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Abstract: In this paper, we prove some optimal inequalities involving the intrinsic scalar
curvature and the extrinsic Casorati curvature of submanifolds in a generalized complex space
form with a semi-symmetric non-metric connection and a generalized Sasakian space form with
a semi-symmetric non-metric connection. Moreover, we show that in both cases, the equalities hold if
and only if submanifolds are invariantly quasi-umbilical.
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1. Introduction

The theory of Chen invariants [1] is presently one of the most interesting research topics in
differential geometry of submanifolds. He established some sharp inequalities, well-known as Chen’s
inequalities, for a submanifold in a real space form using the scalar curvature, the sectional curvature,
Ricci curvature and the squared mean curvature. In other words, he gave simple relationships between
the main intrinsic invariants and the extrinsic invariants of a submanifold in a real space form. It is well
known that theorems which relate intrinsic and extrinsic curvatures of submanifolds always play an
important role in differential geometry. So the study of this topic has attracted a lot of attention in the
last two decades. Many Chen invariants and inequalities exist for the different classes of submanifolds
in various ambient spaces; see [2–8] and reference therein.

On the other hand, Hayden [9] introduced the notion of a semi-symmetric metric connection
on a Riemannian manifold. Yano [10] studied some properties of a Riemannian manifold with
a semi-symmetric metric connection. Nakao [11] studied submanifolds in a Riemannian manifold
with a semi-symmetric metric connection. Agashe and Chafle [12,13] introduced the notion of
a semi-symmetric non-metric connection on a Riemannian manifold and studied submanifolds in
a Riemannian manifold with a semi-symmetric non-metric connection.

Mihai and Özgür [14,15] proved Chen’s inequalities for submanifolds in a real space with
a semi-symmetric metric connection, a complex space with a semi-symmetric metric connection
and a Sasakian space form with a semi-symmetric metric connection. They also studied Chen’s
inequalities for submanifolds in a real space form endowed with a semi-symmetric non-metric
connection [16]. By using two new algebraic lemmas Zhang et al. [17] obtained Chen’s inequalities
for submanifolds of a Riemannian manifold of nearly quasi-constant curvature endowed with a
semi-symmetric non-metric connection.

Instead of the extrinsic squared mean curvature, the Casorati curvature of a submanifold
in a Riemannian manifold was considered as an extrinsic invariant defined as the normalized
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square of the length of the second fundamental form of the submanifold. The notion of Casorati
curvature extends the concept of the principle direction of a hypersurface in a Riemannian manifold.
Therefore, it is of great interest to obtain optimal inequalities for the Casorati curvatures of
submanifolds in different manifolds. Decu et al. [18] obtained some optimal inequalities involving
the scalar curvature and the Casorati curvature of a submanifold in a real space form. Some
optimal inequalities involving Casorati curvatures were proved in [19–21] for slant submanifolds
in quaternionic space forms. Recently, Lee et al. [22–24] proved optimal inequalities involving the
Casorati curvature of submanifols in real and generalized space forms endowed with a semi-symmetric
metric connection. Using a different algebra approach, Zhang et al. [25] established optimal inequalities
involving the Casorati curvature of submanifols in a Riemannian manifold of quasi-constant
curvature with a semi-symmetric metric connection. But optimal inequalities involving the Casorati
curvature of submanifolds in an ambient space with a semi-symmetric non-metric connection haven’t
been established.

In this paper, we will study some optimal inequalities involving the Casorati curvature of
submanifols in a generalized space forms endowed with semi-symmetric non-metric connections.

2. Preliminaries

Let Nn+p be an (n + p)-dimensional Riemannian manifold with a Riemannian metric g and a
linear connection ∇ on Nn+p. If the torsion tensor T of ∇, defined by

T(X, Y) = ∇XY−∇YX− [X, Y]

for any smooth vector fields X and Y on Nn+p, satisfies

T(X, Y) = φ(Y)X− φ(X)Y

for a 1-form φ, then the linear connection ∇ is called a semi-symmetric connection. The vector field
U is defined by φ(X) = g(X, U) for any vector field X on Nn+p. If ∇ satisfies ∇g = 0, ∇ is called
a semi-symmetric metric connection. If ∇ satisfies ∇g 6= 0, then ∇ is called a semi-symmetric
non-metric connection.

Let ∇′ denote the Levi-Civita connection with respect to the Riemannian metric g on Nn+p.
Agashe and Chafle [12] introduced a semi-symmetric non-metric connection ∇ which is given by

∇XY = ∇′XȲ + φ(Y)X, (1)

for any smooth vector fields X and Y on Nn+p.
We will consider the Riemannian manifold Nn+p endowed with a semi-symmetric non-metric

connection ∇ and the Levi-Civita connection ∇′. Let R and R′ be curvature tensors of the Riemannian
manifold Nn+p with respect to ∇ and ∇′, respectively. Then R can be written as [12]

R(X, Y, Z, W) = R′(X, Y, Z, W) + s(X, Z)g(Y, W)− s(Y, Z)g(X, W) (2)

for any smooth vector fields X, Y, Z, W on Nn+p, where (0, 2)-tensor field s is given by

s(X, Y) = (∇′Xφ)Y− φ(X)φ(Y).

Denote by λ the trace of s.
Let Mn be an n-dimensional submanifold in the Riemannian manifold Nn+p. On the submanifold

Mn we consider the induced semi-symmetric non-metric connection denoted by ∇ and the induced
Levi-Civita connection denoted by ∇′. We also denote by R and R′ the curvature tensor on Mn with
respect to ∇ and ∇′, respectively.
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The Gauss formulas with respect to ∇ and ∇′, respectively, can be written as

∇XY = ∇XY + h(X, Y), ∇′XY = ∇′XY + h′(X, Y)

for any smooth vector fields X, Y on Mn, where h′ is the second fundamental form of Mn in Nn+p and
h is a (0,2)-tensor on Mn. From [13], we know

h = h′. (3)

In [13], the Gauss equation for the submanifold Mn into Nn+p with respect to the semi-symmetric
non-metric connection is

R(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, Z), h(Y, W))− g(h(X, W), h(Y, Z))

+ g(U, h(Y, Z))g(X, W)− g(U, h(X, Z))g(Y, W)
(4)

for any smooth vector fields X, Y, Z, W on Mn.
Let π ⊂ Tx Mn, x ∈ Mn, be a 2-plane section. Denote by K(π) the sectional curvature of Mn

with respect to the induced semi-symmetric non-metric connection ∇. For any orthonormal basis
{e1, · · · , en} of the tangent space Tx Mn the scalar curvature τ at x with respect to the semi-symmetric
non-metric connection is defined by

τ(x) = ∑
1≤i<j≤n

K(ei ∧ ej)

and the normalized scalar curvature ρ with respect to the semi-symmetric non-metric connection is
defined by

ρ =
2τ

n(n− 1)
.

Let {en+1, · · · , en+p} be an orthormal basis of the normal space T⊥x Mn. We denote by H the mean
curvature vector of Mn with respect to the semi-symmetric non-metric connection, that is

H(x) =
1
n

n

∑
i=1

h(ei, ei)

We also set

hα
ij = g(h(ei, ej), eα), h′αij = g(h′(ei, ej), eα), i, j ∈ {1, · · · , n}, α ∈ {n + 1, · · · , n + p}.

Then the squared norm of h over dimension n is called the Casorati curvature of Mn with respect
to the semi-symmetric non-metric connection, which is denoted by C. That is,

C = 1
n

n+p

∑
α=n+1

n

∑
i,j=1

(hα
ij)

2.

Suppose that L is an l-dimensional subspace of Tx Mn, l ≥ 2, and {e1, · · · , el} is an orthonormal
basis of L. Then the Casorati curvature of the l-plane section L with respect to the semi-symmetric
non-metric connection is defined by

C(L) =
1
l

n+p

∑
α=n+1

l

∑
i,j=1

(hα
ij)

2.
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We define the normalized δ-Casorati curvatures δc(n − 1) and δ̂c(n − 1) with respect to the
semi-symmetric non-metric connection as the following:

[δc(n− 1)]x =
1
2
Cx +

n + 1
2n

inf{C(L) : L is a hyperplane of Tx M}

and
[δ̂c(n− 1)]x = 2Cx −

2n− 1
2n

sup{C(L) : L is a hyperplane of Tx M}.

The submanifold Mn is called invariantly quasi-umbilical if there exist p mutually orthogonal
unit normal vectors en+1, · · · , en+p such that the shape operators with respect to all directions eα

have an eigenvalue of multiplicity n− 1 and that for each eα the distinguished eigendirection is the
same [26].

Let us recall the following two lemmas in [25].

Lemma 1. Let f (x1, x2, · · · , xn) be a function in Rn defined by

f (x1, x2, · · · , xn) = n
n−1

∑
i=1

x2
i +

n− 1
2

x2
n − 2 ∑

1≤i<j≤n
xixj.

If x1 + x2 + · · ·+ xn = ε, then we have

f (x1, x2, · · · , xn) ≥ 0,

with the equality holding if and only if

x1 = x2 = · · · = xn−1 =
1
2

xn =
1

n + 1
ε.

Lemma 2. Let f (x1, x2, · · · , xn) be a function in Rn defined by

f (x1, x2, · · · , xn) =
2n− 3

2

n−1

∑
i=1

x2
i + 2(n− 1)x2

n − 2 ∑
1≤i<j≤n

xixj.

If x1 + x2 + · · ·+ xn = ε, then we have

f (x1, x2, · · · , xn) ≥ 0,

with the equality holding if and only if

x1 = x2 = · · · = xn−1 = 2xn =
2

2n− 1
ε.

3. Optimal Inequalities for the Casorati Curvatures of Submanifolds in a Generalized Complex
Space form Endowed with a Semi-Symmetric Non-Metric Connection

A 2m-dimensional almost Hermitian manifold (N, J, g) is said to be a generalized complex space
form [27], if there exists two functions F1 and F2 on N such that

R′(X, Y, Z, W) = F1[g(Y, Z)g(X, W)− g(X, Z)g(Y, W)] + F2[g(X, JZ)g(JY, W)

− g(Y, JZ)g(JX, W) + 2g(X, JY)g(JZ, W)] (5)

for any smooth vector fields X, Y, Z, W on N, where R′ is the curvature tensor with respect to the
Levi-Civita connection ∇′. In such a case, we will write N(F1, F2).
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We endow the generalized complex space form N(F1, F2) with a semi-symmetric non-metric
connection ∇. Let Mn be an n-dimensional submanifold of N(F1, F2), n ≥ 3. For any vector field X
tangent to M, we decompose JX as

JX = PX + FX,

where PX and FX are tangential and normal components of JX, respectively. We also set

‖P‖2 =
n

∑
i,j=1

g2(Jei, ej).

For submanifolds in the generalized complex space form with a semi-symmetric non-metric
connection, we establish the following inequalities involving the normalized δ-curvatures δc(n− 1)
and δ̂c(n− 1).

Theorem 1. Let Mn, n ≥ 3, be an n-dimensional submanifold in a 2m-dimensional generalized complex space
form N(F1, F2) endowed with a semi-symmetric non-metric connection ∇. Then

(i) The normalized δ-curvature δc(n− 1) satisfies

ρ ≤ δc(n− 1) + F1 +
3

n(n− 1)
F2||P||2 −

λ

n
− φ(H). (6)

Moreover, the equality holds if and only if Mn is an invariantly quasi-umbilical submanifold.
(ii) The normalized δ-curvature δ̂c(n− 1) satisfies

ρ ≤ δ̂c(n− 1) + F1 +
3

n(n− 1)
F2||P||2 −

λ

n
− φ(H). (7)

Moreover, the equality holds if and only if Mn is an invariantly quasi-umbilical submanifold.

Proof. Let e1, · · · , en and en+1, · · · , e2m be orthonormal bases of Tx Mn and T⊥x Mn, respectively,
x ∈ Mn.

For X = W = ei, Y = Z = ej, i 6= j, from (2), (4) and (5), we get

Rijji = R(ei, ej, ej, ei) = F1 + 3F2g2(Jei, ej)− s(ej, ej)

+ g(h(ei, ei), h(ej, ej))− g(h(ei, ej), h(ei, ej))− φ(h(ej, ej)).

By summation over 1 ≤ i, j ≤ n, it follows that

2τ(x) = n2H2 − nC + n(n− 1)F1 + 3F2||P||2 − (n− 1)λ− n(n− 1)φ(H). (8)

(i) Without loss of generality, we can assume that L0 = span{e1, · · · , en−1} satisfies

C(L0) = inf{C(L) : L is a hyperplane of Tx M}.

We define the following function, denoted by P , which is a quadratic polynomial in the
components of the second fundamental form:

P =
1
2

n(n− 1)C + (n− 1)(n + 1)
2

C(L0)− 2τ

+ n(n− 1)F1 + 3F2||P||2 − (n− 1)λ− n(n− 1)φ(H).
(9)
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Using (8) we obtain

P =
2m

∑
α=n+1

[n
n−1

∑
i=1

(hα
ii)

2 +
n− 1

2
(hα

nn)
2 + 2(n + 1) ∑

1≤i<j≤n−1
(hα

ij)
2

+ (n + 1)
n−1

∑
i=1

(hα
in)

2 − 2 ∑
1≤i<j≤n−1

hα
iih

α
jj]

≥
2m

∑
α=n+1

[n
n−1

∑
i=1

(hα
ii)

2 +
n− 1

2
(hα

nn)
2 − 2 ∑

1≤i<j≤n−1
hα

iih
α
jj].

Setting

f (hα
11, hα

22, · · · , hα
nn) = n

n−1

∑
i=1

(hα
ii)

2 +
n− 1

2
(hα

nn)
2 − 2 ∑

1≤i<j≤n−1
hα

iih
α
jj,

we consider the problem as following:

min{ f (hα
11, hα

22, · · · , hα
nn) : hα

11 + hα
22 + · · ·+ hα

nn = kα, kα is some constant},

where α ∈ {n + 1, · · · , 2m}.
By Lemma 1, we have

f (hα
11, hα

22, · · · , hα
nn) ≥ 0

with equality holding if and only if

hα
11 = hα

22 = · · · = hα
n−1,n−1 =

1
2

hα
nn, ∀α ∈ {n + 1, · · · , 2m}.

Therefore, we have
P ≥ 0 (10)

with equality holding if and only if

hα
ij = 0, ∀i 6= j, ∀α ∈ {n + 1, · · · , 2m}

and
hα

11 = hα
22 = · · · = hα

n−1,n−1 =
1
2

hα
nn, ∀α ∈ {n + 1, · · · , 2m}

From (9) and (10), we get

2τ ≤ 1
2

n(n− 1)C + (n− 1)(n + 1)
2

C(L) + n(n− 1)F1 + 3F2||P||2 − (n− 1)λ− n(n− 1)φ(H).

Furthermore, we have

ρ ≤ 1
2
C + n + 1

2n
C(L) + F1 +

3
n(n− 1)

F2||P||2 −
λ

n
− φ(H).

By the definition of δc(n− 1), we can obtain

ρ ≤ δc(n− 1) + F1 +
3

n(n− 1)
F2||P||2 −

λ

n
− φ(H).

And the equality holds if and only if

h′α11 = h′α22 = · · · = h′αn−1,n−1 =
1
2

h′αnn, h′αij = 0, ∀i 6= j, ∀α ∈ {n + 1, · · · , 2m}, (11)
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where we used the relation (3) of h and h′.
From (11), we know that Mn is invariantly quasi-umbilical.
(ii) Without loss of generality, we can also assume that L0 = span{e1, · · · , en−1} satisfies

C(L0) = sup{C(L) : L is a hyperplane of Tx M}.

Considering the following quadratic polynomial in the components of the second
fundamental form

Q = 2n(n− 1)C + 1
2
(n− 1)(1− 2n)C(L)− 2τ

+ n(n− 1)F1 + 3F2||P||2 − (n− 1)λ− n(n− 1)φ(H).
(12)

Using (8) we have

Q =
2m

∑
α=n+1

[
2n− 3

2

n−1

∑
i=1

(hα
ii)

2 + 2(n− 1)(hα
nn)

2 + (2n− 1) ∑
1≤i<j≤n−1

(hα
ij)

2

+ 2(2n− 1)
n−1

∑
i=1

(hα
in)

2 − 2 ∑
1≤i<j≤n−1

hα
iih

α
jj]

≥
2m

∑
α=n+1

[
2n− 3

2

n−1

∑
i=1

(hα
ii)

2 + 2(n− 1)(hα
nn)

2 − 2 ∑
1≤i<j≤n−1

hα
iih

α
jj].

Setting

f (hα
11, hα

22, · · · , hα
nn) =

2m

∑
α=n+1

2n− 3
2

n−1

∑
i=1

(hα
ii)

2 + 2(n− 1)(hα
nn)

2 − 2 ∑
1≤i<j≤n−1

hα
iih

α
jj,

we consider the problem as following:

min{ f (hα
11, hα

22, · · · , hα
nn) : hα

11 + hα
22 + · · ·+ hα

nn = kα, kα is some constant},

where α ∈ {n + 1, · · · , 2m}.
By Lemma 2, we have

f (hα
11, hα

22, · · · , hα
nn) ≥ 0, ∀α ∈ {n + 1, · · · , 2m}

with equality holding if and only if

hα
11 = hα

22 = · · · = hα
n−1,n−1 = 2hα

nn.

Therefore, we have
Q ≥ 0 (13)

with equality holding if and only if

hα
ij = 0, ∀i 6= j, ∀α ∈ {n + 1, · · · , 2m}

and
hα

11 = hα
22 = · · · = hα

n−1,n−1 = 2hα
nn, ∀α ∈ {n + 1, · · · , 2m}

Then by (12) and (13) and the definition of δ̂c(n − 1), we can easily derive the inequality (7).
And the equality can be also easily verified.
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Remark 1. For F1 = F2 = c, where c is a constant, then from Theorem 1 we can get optimal inequalities for
the Casorati curvatures of submanifolds in the complex space form N2m(4c) endowed with a semi-symmetric
non-metric connection.

4. Optimal Inequalities for the Casorati Curvatures of Submanifolds in a Generalized Sasakian
Space form Endowed with a Semi-Symmetric Non-Metric Connection

Let N be a (2m + 1)-dimensional almost contact metric manifold (see [28]) with an almost
contact metric structure (ϕ, ξ, η, g) consisting of a (1, 1)-tensor field ϕ, a vector field ξ, a 1-form
η and a Riemannian metric g on N satisfying

ϕ2X = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0,

g(ϕX, ϕY) = g(X, Y)− η(X)η(Y), g(X, ξ) = η(X),

for all vector fields X, Y on N. Such a manifold is said to be a contact metric manifold if dη = Φ,
where Φ(X, Y) = g(X, ϕY) is called the fundamental 2-form of N [28].

Given an almost contact metric manifold N with an almost contact metric structure (ϕ, ξ, η, g),
N is called generalized Sasakian space form [29] if there exists three functions f1, f2 and f3 on N
such that

R′(X, Y, Z, W) = f1[g(Y, Z)g(X, W)− g(X, Z)g(Y, W)] + f2[g(X, ϕZ)g(ϕY, W)

− g(Y, ϕZ)g(ϕX, W) + 2g(X, ϕY)g(ϕZ, W)] + f3[η(X)η(Z)g(Y, W)

− η(Y)η(Z)g(X, W) + η(Y)η(W)g(X, Z)− η(X)η(W)g(Y, Z)]

(14)

for any smooth vector fields X, Y, Z, W on N, where R′ is the curvature tensor with respect to the
Levi-Civita connection ∇′. In such a case, we will write N( f1, f2, f3). If f1 = c+3

4 , f2 = f3 = c−1
4 ,

where c is a constant, then N is a Sasakian space form.
Now we endow the generalized Sasakian space form N( f1, f2, f3) with a semi-symmetric

non-metric connection ∇. Let Mn be an n-dimensional submanifold of N( f1, f2, f3), n ≥ 3. We set

ϕX = PX + FX

for any vector field X tangent to Mn, where PX and FX are tangential and normal components of ϕX,
respectively. We also set

‖P‖2 =
n

∑
i,j=1

g2(ϕei, ej)

and decompose
ξ = ξ> + ξ⊥,

where ξ> and ξ⊥ denote the tangential and normal components of ξ.
For submanifolds in a generalized Sasakian space form with the semi-symmetric non-metric

connection, we establish the following inequalities involving the normalized δ-curvatures δc(n− 1)
and δ̂c(n− 1).

Theorem 2. Let Mn, n ≥ 3, be an n-dimensional submanifold in a (2m + 1)-dimensional generalized Sasakian
space form N( f1, f2, f3) endowed with a semi-symmetric non-metric connection ∇. Then
(i) The normalized δ-curvature δc(n− 1) satisfies

ρ ≤ δc(n− 1) + f1 +
3

n(n− 1)
f2||P||2 −

2
n

f3||ξ>||2 −
λ

n
− φ(H).

Moreover, the equality holds if and only if Mn is an invariantly quasi-umbilical submanifold.
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(ii) The normalized δ-curvature δ̂c(n− 1) satisfies

ρ ≤ δ̂c(n− 1) + f1 +
3

n(n− 1)
f2||P||2 −

2
n

f3||ξ>||2 −
λ

n
− φ(H).

Moreover, the equality holds if and only if Mn is an invariantly quasi-umbilical submanifold.

Proof. Let e1, · · · , en and en+1, · · · , e2m+1 be orthonormal bases of Tx Mn and T⊥x Mn, respectively,
x ∈ Mn.

For X = W = ei, Y = Z = ej, i 6= j, from (2), (4) and (14), we get

Rijji = R(ei, ej, ej, ei) = f1 + 3 f2g2(ϕei, ej)− f3[η(ei)
2 + η(ej)

2]− s(ej, ej)

+ g(h(ei, ei), h(ej, ej))− g(h(ei, ej), h(ei, ej))− φ(h(ej, ej)).

By summation over 1 ≤ i, j ≤ n, it follows that

2τ(x) = n2H2 − nC + n(n− 1) f1 + 3 f2||P||2

− 2(n− 1) f3||ξ>||2 − (n− 1)λ− n(n− 1)φ(H).

The rest of the proof is the same as Theorem 1. So we will no longer describe here.

Remark 2. For f1 = c+3
4 , f2 = f3 = c−1

4 , from Theorem 2 we can get the optimal inequalities for the Casorati
curvatures of submanifolds in the Sasakian space form endowed with a semi-symmetric non-metric connection.
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