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Abstract: We define the operation of Petrie duality for maps, describing its general
properties both geometrically and algebraically. We give a number of examples and
applications, including the construction of a pair of regular maps, one orientable of genus 17,
the other non-orientable of genus 52, which embed the 40-vertex cage of valency 6 and
girth 5 discovered independently by Robertson and Anstee. We prove that this map
(discovered by Evans) and its Petrie dual are the only regular embeddings of this graph,
together with a similar result for a graph of order 40, valency 6 and girth 3 with the same
automorphism group.
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1. Introduction

Anyone who has studied the theory of maps on surfaces, or that of polytopes, will be familiar with the
classical duality operation D, which transposes the roles of vertices and faces. It leaves the underlying
surface of a map invariant, preserving such properties as orientability, genus and boundary components,
so it is very useful when studying maps on a given surface. It also preserves the automorphism group of
a map, so it is even more useful when studying the most symmetric maps: these are the regular maps,
those maps for which the automorphism group acts transitively (and hence regularly) on flags.

This duality operation is less useful when one studies the regular embeddings of a given graph, or
family of graphs, since it may (and often does) change the graph embedded by a map. In this situation,
there is a more useful but slightly less well-known duality operation, called the Petrie duality P , which



Symmetry 2015, 7 2207

has the advantage of preserving the embedded graph. The aim of this note is to define this operation, to
describe a little of its history and its general properties, and to show its effectiveness by using it to study
some regular graphs which have arisen in a purely graph-theoretic context, namely that of cages.

The cage of valency 6 and girth 5, that is, the smallest graph with these parameters, was described by
Robertson in his thesis [1], and was subsequently independently discovered by Anstee [2], Evans [3], and
O’Keefe and Wong [4]. This graph, which has 40 vertices, has been further studied by Klin, Muzychuk
and Ziv-Av [5], and by Wong [6], the latter giving a proof of its uniqueness. Following [5] we will call
this the Anstee–Robertson graph, and denote it byR.

Evans [3] showed thatR can be embedded in an orientable surface as a mapMwith pentagonal faces.
Our aim here is to show that this mapM, which we will call the Evans map, is a regular map of genus 17,
a double covering of the regular map {5, 6}4 of genus 9 described by Coxeter and Moser in Section 8.6
and Table 8 of [7]; we will also describe the Petrie dualM′ = P (M) ofM, a regular embedding of R
with octagonal faces on a non-orientable surface of genus 52. We will prove in Theorem 2 that these are
the only regular maps which embed this graph, together with a similar result (Corollary 3) for another
graphR† of order 40 and valency 6 (but girth 3) which has the same automorphism group asR. We will
also consider various quotients ofM andM′, showing that they are isomorphic to various maps which
have already appeared in the literature.

2. The Petrie Dual of a Map

One can think of a map as a road-map, with edges representing roads, and vertices representing
roundabouts. One can then travel around each face by starting a journey along one edge, and consistently
turning first left at each vertex. Even if the surface is non-orientable, one can carry a local orientation
along the edges, so that “first left” is always well-defined. Replacing “first left” with “first right” gives
the other face incident with the initial edge (in some cases these two faces may coincide).

Suppose that instead we decide to turn alternately first left and first right, following a zigzag path
through the map. In a finite map, such a path must eventually close up, giving what is called a
Petrie polygon. (Coxeter [8] named these polygons after his lifelong friend, the geometer John Flinders
Petrie (1907–1972), who was the son of the great Egyptologist Sir William Flinders Petrie.) As in the
case of faces, each edge is in general contained in two Petrie polygons, depending on whether one starts
by turning left or right, but again there are examples in which the two polygons coincide.

The Petrie dual P (M) of a mapM is the map formed by retaining the vertices and edges ofM, but
removing its faces, and replacing them with new faces bounded by the Petrie polygons ofM. Thus the
embedded graph is unchanged, but the surface may be totally different.

For example, if we regard the tetrahedron as a map T on the sphere, with four triangular faces,
then its Petrie polygons have length 4: one is indicated with thick red lines in the map on the left of
Figure 1. Then P (T ) is a map on the real projective plane, with three quadrilateral faces. It is, in fact,
the antipodal quotient of the cube, as shown on the right in Figure 1, where antipodal points on the
boundary of the disk, shown as a broken line, are identified. Note that in both cases the embedded graph
is the complete graph K4, and the automorphism group of the map is isomorphic to S4, acting naturally
on the four vertices.
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Figure 1. The tetrahedron, with a Petrie polygon, and its Petrie dual.

If we regard the cube C as a map on the sphere, then its Petrie polygons, such as that indicated with
thick red lines in Figure 2, have length 6. The six quadrilateral faces of C are replaced in P (C) with four
hexagonal faces; this map is shown on the right in Figure 2, where opposite sides of the outer hexagon
are identified to form a torus, so that there are just two vertices at the corners. Again, the graph (Q3 in
this case) and the automorphism group (S4 × C2) are unchanged.

Figure 2. The cube, with a Petrie polygon, and its Petrie dual.

The difference between the Euler characteristics of a map and its Petrie dual can be arbitrarily large.
For example, letM be the regular map on the sphere with two vertices joined by n edges, so that there
are n digonal faces. If n is odd there is a single Petrie polygon; since P (M) has two vertices, n edges
and one face, it has characteristic 3 − n and genus (n − 1)/2; in fact, it can be formed by orientably
identifying opposite sides of a 2n-gon (see Figure 3 for the case n = 5).

M P (M)

Figure 3. A planar map and its Petrie dual.

This means that Petrie duality can be very useful in creating maps of large genus from those of smaller
genus, while preserving the embedded graph and the symmetry properties of the maps. For example,
James [9] showed that the complete graph Kn has a regular embedding in a non-orientable surface if
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and only if n = 3, 4 or 6. There are three obvious examples on the real projective plane, namely the
antipodal quotients of the spherical embeddings of a circuit of length 6, the cube (see Figure 1), and the
icosahedron. There is, however, a fourth example, the self-dual map N5.3 in Conder’s list of regular
maps [10], which is much harder to describe or to visualise since it has genus 5. It is perhaps most easily
constructed as the Petrie dual of the last of these three maps, or alternatively as the antipodal quotient
of the great dodecahedron (R5.6 in [10], see Section 6.2 in [8]), an orientable map of genus 4 with 12

vertices of valency 5 and 12 pentagonal faces.

3. The Group of Map Operations

Clearly the classical vertex-face duality D and the Petrie duality P are operations of order 2, so
they satisfy

D2 = P 2 = I, (1)

where I denotes the identity operation on maps. One might hope that the dual of the Petrie dual of a map
is the same as the Petrie dual of its dual, but in fact the operationsD and P do not commute: Wilson [11],
building on earlier work of Coxeter in Section 8.6 of [7] and in [12], showed that they satisfy

PDP = DPD, or equivalently (DP )3 = I, (2)

so they generate a group Ω of operations isomorphic to the symmetric group S3. (See the slightly later
paper [13] by Lins for a similar idea.) For example, by applying different operations in this group to the
cube we obtain six non-isomorphic maps: there are two each on the sphere and the torus (the maps in
Figure 2 and their duals), and a dual pair on a non-orientable surface of genus 4, corresponding to entry
N4.2 in [10].

In addition to D and P there is a third involution in Ω, the operation PDP = DPD, giving another
duality for maps. Wilson called this the “opposite” operation, since it acts by cutting the faces of a
map apart along the edges, and then rejoining adjacent faces with the opposite identifications of their
common edges. This preserves the set of faces of a map, but transposes vertices and Petrie polygons, so
it generally changes both the surface and the embedded graph. Similarly, there are two triality operations
on maps, namely the elements DP and PD of order 3 in Ω.

The group Ω thus acts as the symmetric group S3, permuting the three sets consisting of the
vertices, faces and Petrie polygons of each map. Only the sets of edges and of flags, together with
the automorphism group, remain invariant. This suggests a symmetry between these three features of a
map, giving them equal status. This is partially recognised in the notation {p, q}r introduced by Coxeter
to indicate the extended type of a map: the abbreviated notation {p, q} indicates that all faces are p-gons
and all vertices have valency q, while the subscript r, indicating that the Petrie polygons all have length r,
admits them as at least a junior member of the family.

For each subgroup Ω0 ≤ Ω, one can find examples of maps M which are invariant only under
the operations in Ω0, so that they lie in an orbit of length 6/|Ω0|: this is easy when |Ω0| = 1 or 2,
and not difficult for Ω0 = Ω, as in the recent papers by Cunningham [14] and by Richter, Širáň and
Wang [15] (the simplest example in this case is the embedding of a circuit of length 2 in the sphere),
but it is quite hard when Ω0 is the subgroup of order 3 generated by the triality operations, so that
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D(M) ∼= P (M) 6∼=M. Indeed, Wilson originally thought that no such maps could exist. He eventually
produced an example in [11], and this was generalised to three infinite families by Poulton and the first
author in [16], but none of the constructions is straightforward. According to Conder [17], Wilson’s
example, a non-orientable map N72.9 of type {9, 9}9 and genus 72, with automorphism group PSL2(8),
is the smallest such map, while the smallest orientable example has genus 193 and type {16, 16}16, with
an automorphism group of order 2048.

In the next section we will introduce a group-theoretic description of maps on surfaces, which we
will then use to explain this group of operations, together with its analogues in other geometric and
combinatorial categories.

4. Maps and Permutations

Let M be any map. For simplicity, let us assume that the underlying surface is without boundary.
(Here, this is no great loss of generality, since maps with non-empty boundary are rarely highly
symmetric.) Let Φ be the set of flags φ = (v, e, f) of M, where v, e and f are a mutually incident
vertex, edge and face. For each φ ∈ Φ and each i = 0, 1, 2, there is one other flag φ′ sharing the same
j-dimensional components as φ for each j 6= i. Let us define ri to be the permutation of Φ transposing
all such pairs φ, φ′. Figure 4 shows how these three permutations r0, r1 and r2 act on a typical flag φ.

v e

f

φ φr0

φr1

φr2 φr0r2

Figure 4. The permutations ri acting on a flag φ = (v, e, f).

Let us define the monodromy group ofM to be the subgroup

G := 〈r0, r1, r2〉

of the symmetric group Sym Φ on Φ generated by the permutations r0, r1 and r2. By their construction,
these permutations satisfy

r2
i = (r0r2)2 = 1,

so let us define Γ to be the abstract group with presentation (in terms of generators and relations)

Γ = 〈R0, R1, R2 | R2
i = (R0R2)2 = 1〉. (3)

Then there is an epimorphism θ : Γ→ G, that is, a permutation representation of Γ on Φ, given by

Ri 7→ ri (i = 0, 1, 2).

Conversely, given any (not necessarily transitive) permutation representation of Γ on a set Φ, one
can construct a mapM by taking the vertices, edges and faces to correspond to the orbits on Φ of the
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subgroups 〈R1, R2〉 ∼= D∞, 〈R0, R2〉 ∼= V4 and 〈R0, R1〉 ∼= D∞, mutually incident when these orbits
have non-empty intersection. More specifically, one can construct the barycentric subdivision B(M) of
M by taking a set of triangles in bijective correspondence with Φ, each with edges labelled 0, 1 and 2,
and joining two triangles along their edges labelled i whenever ri transposes the corresponding elements
of Φ; the embedded graph is the union of all the edges labelled 2 in B(M).

The connected components of this map M correspond to the orbits of G on Φ, so we will assume
that M is connected, or equivalently that Γ acts transitively on Φ. In this case the stabilisers of flags
form a conjugacy class of subgroups M ≤ Γ, called the map subgroups corresponding toM. These all
have index |Φ| in Γ, so finite maps correspond to subgroups of finite index in Γ. Oriented maps without
boundary correspond to map subgroups contained in the even subgroup Γ+ = 〈R0R1, R1R2〉 of index 2

in Γ, consisting of the words of even length in the generators Ri.
The automorphism group A = AutM ofM can be regarded as the group of all permutations of the

flags commuting with r0, r1 and r2, or equivalently as the centraliser

A = CSym Φ(G)

of G in Sym Φ. A simple argument then shows that

A ∼= NG(Gφ)/Gφ
∼= NΓ(M)/M,

where N denotes “normaliser”, and Gφ is the subgroup of G fixing a flag φ. We say that the mapM
is regular if A acts transitively on Φ. Since the centraliser of a transitive group must act semi-regularly
(that is, fixed-point freely), another simple argument shows that this is equivalent to G being a regular
permutation group, in which case M is a normal subgroup of Γ and

A ∼= G ∼= Γ/M.

This allows us to identify G and A as abstract groups, though as permutation groups on Φ they are
distinct, and can be regarded as the right and left regular representations of the same group.

It is clear from its presentation that Γ decomposes as a free product

〈R0, R2〉 ∗ 〈R1〉 ∼= V4 ∗ C2,

where C2 and V4 denote a cyclic group of order 2 and a Klein four-group C2 × C2. This decomposition
allows various techniques from combinatorial group theory (see [18,19]) to be applied to maps, as in [20]
for example.

The elements R0R1 and R1R2 of Γ induce rotations of flags around their incident faces and vertices,
so if a map has type {p, q} we have (r0r1)p = (r1r2)q = 1. When studying maps of a given type {p, q}
one can therefore add the relations

(R0R1)p = (R1R2)q = 1

to the presentation of Γ, giving the extended triangle group

∆[q, 2, p] = 〈R0, R1, R2 | R2
i = (R1R2)q = (R0R2)2 = (R0R1)p = 1〉,
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which plays the role of Γ for this category of maps. Within this category, the oriented maps without
boundary are those whose map subgroups M are contained in the ordinary triangle group

∆(q, 2, p) = 〈X = R1R2, Y = R2R0, Z = R0R1 | Xp = Y 2 = Zq = XY Z = 1〉,

the subgroup of index 2 in ∆[q, 2, p] consisting of the words of even length in the generators Ri.

5. Operations and Automorphisms

The faces of a map M correspond to the orbits of the dihedral subgroup 〈R0, R1〉 of Γ on Φ, with
the boundary circuit of each face obtained by starting with an incident flag φ and alternately applying
the permutations r0 and r1. Similarly, the Petrie polygons ofM correspond to the orbits of the dihedral
subgroup 〈R0R2, R1〉 of Γ, now obtained by starting with an incident flag φ and alternately applying r0r2

and r1. To put this another way, ifM corresponds to a conjugacy class of subgroups M of Γ, then the
Petrie dual P (M) corresponds to the conjugacy class consisting of their images under the automorphism

π : R0 7→ R0R2, R1 7→ R1, R2 7→ R2

of Γ transposingR0 andR0R2. In a similar way the duality operationD corresponds to the automorphism

δ : R0 7→ R2, R1 7→ R1, R2 7→ R0

of Γ, transposing R0 and R2, while the group Ω generated by D and P corresponds to the automorphism
group of the Klein four-group 〈R0, R2〉, permuting the three involutions R0, R2 and R0R2 and inducing
a group Σ = 〈δ, π〉 of automorphisms of Γ isomorphic to S3.

In [20], Thornton and the first author used the free product structure of Γ to show that Aut Γ is
the semidirect product of the inner automorphism group Inn Γ, isomorphic to Γ, and this group Σ.
Since inner automorphisms leave conjugacy classes of map subgroups, and hence their associated maps,
invariant, we have an induced action of the outer automorphism group

Out Γ = Aut Γ/Inn Γ ∼= Σ ∼= S3.

This gives a group-theoretic interpretation of the six operations on the category of all maps, and also
explains why there are no others.

With this machinery available, it is easy to construct regular maps which are invariant under P : take
any normal subgroup N of Γ, corresponding to some regular map N , and define M to be the map
corresponding to the normal subgroup M = N ∩ Nπ. This is the smallest map covering both N and
P (N ). For example, the icosahedron is a regular map N of type {3, 5}10, so P (N ) is a regular map of
type {10, 5}3 with the same automorphism groupA5×C2 (it is the dual of the non-orientable map N14.3
of genus 14 in [10]), and a straightforward calculation shows that the resulting self-Petrie-dual mapM
is an orientable regular map of type {30, 5}30 and genus 961 with automorphism group (A5 × C2)2.

Similarly, by taking M to be intersection of the images of N under all six automorphisms in Σ we
obtain an Ω-invariant orientable regular map of type {30, 30}30 and genus 187201 with automorphism
group (A5 × C2)3, the smallest coveringM of the icosahedron N such thatM ∼= D(M) ∼= P (M).
There are six distinct images of N , each of the form A ∩ B for unique normal subgroups A and B of
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Γ with quotients A5 and C2; there are three distinct subgroups A and three distinct subgroups B which
arise, each set permuted by Σ as S3, but the images of N correspond to an orbit of Σ of length 6 on
the nine ordered pairs (A,B), giving six non-isomorphic images of N under Ω. The three subgroups A
and the three subgroups B intersect in normal subgroups with quotients A3

5 and C3
2 respectively, so this

calculation, which has been confirmed with the aid of GAP [21], explains why M has automorphism
group (A5 × C2)3 and not, as one might expect, (A5 × C2)6. See [14] for generalisations to polyhedra.

As shown by the first author in [22], there are many other categories in which geometric or
combinatorial objects can be identified with the permutation representations of a particular group ∆, so
that Out ∆ acts as a group of operations. For maps of a given valency k, for example, the permutations
ri satisfy (r1r2)k = 1, so we can add the relation (R1R2)k = 1 to the presentation for Γ, giving the
extended triangle group ∆ = ∆[k, 2,∞]. In this case, if k > 2 then Out ∆ ∼= Z∗k/{±1} × C2, with
the generator of C2 induced by π, corresponding to the Petrie operation on k-valent maps. The case
k = 3, for cubic maps, is of particular interest, since the corresponding group ∆ is the extended modular
group PGL2(Z), with Out ∆ ∼= C2; the non-identity outer automorphism was discovered by Dyer [23],
correcting an error in [24]. Uludaǧ and Ayral [25] give a wide range of applications and manifestations
of this outer automorphism, ranging from number theory to dynamical systems.

In contrast with these finite groups of operations, James [26] has shown that for the categories of
hypermaps and of oriented hypermaps, where ∆ is a free product C2 ∗ C2 ∗ C2 or a free group F2, the
groups of operations are infinite, isomorphic to PGL2(Z) and GL2(Z) respectively. Maps can also be
generalised to abstract polytopes of higher rank n, with the role of ∆ played by the string Coxeter group

〈R0, . . . , Rn | R2
i = 1, (RiRj)

2 = 1 whenever |i− j| > 1〉

of rank n with Schläfli symbol {∞, . . . ,∞}. James [27] has shown that for polytopes of each rank
n > 3, the group of operations is isomorphic to the dihedral group Out ∆ ∼= D4 of order 8, generated by
involutions D and P corresponding to automorphisms

Ri 7→ Rn−i (i = 0, . . . , n)

and
Rn−2 7→ Rn−2Rn, Ri 7→ Ri (i 6= n− 2).

In the rest of this paper we will focus on the regular maps which embed a particular graph, the
Anstee–Robertson graph, together with their regular quotients, showing how Petrie duality can be used
to understand them.

6. The GraphR and Its Group G

It is easy to see that a graph of valency 6 and girth 5 must have at least 37 vertices. In fact the
smallest such graph, the (6, 5)-cage first discovered by Robertson [1], has order 40. There are various
constructions of this graph. Here we will use one based on [5] which is particularly useful for studying
the automorphism group of the graph.

Let F2 denote the 2-dimensional vector space over the field F = F5 of order 5, and let T be the set
of unordered triples {v1, v2, v3} ⊂ F2 which span F2 and satisfy v1 + v2 + v3 = 0. These conditions
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imply that each vi 6= 0, so |T | = (52 − 1)(52 − 5)/6 = 80. The natural action of GL2(5) on F2 induces
a faithful action of this group on T . This action is transitive, since each triple in T is an image of the
standard triple

ω = {e1 = (1, 0), e2 = (0, 1), e3 = (−1,−1)}.

The stabiliser of ω in GL2(5) is a subgroup S ∼= S3, permuting the three vectors ei.
There is a unique subgroup K = HL2(5) of index 2 in GL2(5), consisting of the elements with

non-zero square determinant. (Here “H” stands for “half”.) This group K contains the group

Z = {λI | λ ∈ F∗}

of scalar matrices as a cyclic central subgroup of order 4, with quotient group

K/Z ∼= PSL2(5) ∼= A5.

The six matrices in S have determinant ±1, so S ≤ K, and hence K has two orbits on T , each of
size |K : S| = 40. The orbit V ⊂ T containing ω consists of those triples α = {v1, v2, v3} ∈ T such
that det(vi, vj) is a square for one (equivalently each) pair i 6= j. (Here (vi, vj) denotes the 2× 2 matrix
formed by using the coordinates of vi and vj with respect to the standard basis e1, e2 as its rows.)

Lemma 1. The stabiliser S = Kω of ω in K fixes four elements of V , and has six orbits of length 6 on
the remaining elements of V .

Proof. The orbits of S on V must have lengths dividing |S| = 6. Those of length 1 are the four sets {λω}
where λ ∈ F∗; such triples λω all lie in V since det(λe1, λe2) = λ2. (This shows that the actions ofK on
its orbits V and T \ V are inequivalent, since they have different conjugacy classes of point-stabilisers;
these actions differ by an outer automorphism of K, induced by conjugation in GL2(5).)

A non-trivial orbit of S has length 2 if and only if it contains a triple fixed by the matrix (e2, e3) of
order 3, i.e. of the form {v1 = (a, b), v2 = (b,−a− b), v3 = (−a− b, a)} where a, b, a− b 6= 0 (to avoid
triples λω fixed by S); such a triple is in V if and only if a2−ab+ b2 is a non-zero square. By inspection
of F, there are no such orbits.

Similarly, a non-trivial orbit of S has length 3 if and only if it contains a triple {v1 = (a, b), v2 =

(b, a), v3 = (−a− b,−a− b)} fixed by the matrix (e2, e1) of order 2, with a, b, a− b 6= 0; such a triple
is in V if and only if a2 − b2 is a non-zero square. Again, there are no such orbits.

Any other orbits of S must have length 6, so there are four orbits of length 1, and six of length 6. �

The fixed points of S are the triples τi = (i + 1)ω for i = 0, . . . , 3, and the orbits of length 6 are
represented by the following triples τi (i = 4, . . . , 9):

{(0, 1), (1, 1), (4, 3)}, {(0, 1), (1, 2), (4, 2)}, {(0, 2), (2, 1), (3, 2)},

{(0, 2), (2, 2), (3, 1)}, {(0, 3), (2, 1), (3, 1)}, {(0, 4), (1, 4), (4, 2)}.

These give ten orbitals (K-orbits on V 2) Ri ⊂ V 2 (i = 0, . . . , 9) for K, with (ω, τi) ∈ Ri. The
corresponding orbital graphsRi, with vertex set V and arc set Ri, have valency 1 or 6 as i ≤ 3 or i ≥ 4.
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(See [5] for background on orbital graphs.) We will concentrate on the graph R := R5; this graph is
undirected, corresponding to a self-paired orbital R5, since the involution

A =

(
4 2

0 1

)
∈ K

transposes ω and its neighbour
τ := τ5 = {(0, 1), (1, 2), (4, 2)}.

By listing the neighbours of the vertices ω and τ , one can check that these two adjacent vertices
have no common neighbours; since K acts transitively on the edges of R it follows that this graph is
triangle-free. Similarly, no neighbour of ω has a common neighbour with τ , other than ω, so there are
no cycles of length 4 inR. However, the matrix

B =

(
0 1

4 2

)
∈ K

of order 5 sends ω to τ , giving a pentagon, i.e., a cycle {ωBi | i = 0, . . . , 4} of length 5 inR. ThusR has
girth 5, so having 40 vertices it must be the unique cage of girth 5 and valency 6 (see [6]). Following [5]
we will call R the Anstee–Robertson graph. It is shown in Figure 5 as a Hamiltonian graph, with a
pentagon (appearing here as a pentagram) drawn in thick red lines.

Figure 5. The Anstee-Robertson graphR.

The action of Z partitions the triples in V into ten blocks of size 4, forming a system of imprimitivity
for K. Identifying vertices within each block gives a quotient graph R/Z of order 10 and valency 6,
with K/Z acting arc-transitively on it. Now K/Z ∼= PSL2(5) ∼= A5, so the action of K/Z on vertices
ofR/Z can be identified with the unique transitive action of A5 of degree 10, namely on unordered pairs
from {1, . . . , 5}, showing thatR/Z is isomorphic to the line graph L(K5) ofK5. The full automorphism
group of L(K5) is isomorphic to S5, and as shown by Anstee [2] (by treating the adjacency matrix ofR
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as a 10 × 10 block matrix) the elements of S5 all lift back to automorphisms of R. This shows that the
automorphism group

G := AutR

ofR has order |G| = 480, and is an extension of a normal subgroup Z ∼= C4 by S5, withK, an extension
of Z by A5, as a subgroup of index 2. However, Anstee’s assertion that G is a direct product of Z and S5

is incorrect (see [5]): the extension does not split.
(In a slightly different but related context, K is described in [28] as a central product Z ◦ SL2(5) of

Z and SL2(5), amalgamating central subgroups Y of order 2. It arises as the automorphism group of a
locally icosahedral graph on V formed by merging the orbitals R4 and R9 of K in Section 9.5 of [5].)

As a permutation group on V , G has rank 7, with suborbits of lengths 1, 1, 2, 6, 6, 12 and 12; in
particular, the orbitals R4 and R7 are merged in G, as are R6 and R8, whereas R5 and R9 are unmerged.

GL2(5) G

K L M

SL2(5)

Z

Y

1

Figure 6. The lattice of normal subgroups of G and GL2(5).

SinceG/SL2(5) ∼= V4, there are three subgroupsK,L andM of index 2 inG containing SL2(5). The
lattice of normal subgroups of G and of GL2(5) is shown in Figure 6, with Y := Z ∩ SL2(5) = {±I}:
short edges denote index 2 inclusions, long edges denote index 60 inclusions, with quotient group A5.

In order to understand the structure of G, it is important to note that although this group is closely
related to GL2(5), they are not isomorphic. For instance, GL2(5) has centre Z ∼= C4, but this group is
inverted inG, so that the centre ofG is the subgroup Y of order 2 in Z. Similarly, bothGL2(5) andG are
extensions of K by C2, but G is a split extension whereas GL2(5) is not, since there are no involutions
in GL2(5) \ K. (There are more details of the structure of G, based on the construction of the regular
maps, at the end of the next section.)

The graph R is a Cayley graph, as shown in Propositions 9.2 and 9.11 of [5], although its quotient
R/Z ∼= L(K5) is well known not to have this property: the six subgroups of G/Z ∼= S5 isomorphic
to AGL1(5) lift back to subgroups of order 80 in G, the normalisers of its six Sylow 5-subgroups; their
intersections with L and with M form two conjugacy classes of six subgroups

R = 〈x, y | x5 = y8 = 1, xy = x3〉 ∼= C5 o C8

acting regularly on the vertices of R. These are non-split double covers of AGL1(5) with common
intersection Y = R ∩ Z = 〈y4〉 ∼= C2.
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7. Construction of the Maps

There is a single conjugacy class of elements of order 5 inG, consisting of the 24 non-identity matrices
in SL2(5) with trace 2. A simple matrix argument shows that there are two such matrices sending ω to
its neighbour τ : the matrix B given earlier, together with

C =

(
1 2

0 1

)
.

This means that the edge ωτ of R is contained in two pentagons, {ωBi} and {ωCi}. By the transitivity
of G on arcs, the same applies to each ordered pair of neighbours in R. There are 240 such pairs, so
each of the 24 elements of order 5 acts in this way on 480/24 = 20 such pairs of neighbours; these lie in
20/5 = 4 pentagons, forming an orbit under Z. Each of the twelve mutually inverse pairs of elements of
order 5 in G thus yields 4 pentagons, so we obtain 12 × 4 = 48 pentagons in R, each invariant under a
Sylow 5-subgroup of G. We call these the useful pentagons: one of them is shown using thick red lines
in Figure 5. Any other pentagon inR must have a stabiliser in G of order dividing 2, and hence must lie
in an orbit of G of length 240 or 480. (In fact, GAP shows there are 528 pentagons inR, the rest of them
forming two G-orbits of length 240.)

The neighbours of ω in the pentagon {ωBi} are the vertices

ωB = τ = {(0, 1), (1, 2), (4, 2)} and ωB−1 = {(1, 0), (2, 1), (2, 4)}.

These are transposed by the involution

D =

(
0 1

1 0

)
∈ K,

so this pentagon is invariant under a dihedral subgroup of K of order 10, and by the arc-transitivity of
K the same applies to every useful pentagon (such a subgroup is clearly visible for the red pentagon in
Figure 5). The useful pentagons therefore form two orbits of size 240/10 = 24 under K. The dihedral
subgroup 〈B,D〉 must also be the stabiliser in G of the pentagon {ωBi}, for if this stabiliser were larger
then a non-identity element of G would fix this pentagon, whereas the stabiliser in G of ω fixes only one
other vertex. It follows that this pentagon lies in an orbit of G of size 480/10 = 48, so G acts transitively
on the useful pentagons.

Following Evans [3] we now embed R in a 2-dimensional complex S by attaching a pentagonal face
to each useful pentagon. We need to show that S is a surface. Since each edge of R is contained in two
useful pentagons, and is therefore incident with two faces, it is sufficient to check that a neighbourhood
of each vertex is a disc. By listing the useful pentagons containing a particular vertex v (either by hand
as in [3] or by using GAP) one can verify that the faces incident with v form a cycle of length 6 around
v, so that a small open neighbourhood of v in S is homeomorphic to a disc. The transitivity of G on
vertices implies that the same is true for every vertex, so S is a surface (rather than a pseudo-surface, as
would be the case if the faces around v formed more than one cycle). This embedding ofR in S is a map
M, which we will call the Evans map. It is a uniform map of type {5, 6}, meaning that the faces are all
pentagons and the vertices all have valency 6. This map is illustrated by Evans in Figure 10 of [3].
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Any automorphism ofM is also an automorphism of the embedded graph R, so we have AutM ≤
AutR = G. On the other hand, since the faces ofM are bounded by the useful pentagons, which form
a set invariant under automorphisms ofR, we have AutR ≤ AutM. Thus

AutM = AutR = G.

SinceM has 120 edges, it has 120 × 4 = 480 flags φ = (v, e, f), where v, e and f denote an incident
vertex, edge and face. In any map, these are permuted semi-regularly by the automorphism group; in
this case, since |G| = 480, this action is transitive, soM is a regular map (reflexible in the terminology
of [7]).

This implies thatG is isomorphic to the monodromy group ofM, so it is generated by automorphisms
ri (i = 0, 1, 2) ofM, each changing the i-dimensional component of a particular flag φ = (v, e, f) while
preserving the others. These correspond to the monodromy generators introduced in Section 4 (but now
acting as automorphisms by left rather than right multiplication on G), so they satisfy

r2
i = (r0r1)5 = (r0r2)2 = (r1r2)6 = 1,

where
〈r1, r2〉 = Gv

∼= D6, 〈r0, r2〉 = Ge
∼= D2

∼= V4

and
〈r0, r1〉 = Gf

∼= D5.

(In fact, one can take φ = (ω, ωτ, {ωBi}), r0 = A and r1 = D here, so that r0r1 = B−1, with
r2 ∈ G \K.) The Euler characteristic ofM is

χ = 40− 120 + 48 = −32,

so M is either orientable of genus 17 or non-orientable of genus 34. As shown by Evans [3] one can
assign consistent orientations to the useful pentagons, so thatM is orientable. (Alternatively, one can
use GAP to show that G has a subgroup G+ of index 2, the image of Γ+, with each ri ∈ G \ G+, or
equivalently that the Cayley graph forGwith respect to these generators is bipartite; thenG+ is the group
Aut+M of orientation-preserving automorphisms of M. In fact, Conder’s list of regular maps [10]
shows that there is no non-orientable regular map of genus 34 and type {5, 6}, giving a third proof.)

Inspection of Conder’s list [10] shows thatM must be the map R17.16, the only orientable regular
map of genus 17 and type {5, 6}. This map has Petrie length 8, so the Petrie dualM′ = P (M) is a map
of type {8, 6}. As explained earlier, this is another regular map, also embedding the Anstee-Robertson
graphR, with AutM′ = G. It has Euler characteristic

χ′ = 40− 120 + 30 = −50,

so inspection of [10] shows that it must be the vertex-face dual of one of the two non-orientable regular
maps N52.3 and N52.4 of genus 52 and type {6, 8}. These have Petrie lengths 10 and 5 respectively,
and since the Petrie polygons of M′ correspond to the faces of M, it follows that M′ is the dual of
N52.4 (we will return to N52.3 and its dual later). The entry for N52.4 in [10] includes the comment
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“mV = 2”, meaning that each pair of adjacent vertices have two edges in common; equivalently, each
pair of adjacent faces ofM′, or of adjacent Petrie polygons ofM, also share two common edges.

In addition to K, there are two other subgroups of index 2 in G, denoted by L and M in [5], of ranks
9 and 11 on V ; any two of these intersect in G′ = SL2(5). The stabiliser G+

ω of ω, a cyclic group of
order 6, has the following orbits on V : {ω}, an orbit of length 6 consisting of the neighbours of ω, five
orbits of length 6 consisting of the vertices at distance 2 from ω, and orbits of length 1 and 2 on the three
vertices at distance 3 from ω. Thus G+ has rank 9 on Ω, so one can identify this subgroup with L, rather
than M .

If H denotes either L or M then HZ = G and H ∩ Z = Y = {±I}, the unique subgroup of order
2 in Z, so H/Y ∼= G/Z ∼= S5. Thus H is a double cover of S5. This cannot be a direct product, for
if it were then G′ = SL2(5) would have a subgroup of index 2, whereas it is perfect. Thus H must be
isomorphic to one of the two nontrivial double covers 2.S±5 of S5. Now 2.S−5 has a unique involution
(generating the centre), whereas 2.S+

5 has non-central involutions. The half-turn r0r2 lies in L and the
reflection r2 lies in M : neither can be in K since r0, r1 ∈ K and G = 〈r0, r1, r2〉. It follows that each
H ∼= 2.S+

5 . Thus G is a product of K = HL2(5) and H (= L or M) ∼= Ŝ5 = 2.S+
5 amalgamating a

common subgroup SL2(5) = Â5 = 2.A5 of index 2 in each.
Our investigations lead to the following uniqueness theorem:

Theorem 2. The only regular maps embedding the Anstee-Robertson graphR are the orientable Evans
mapM of type {5, 6}8 and its Petrie dual, the non-orientable mapM′ of type {8, 6}5. In Conder’s lists
these are the maps R17.16 and the dual of N52.4.

Proof. Since R has automorphism group G of order twice the number of arcs, any regular map which
embeds R must also have automorphism group G. Now the 6-valent regular maps with automorphism
group G correspond to the orbits of AutG on generating triples r0, r1, r2 of G satisfying

r2
i = (r0r2)2 = (r1r2)6 = 1.

A search with GAP shows that there are four such orbits: for one pair of orbits the elements r0r1 and
r0r1r2 have orders 5 and 8 or vice versa, so these orbits correspond to the maps M and M′ of types
{5, 6}8 and {8, 6}5. For the other two orbits these elements have orders 10 and 8 or vice versa, giving
a Petrie dual pair of maps N and N ′ of types {10, 6}8 and {8, 6}10. However, the graph R† embedded
byN andN ′ is not isomorphic toR, since reconstructing it from the corresponding generators ri shows
thatR† has girth 3 rather than 5. �

This graph R† is, in fact, the graph R9 corresponding to the orbital R9 for G defined earlier. (The
notationR† commemorates a splendid performance of Verdi’s Macbeth, seen by one of the authors while
writing this paper.) By inspection of [10], the mapsN andN ′ are the duals of the orientable map R29.12
and the non-orientable map N52.3. As an immediate corollary to the above proof, we have the following:

Corollary 3. The only regular maps embedding the graphR† are the dual of the orientable map R29.12,
of type {10, 6}8, and its Petrie dual of type {8, 6}10, the dual of the non-orientable map N52.3.

Remark The four orbits on generating triples discussed above all have length |AutG| = 960: the
inner automorphism group InnG ∼= G/Y has order 240, and the outer automorphism group OutG =

AutG/InnG is a Klein four-group.
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8. Quotient Maps

In this section we will describe the quotient maps ofM andM′ by the groups Y and Z. Since these
are normal subgroups of G, the corresponding quotient maps are all regular.

Let Y denote the unique subgroup of order 2 in Z. Then Y is a characteristic subgroup of Z, and Z is
normal in G, so Y is a normal (in fact central) subgroup of G. The central involution generating Y is a
half-turn around the centres of the Petrie polygons ofM, or equivalently around the face-centres ofM′,
transposing pairs of edges separating common pairs of Petrie polygons or faces. In fact Y is the kernel
of the action of G on the Petrie polygons of M, or equivalently the faces of M′. The quotient maps
M/Y andM′/Y are regular maps with automorphism groups of order 240 isomorphic to

G/Y ∼= PGL2(5)× C2
∼= S5 × C2,

whileM/Z andM′/Z are regular maps with automorphism groups of order 120 isomorphic to

G/Z ∼= PGL2(5) ∼= S5.

We will now describe these maps, showing that some of them are well-known objects.
Since Y has trivial intersections with the stabilisers in G of the vertices, edges and faces of M,

the covering M → M/Y is unbranched, so M/Y has the same type {5, 6} as M and has Euler
characteristic −32/2 = −16. Since Y is contained in the commutator subgroup G′ = SL2(5) of G it
preserves the orientation ofM, soM/Y is orientable, of genus 9. Inspection of [10] shows that it is
R9.16, with Petrie length 4 (the map R9.15, with the same genus and type, is excluded since its Petrie
length 10 does not divide that ofM). In Table 8 of [7] it is shown that the regular map {5, 6}4, the largest
map of type {5, 6} with Petrie length 4, has an automorphism group of order 240; all other regular maps
with this type and Petrie length are quotients of it, so comparing orders givesM/Y ∼= {5, 6}4. (One
can construct {5, 6}4 by applying Wilson’s “opposite” operation PDP = DPD (see Section 3) to the
median map {5, 4}6 of the great dodecahedron, a map of type {5, 5} and genus 4.)

NowM′/Y must be the Petrie dual {4, 6}5 ofM/Y = {5, 6}4, that is, the largest regular map of
type {4, 6} with Petrie length 5. This is non-orientable, of genus 12, isomorphic to N12.1 in [10]. The
coveringM′ →M′/Y is branched at the face-centres because Y ≤ Gf for each face f ofM′.

Since Z contains Y the maps M/Z and M′/Z are quotients of M/Y and M′/Y , obtained by
factoring out the central subgroups Z/Y in their automorphism groups G/Y . The coveringsM/Y →
M/Z andM′/Y →M′/Z are both unbranched, soM/Z andM′/Z have Euler characteristic −8 and
−5. Inspection of [10] shows thatM/Z is the non-orientable map N10.6 of genus 10 and type {5, 6}4

(one of the dodecahedra considered by Brahana and Coble in [29], see Section 8.6 of [7]), whileM′/Z

is its Petrie dual, the non-orientable map N7.1 of genus 7 and type {4, 6}5. These are the two regular
embeddings of the line graph L(K5) of K5, see Theorem 10 (c) of [30]. In fact, by Corollary 11 of [30],
the only regular embeddings of line graphs L(Kn) of complete graphs Kn (n ≥ 3) are these, together
with the dihedron {3, 2} and its Petrie dual (the antipodal quotient of the dihedron {6, 2}) for n = 3, and
the octahedron {3, 4} and its Petrie dual (a non-orientable map of type {6, 4}3 and genus 4, the dual of
N4.2 in [10]) for n = 4.
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9. Maps and Triangle Groups

As explained in Section 4, maps on surfaces can be interpreted in terms of subgroups of triangle
groups, so here we will briefly outline how this applies to the maps constructed earlier. As a regular
map of type {5, 6}, M corresponds to a normal subgroup M ∼= π1S of the extended triangle group
∆ = ∆[6, 2, 5], with

∆/M ∼= AutM∼= G.

Since M is orientable, M is contained in the even subgroup of ∆, the ordinary triangle group ∆+ =

∆(6, 2, 5). Now the abelianisations ∆ab = ∆/∆′ and Gab = G/G′ of ∆ and G are isomorphic (both are
Klein four-groups), so M is contained in the commutator subgroup ∆′ of ∆. This is the ordinary triangle
group ∆(5, 5, 3), and the normal inclusion of M in ∆[5, 5, 3] (a subgroup of index 2 in ∆) corresponds
to a regular hypermap H of type (5, 5, 3) and genus 17 on S (a dual of RPH17.7 in [10]). The Walsh
bipartite map [31] of H, a map of type {6, 5} with a 2-colouring of its vertices, is just the dual map
D(M) ofM. This shows thatM is 2-face colourable, giving a partition of the 48 useful pentagons into
two sets of 24. The quotient mapsM/Y andM/Z correspond to normal subgroups of ∆ containing M
with index 2 and 4 respectively, with quotient groups isomorphic to G/Y and G/Z. Since Y and Z have
trivial intersections with the stabilisers of vertices, edges and faces inG, these coverings are unbranched,
and the quotient maps have the same type {5, 6} asM. However, the element r0r1r2 of order 8 has order
4 modulo Y and Z, so the Petrie length 8 ofM is reduced to 4 forM/Y andM/Z.

There is a parallel description of the sequence M′ → M′/Y → M′/Z of maps and coverings
in terms of normal subgroups of the extended triangle group ∆[6, 2, 8], with the same quotient groups
as above. The only significant differences are that these three maps are non-orientable, so that the
corresponding normal subgroups are not contained in ∆(6, 2, 8), and that the first covering is branched
over the faces, so that the type of the maps changes from {8, 6} to {4, 6}.
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thank Marston Conder and Jozef Širáň for very useful advice about maps and cages, and the referees for
their very helpful comments. We are grateful for support from the project Mobility-enhancing research,
science and education at the Matej Bel University, ITMS code: 26110230082, under the Operational
Program Education cofinanced by the European Social Fund.

Author Contributions

The text was written by both authors. Gareth Jones drew the diagrams, and Matan Ziv-Av carried out
the GAP computations.

Conflicts of Interest

The authors declare no conflict of interest.



Symmetry 2015, 7 2222

References and Notes

1. Robertson, N. Graphs Minimal under Girth, Valency and Connectivity Constraints. Ph.D. Thesis,
University of Waterloo, Ontario, Canada, 1969.

2. Anstee, R.P. An analogue of group divisible designs for Moore graphs. J. Combin. Theory Ser. B
1981, 30, 11–20.

3. Evans, C.W. Net structure and cages. Discret. Math. 1979, 27, 193–204.
4. O’Keefe, M.; Wong, P.K. A smallest graph of girth 5 and valency 6. J. Combin. Theory Ser. B

1979, 26, 145–149.
5. Klin, M.; Muzychuk, M.; Ziv-Av, M. Higmanian rank-5 association schemes on 40 points, Mich.

Math. J. 2009, 58, 255–284.
6. Wong, P.K. On the uniqueness of the smallest graph of girth 5 and valency 6. J. Graph Theory

1979, 3, 407–409.
7. Coxeter, H.S.M.; Moser, W.O.J. Generators and Relations for Discrete Groups, 4th ed.;

Springer-Verlag: Berlin, Germany, 1980.
8. Coxeter, H.S.M. Regular Polytopes, 3rd ed.; Dover Publications: New York, NY, USA, 1973.
9. James, L.D. Imbeddings of the complete graph. Ars Combin. 1983, 16, 57–72.

10. Conder, M.D.E. Regular maps and hypermaps of Euler characteristic −1 to −200.
J. Combin. Theory Ser. B 2009, 99, 455–459. Associated lists of computational data available
at http:// www.math.auckland.ac.nz/conder/hypermaps.html.

11. Wilson, S.E. Operators over regular maps. Pac. J. Math. 1979, 81, 559–568.
12. Coxeter, H.S.M. The abstract groups Gm,n,p. Trans. Amer. Math. Soc. 1939, 45, 73–150.
13. Lins, S. Graph-encoded maps. J. Combin. Theory Ser. B 1982, 32, 171–181.
14. Cunningham, G. Self-dual, self-Petrie covers of regular polyhedra. Symmetry 2012, 4, 208–218.
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