, the problem may simplify considerably.

In particular, the special time-related structure of the graphs in this paper will imply that all paths
joining two nodes will always have the same length (equal to the number of units of time separating
the two nodes). In this situation, it very natural to make use of the following

Definition 1. The adjacency matrix of the (directed) graph G with nodes v1, v2, . . . , vm is the m×m-matrix
A = (aij), where aij = 1 if the pair vi, vj determines a (directed) edge in G and aij = 0 otherwise.

The importance of this concept for the present paper lies in the following well-known
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Theorem 2. The element at position ij of the k:th power of the adjacency matrix, Ak, equals the number of
paths of length k, starting at vi and ending at vj.

Once formulated in the right way, the proof of the theorem is almost trivial. In fact, by the
definition of matrix multiplication,

(Ak)ij =
m

∑
q1=1

m

∑
q2=1
· · ·

m

∑
qk−1=1

aiq1 aq1q2 · · · aqk−1 j, (1)

and aiq1 aq1q2 · · · aqk−1 j = 1 if and only if [vi, vq1 , vq2 , . . . , vk−1, j] is a (directed) path from vi to vj and 0
otherwise. Thus, each such path will contribute with exactly one to the sum.

3. To model the universe

What is a good model for the universe? The answer to this question of course depends both
on what properties we want to model and on the theoretical framework that we have chosen. If our
starting point is quantum mechanics, it may be natural to describe the universe by a huge wave
function, developing in time. If our starting point is instead general relativity, a more natural model
would perhaps be a pseudo-Riemannian manifold with some distribution of mass-energy.

One can wish for a more general model which can account for both quantum mechanical and
relativistic phenomena, but we are not quite there yet; so far, different models can explain different
aspects of the universe, but no single model can explain everything.

In this paper, I will consider still another model for the universe, namely as a path in an
enormous graph. Needless to say, this model is not intended to be a serious alternative for explaining
all the properties that a quantum mechanical or a general relativistic model can explain. It is just an
attempt to extract a sort of skeleton for the dynamics of our universe. Having said this, it may also
be worthwhile to note that this skeleton represents a perspective on the idea of multiple histories
or "the multiverse" which is somewhat different from the usual view. In fact, this multiverse makes
sense both within classical and quantum physics, rather than just being a consequence of the laws of
quantum mechanics.

In the following, I will only be concerned with closed models for the universe. Also, I will
study what could be called discrete universes or perhaps discrete approximations to universes.
In particular, I will assume that there are only a finite number of moments of time between the Big
Bang and a supposed Big Crunch, and for each such moment of time, there will be only a finite
number of possible states. How these states should be understood, quantum mechanically, classically
or in still some other way, is a complicated question which will not be discussed here. The reader is
instead referred to [4] and [5].

In view of the enormous complexity of the universe, it is necessary to make drastic
simplifications, and the main idea of the model in this paper is to suppress all dynamical properties
except for entropy. According to Boltzmann, the total entropy of a certain macro-state at a certain
time is given by

S = kB log Ω, (2)

or inversely
Ω = WS, with W = e1/kB , (3)

where Ω denotes the number of corresponding micro-states, and kB is Boltzmann’s constant.
Although this formula was derived under quite special circumstances, it is generally agreed to contain
an almost universal truth about nature. In particular, I will in the following take for granted that the
total number of possible states of a universe, with a given entropy S at a particular moment of time,
is an exponential function of the total entropy as in Equation (3).
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If the total number of states is finite, then this assumption can of course only hold true as long as
the entropy is not near to becoming maximal. However, in this paper I will assume that the life-span
of the universe (i.e., the time interval between the Big Bang and the Big Crunch) is short in comparison
with the time required for this to happen. In fact, according to [8] and [9], it would take a very long
time for our universe to reach such a state.

For a given state at a given moment of time t, the dynamical laws will only permit transitions to
a very limited number of states at the previous and next moments of time. Needless to say, in reality
there is no absolute distinction between possible and impossible transitions, but for the purpose of
this paper, I will still make this simplifying assumption. Summarizing:

Definition 3. A universe U is a chain of states (one state Ut for each moment of time t), with the property
that the transition between adjacent states is always possible.

Definition 4. The multiverse M is the set of all possible universes U in the sense of Definition 3.

4. How many universes of different types are there?

It is now time to turn the ideas of the previous section into a combinatorial model where explicit
computations can be made. To make things as simple as possible, let me choose a time-axis as follows
Figure 1:

Figure 1. The time axis.

Here −T0 and T0 represent the Big Bang and the Big Crunch respectively, and the discrete
moments of time correspond to the integers in the interval in between, which is symmetric about
the origin. The first and last parts, [−T0,−T1] and [T1, T0] can be said to represent the extreme phases
near the end points, where the ordinary laws of physics may not apply. The interval in between,
[−T1, T1], could be called the normal phase, where the laws of physics behave essentially as we are
used to. Of course, the distinction is not sharp, but may still make sense in a model like this.

Let us start the investigation by considering this normal phase, and come back to the extreme
phases in Section 5. For each moment of time in the interval [−T1, T1], let us think of all the possible
states of a universe as the nodes in a graph. If a transition between two states (at adjacent moments
of time) is possible, then the corresponding nodes are joined by an edge, and a specific universe can
thus be viewed as a path with one node for each moment of time in the corresponding graph.

To specify the dynamics is in this context equivalent to defining the set of edges in the graph.
In the present paper, this is done by assuming that for any state Σ with entropy S (except at the end
points), there are exactly M edges connecting Σ to states at time t + 1 with entropy S + 1, and these
will be chosen completely at random among such states. Similarly, there will be exactly the same
number M of edges connecting Σ to states at time t− 1 with entropy S + 1. In the following, W in (3)
will always be larger than M, and in cases of physical interest it should actually be much larger. In
particular, this means that among all states with entropy S + 1 at a certain moment of time t, only a
minor fraction can be reached from states with lower entropy at times t + 1 or t− 1. In other words,
only comparatively few states Σ have edges connecting to states with lower entropy in any of the two
directions of time.

The assumption that S can only increase or decrease with one unit amount of entropy per unit of
time is of course an extreme simplification. In a slightly more developed version of this model, this
assumption should clearly be replaced by something more realistic.
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Remark 1. Summing up, let us note that the dynamical assumptions above are time-symmetric; the choices
of the edges are to a certain extent at random, but if we consider the totality of all such graphs, this set will
be preserved if we reverse the direction of the time-axis. In particular, when we consider mean values, these
will be time-symmetric. Also, the dynamics reflects Boltzmann’s idea of the universe as developing from less
probable states to more probable states in the sense that for any randomly chosen state there will always be
several possible developments towards higher entropy but only a small chance that there will be a development
towards lower entropy. It is essential to note that this is true in both directions of time.

In Figure 2 is shown a schematic picture of the set of all possible states and three possible
universes in the case of a (very) small graph with only 5 moments of time, and with W = 4. Note that
according to the dynamical assumptions above, no universe starting with S = 0 at one end can ever
attain a value of S larger than 4, hence the part of the graph shown is perfectly enough for comparing
universes with low entropy at at least one end. To exploit this simple case further, let me show how
to compute the number of paths of different types. For the rest of this section, let M = 2.

Figure 2. A schematic picture of three universes during the normal phase, as particular paths in the
graph of all possible states, in a very small model with only five moments of time from −T1 = −2
to T1 = 2. The red path has a monotonic behavior of the entropy whereas the blue paths represent
developments with low entropy at both ends.

It is trivial to compute the number of paths with monotonically increasing entropy. The
assumption M = 2 implies that for each unit of time the number obviously doubles: According to the
above construction, from the state with S = 0 at time −T1, there are exactly two edges connecting to
states with S = 1 at time −T1 + 1. From each of these two states, there will also be exactly two edges
connecting to states with S = 2 at time −T1 + 2 which gives four paths so far. At the next step we get
eight paths ending at states with S = 3 at time −T1 + 3 and so on.

In the case −T1 = −2 and T1 = 2, we get 24 = 16 such paths, since there are only four unit
intervals of time in between, and similarly for −T1 = −3 and T1 = 3, we get 26 = 64 paths since
there are six unit intervals of time in between. It is much more work to compute the number of paths
with low entropy at both ends; this number will in fact be a statistical variable which varies with the
random dynamics, defined by the edges in the graph. Also, what will actually be computed is the
estimated average number of such paths over a large number of different graphs.

To do the computation, I will make use of the adjacency matrix of the graph (see Section 2). Note
that the use of directed graphs here has nothing to do with introducing some kind of presupposed
direction of time in the model. It is just a way of reducing the number of non-zero elements in the
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adjacency matrix. In fact, in the graphs of this paper, a directed path from t = −T1 to t = T1 is
exactly the same thing as an ordinary path of length 2T1 from t = −T1 to t = T1 (if we forget about
the directions).

In view of the way the adjacency matrix will be set up below, all information about paths starting
with S = 0 at −T1 will be contained in the first row of Am. Thus, all we need to do is to write down
the matrix A and compute. This is not difficult in theory, but the size of A grows rapidly with the
number of time intervals and with W.

To compute all possible paths starting with S = 0 at time−T1, it is (since the simplified dynamics
only allows S to grow with at most one unit per unit of time) enough to consider nodes in the graph
with S ≤ t + T1.

Starting from the unique state with S = 0 at t = −T0 = −2, we note that at the next moment
of time t = −1, we only have to consider states with entropy at most S = 1, which gives 1 + 4 = 5
states. Similarly for t = 0 vi get 1 + 4 + 16 = 21 states, for t = 1 we get 1 + 4 + 16 + 64 = 85 and
for t = 2 we get 1 + 4 + 16 + 64 + 256 = 341 states. (Strictly speaking, with the simplified dynamics
above, only states where t + S is even are needed, thus the size of the matrix could be further slightly
reduced at this stage).

We can now write the adjacency matrix as a block matrix of the following form:

A =


B12

B23

B34

B45

 , (4)

where the empty blocks just contain zeros. Each of the five block rows/columns correspond to a
moment of time, i.e., to −2,−1, 0, 1, 2 as in Figure 2. Within each such row/column, the states are
ordered according to entropy: the first element is the unique state with S = 0. Then (if t ≥ −1) the
four elements with S = 1 follow, thereafter (if t ≥ 0) the sixteen elements with S = 2 and so on.
Exactly how the elements with equal S and t are ordered among themselves is of no importance what
so ever in the following.

With these conventions and the dynamics as described above, each B-matrix describes the edges
from the states at one moment of time to the next one, e.g. B12 contains all information about the
edges from the (unique) state with S = 0 at time t = −2 to the five states with S ≤ 1 at time t = −1.
Similarly, B23 contains all information about the edges from the five states with S ≤ 1 at time t = −1
to the twentyone states with S ≤ 2 at time t = 0.

The sizes of the B-matrices are given by

B12 : 1× 5, B23 : 5× 21, B34 : 21× 85, B45 : 85× 341, (5)

which implies that the total size of the quadratic matrix A will be 453× 453. The matrices Bk,k+1 are
themselves block matrices with structure as follows: B12 = (0|0101) (the first element is always a 0
and among the other four, two randomly picked positions have ones instead of zeros). For the next
matrix we get (for a specific random choice of edges) B23 =

(
C1

C2 C3

)
=


0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

 .

(6)
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Here C1 and C3 both have rows of zeros, where two randomly chosen positions have ones instead
(corresponding to the edges connecting to states with higher entropy at the next moment of time), and
C2 is a column of zeros with two randomly chosen positions with ones instead (corresponding to the
edges connecting to states with lower entropy at the next moment of time).

The structures of B34 and B45 are similar:

B34 =

 D1

D2 D3

D4 D5

 , B45 =


E1

E2 E3

E4 E5

E6 E7

 , (7)

where now all D:s and E:s with odd indices have rows with two randomly chosen ones and those
with even indices have columns with two randomly chosen ones.

We can now make use of the random number generators in Mathematica or MATLAB to generate
different instances of the matrix A. Thereafter we compute the power A4 and read of the first row
which contains all the information we need about the paths from the state at t = −2 with S = 0.

The same procedure applies to larger integer values of T1 and W, and computing A2T1 , although
the size of the matrix A grows rapidly. For the simple example above with T1 = 2 and W = 4,
I noted that the size is 453 × 453. For T1 = 3 and W = 7 it is already equal to 160132 × 160132.
Fortunately, A can be treated as a sparse array, which means that the amount of computations can be
significantly reduced. Other simplifications which reduces the size of A can also be done, nevertheless
it seems that even high speed parallel computing can only evaluate A2T1 for rather moderate values
of the parameters.

Let NLH denote the numbers of paths/universes with low entropy at the left end and
monotonically increasing entropy, and let NLL denote the number of paths/universes with low
entropy at both ends. In Figure 3, I have plotted estimates of the meanvalues of the ratio NLL/NLH
for the cases T1 = 2 (yellow) and T1 = 3 (grey) for values of W ranging from 3 to 30. What is actually
displayed are the mean values of 1000 randomly generated matrices as above for each W. Although
the picture clearly supports the claim that NLL/NLH → 0 when W → ∞, there is not really enough
support for a firm prediction about the more precise asymptotic behavior for large W. Having said
this, the behavior seems to be rather close to a relationship of the form ρ ∼ 1/W.

Figure 3. The ratio NLL/NLH as a function of W for the cases T1 = 2 (yellow) and T1 = 3 (grey).
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5. A Model Which Includes the Big Bang and the Big Crunch

In the previous section I have argued that in the models in this paper and for large W, the number
of developments with a monotonic behavior of the entropy between−T1 and T1 should be much more
common than those with low entropy at both ends. This however, is not in itself enough to explain
time asymmetry, since a complete model must also include some assumptions about the physics near
the end-points.

Although our knowledge about the physics near the Big Bang (and even more so near a possible
Big Crunch) is limited, it is natural to suppose that quantum effect are totally dominating and in
principle all developments are possible, although perhaps not equally likely.

The following assumptions are very coarse and preliminary, but they do have the property
of being completely time symmetric. Thus, assume that the only kinds of behavior, having a
non-neglectable chance of occurring between −T0 and −T1, are of the following two types: either the
universe develops into a low entropy state (with S = 0) or into a high entropy state (with S = 2T1), To
these two types of states we assign (unnormalized) probabilities 1 and p respectively, where p > 0 is
some small number. At the other end, we assume the completely symmetrical condition, i.e. at time
T1 only states with entropy S = 0 or S = 2T1 have a non-neglectable chance to be connected to the
unique state at T0 (with probability weight 1 and p respectively).

Remark 2. A possible physical motivation for this type of boundary conditions could look as follows; Imagine
the universe at the Big Bang (and the Big Crunch) as in a state of perfect order. When the universe starts to
expand, this highly ordered state may be meta-stable in the following sense: The by far most likely scenario is
that the universe remains highly ordered throughout the first decisive moments of time. But there is also a small
probability that some sufficiently large fluctuation will occur which instantly causes this highly ordered state to
decay into a completely disordered high-entropy state. This can be compared with e.g. an over-saturated gas in
thermodynamics. As already stated, all other types of behavior is assumed to have neglectable probability. Also,
the behavior near the Big Crunch is completely symmetric.

If we assume that for all paths, the parts between −T1 and T1 have the same probability weight,
then the set of all paths (universes) between −T0 and T0 (the Big Bang and the Big Crunch), which at
each end either have low entropy (S = 0) or high entropy (S = 2T1) at −T1 and T1, becomes a finite
probability space, where each path has probability 1, p, p2, depending on whether it has low entropy
at both, at one or at none of the ends.

It must be considered as a well-established experimental fact that we live in a universe with low
entropy at one end at least. To explain time asymmetry, it may therefor be considered to be enough to
show that among all such universes, a monotonic behavior of the entropy (with low entropy at one
end and high entropy at the other) is far more likely than a behavior with low entropy at both ends.
If we let PLH denote the probability weight for the case of monotonically increasing entropy from left
to right, and similarly let PLL denote the probability weight for the case of low entropy at both ends,
then we may study the ratio

ρ =
PLL
PLH

=
NLL

pNLH
(8)

as a measure for the probability of a behavior with low entropy at both ends as compared to a
monotonically increasing behavior.

If, as argued in Section 5, the ratio NLL/NLH tends to zero when W → ∞, then for any value of p
we get a kind of limit theorem, stating that for large W, ρ will be very small. To prove this rigorously
may not be so easy, and it should also be added that such a limit theorem should only be expected to
hold true in an average sense when we consider all possible random choices defining the dynamics:
For a fixed number of moments of time and very special choices of the edges, the ratio in (8) may not
tend to zero when W tends to infinity.
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6. The probability for high entropy at both ends

Although it may not be clear that questions about universes with high entropy at both ends have
any physical significance, it may still be of mathematical and philosophical interest to ask what the
probability for such a behavior is. In fact, if we (in analogy with the notation in Section 4) denote the
number of such universes by NHH , then we may consider (with an obvious notation) the ratio

ρ̂ =
PLL + PHH
PLH + PHL

=
NLL + p2NHH
pNLH + pNHL

, (9)

representing the probability for a symmetric behavior (with low entropy at both ends or high entropy
at both ends), compared to the probability for a monotonic behavior. Due to the symmetry of the
model, we can also write NHL = NLH (in fact, according to the discussion in Section 4, both of them
equal M2T1 ).

If we take the minimum of this expression with respect to p, we obtain by a trivial computation:

ρ̂min =

√
NLLNHH
2NLH

. (10)

If ρ̂min � 1, we can conclude that at least for values of p close to the minimizing one, monotonic
behavior will be much more likely than symmetric behavior (with either low or high entropy at the
ends), whereas this will not happen if ρ̂min is not small compared to one.

To compute NHH takes a lot more computer power than to compute NLL. The plot in Figure 4
(to the left) is based on an average of 10 randomly generated matrices A for each value of W.

Figure 4. The ratio NHH/NLH (left) an ρ̂ (right) as functions of W for the case T1 = 2.

Although the range of values for W is too short for making firm predictions, the plot seems
to indicate that NHH/NLH should probably be growing at least linearly with W, perhaps even
slightly faster.

If we combine with the information from Figure 3, we can also plot ρ̂ as in Equation (10) (Figure 4
to the right). There seems to be no indication that ρ̂ should tend to zero when W tends to infinity. This
is also in accordance with heuristic computations.

If it turns out to be true, that ρ̂ will not in general be small, what conclusion should be drawn
from this? One possible conclusion would of course be that the high-entropy-at-both-ends-scenario
is the most likely one. Even if this is not necessarily in contradiction with observations, it may seem a
little bit unsatisfactory. Another conclusion however, may be that although the models in this paper
can explain why monotonic behavior could be more likely than the symmetric scenario with low
entropy at both ends, they may still be too coarse to really deal with the high-entropy case.

The reason is that the highly simplified models of the multiverse in this paper neglect one crucial
property: the dynamics in Section 4 has no memory in the sense that the probability for the entropy to
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grow or decrease from time t to time t + 1 is completely independent of what happened before time t.
Thus, in a sense the time development of the entropy is viewed as a kind of Markov process. This is
of course in striking contrast to our experience from real life. In our own universe many processes
which increase the entropy can so to speak guard the memory of the previous history for a very long
time, e.g., light emitted from a super-nova will travel through the universe for billions of years.

It is therefore tempting to consider a modified model where this property is taken into account. A
natural way to do so is to consider the paths in the graph in Figure 2 to be endowed with weights: at a
node at time t, the path is given a hight weight if the entropy is monotonic on the interval [t− 1, t + 1]
and a low weight if it is not. This kind of dynamics is still perfectly time-symmetric, but it is not
difficult to show that it will have the property that ρ̂min can be very small if the weights are chosen
properly. On the other hand, there may be many other modifications of the dynamics that can be still
better motivated on physical grounds. Hence, this should be a good starting point for an investigation
of various different modifications of the models, leading to different dynamical assumptions.

7. Conclusions

In this paper, I have given a few simple examples of how computer computations can be used
to analyze simple models for time asymmetry. Clearly, these calculations are just preliminary steps
towards a deeper understanding of such models. In fact, in the end it would of course be preferable
to have mathematical proofs for all claims that we may want to make about them.

This goal may however be difficult to reach, and in any case, computers offer a way to gain
intuition about what should and should not be true, before actually attempting rigorous proofs.
And it may also be possible to test a variety of different models to see which ones may be the best
candidates for a realistic model.
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