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Abstract: Let H be the quaternion algebra. Let g be a complex Lie algebra and let U(g)

be the enveloping algebra of g. The quaternification gH = (H ⊗ U(g), [ , ]gH ) of g is
defined by the bracket

[
z ⊗ X , w ⊗ Y

]
gH

= (z · w) ⊗ (XY ) − (w · z) ⊗ (Y X) , for
z, w ∈ H and the basis vectors X and Y of U(g). Let S3H be the ( non-commutative)
algebra of H-valued smooth mappings over S3 and let S3gH = S3H ⊗ U(g). The Lie
algebra structure on S3gH is induced naturally from that of gH. We introduce a 2-cocycle on
S3gH by the aid of a tangential vector field on S3 ⊂ C2 and have the corresponding central
extension S3gH⊕ (Ca). As a subalgebra of S3H we have the algebra of Laurent polynomial
spinors C[φ±] spanned by a complete orthogonal system of eigen spinors {φ±(m,l,k)}m,l,k of
the tangential Dirac operator on S3. Then C[φ±]⊗U(g) is a Lie subalgebra of S3gH. We have
the central extension ĝ(a) = (C[φ±]⊗U(g) )⊕ (Ca) as a Lie-subalgebra of S3gH ⊕ (Ca).
Finally we have a Lie algebra ĝ which is obtained by adding to ĝ(a) a derivation d which
acts on ĝ(a) by the Euler vector field d0. That is the C-vector space ĝ = (C[φ±]⊗ U(g))⊕
(Ca)⊕ (Cd) endowed with the bracket

[
φ1⊗X1 + λ1a+ µ1d , φ2⊗X2 + λ2a+ µ2d

]
ĝ

=

(φ1φ2)⊗ (X1X2) − (φ2φ1)⊗ (X2X1)+µ1d0φ2⊗X2−µ2d0φ1⊗X1 +(X1|X2)c(φ1, φ2)a .

When g is a simple Lie algebra with its Cartan subalgebra h we shall investigate the weight
space decomposition of ĝ with respect to the subalgebra ĥ = (φ+(0,0,1)⊗h)⊕ (Ca)⊕ (Cd).
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1. Introduction

The set of smooth mappings from a manifold to a Lie algebra has been a subject of investigation
both from a purely mathematical standpoint and from quantum field theory. In quantum field theory
they appear as a current algebra or an infinitesimal gauge transformation group. Loop algebras are
the simplest example. Loop algebras and their representation theory have been fully worked out. A
loop algebra valued in a simple Lie algebra or its complexification turned out to behave like a simple
Lie algebra and the highly developed theory of finite dimensional Lie algebra was extended to such
loop algebras. Loop algebras appear in the simplified model of quantum field theory where the space
is one-dimensional and many important facts in the representation theory of loop algebra were first
discovered by physicists. As is well known, A. Belavin et al. [1] constructed two-dimensional conformal
field theory based on the irreducible representations of Virasoro algebra. It turned out that in many
applications to field theory one must deal with certain extensions of the associated loop algebra rather
than the loop algebra itself. The central extension of a loop algebra is called an affine Lie algebra and
the highest weight theory of finite dimensional Lie algebra was extended to this case. [2–5] are good
references to study these subjects.

In this paper we shall investigate a generalization of affine Lie algebras to the Lie algebra of mappings
from three-sphere S3 to a Lie algebra. As an affine Lie algebra is a central extension of the Lie algebra
of smooth mappings from S1 to the complexification of a Lie algebra, so our objective is an extension
of the Lie algebra of smooth mappings from S3 to the quaternification of a Lie algebra. As for the
higher dimensional generalization of loop groups, J. Mickelsson introduced an abelian extension of
current groups Map(S3, SU(N)) for N ≥ 3 [6]. It is related to the Chern-Simons function on the space
of SU(N)-connections and the associated current algebra Map(S3, su(N)) has an abelian extension
Map(S3, su(N))⊕A∗3 by the affine dual of the spaceA3 of connections over S3 [7]. In [4] it was shown
that, for any smooth manifold M and a simple Lie algebra g, there is a universal central extension of the
Lie algebra Map(M, g). The kernel of the extension is given by the space of complex valued 1-forms
modulo exact 1-forms; Ω1(M)/dΩ0(M). It implies that any extension is a weighted linear combination
of extensions obtained as a pull back of the universal extension of the loop algebra Lg by a smooth loop
f : S1 −→ M . We are dealing with central extensions of the Lie algebra of smooth mappings from S3

to the quaternification of a Lie algebra. Now we shall give a brief explanation of each section.

Let H be the quaternion numbers. In this paper we shall denote a quaternion a+ jb ∈ H by

(
a

b

)
.

This comes from the identification of H with the matrix algebra

mj(2,C) =


 a −b

b a

 : a, b ∈ C

 .

H becomes an associative algebra and the Lie algebra structure (H, [ , ]H ) is induced on it. The trace of

a =

(
a

b

)
∈ H is defined by tr a = a+a. For u,v,w ∈ H we have tr ([u,v]H·w ) = tr (u·[v,w]H ).
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Let ( g ,
[

,
]
g

) be a complex Lie algebra. Let U(g) be the enveloping algebra. The
quaternification of g is defined as the vector space gH = H⊗ U(g) endowed with the bracket[

z⊗X , w ⊗ Y
]
gH

= (z ·w)⊗ (XY ) − (w · z)⊗ (Y X) , (1)

for z, w ∈ H and the basis vectors X and Y of U(g). It extends the Lie algebra structure (g,
[

,
]
g

)

to
(
gH,

[
,

]
gH

)
. The quaternions H give also a half spinor representation of Spin(4). That is,

∆ = H ⊗ C = H ⊕H gives an irreducible complex representation of the Clifford algebra Clif(R4):
Clif(R4)⊗C ' End(∆), and ∆ decomposes into irreducible representations ∆± = H of Spin(4). Let
S± = C2×∆± be the trivial even ( respectively odd ) spinor bundle. A section of spinor bundle is called
a spinor. The space of even half spinors C∞(S3, S+) is identified with the space S3H = Map(S3,H).
Now the space S3gH = S3H⊗ U(g) becomes a Lie algebra with respect to the bracket:

[φ⊗X , ψ ⊗ Y ]S3gH = (φψ)⊗ (XY ) − (ψφ) ⊗ (Y X), (2)

for the basis vectors X and Y of U(g) and φ, ψ ∈ S3H . In the sequel we shall abbreviate the Lie
bracket [ , ]S3gH simply to [ , ]. Such an abbreviation will be often adopted for other Lie algebras.

Recall that the central extension of a loop algebra Lg = C[z, z−1] ⊗ g is the Lie algebra
(Lg⊕Ca , [ , ]c ) given by the bracket

[P ⊗X,Q⊗ Y ]c = PQ⊗ [X, Y ] + (X|Y )c(P,Q)a ,

with the aid of the 2-cocycle c(P,Q) = 1
2π

∫
S1(

d
dz
P )Qdz, where (·|·) is a non-degenerate invariant

symmetric bilinear form on g, [2]. We shall give an analogous 2-cocycle on S3H . Let θ be the vector
field on S3 defined by

θ = z1
∂

∂z1

+ z2
∂

∂z2

− z̄1
∂

∂z̄1

− z̄2
∂

∂z̄2

. (3)

For ϕ =

(
u

v

)
∈ S3H, we put

Θϕ =
1

2
√
−1

 θ u

θ v

 .

Let c : S3H× S3H −→ C be the bilinear form given by

c(φ1, φ2) =
1

2π2

∫
S3

tr[ Θφ1 · φ2 ]dσ , φ1, φ2 ∈ S3H. (4)

c defines a 2-cocycle on the algebra S3H . That is, c satisfies the following equations:

c(φ1, φ2) = − c(φ2, φ1)
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and
c(φ1 · φ2 , φ3) + c(φ2 · φ3 , φ1) + c(φ3 · φ1 , φ2) = 0 .

We extend c to the 2-cocycle on S3gH by

c(φ1 ⊗X , φ2 ⊗ Y ) = (X|Y ) c(φ1, φ2), (5)

where ( ·| ·) is the non-degenerate invariant symmetric bilinear form on g extended to U(g).
Let a be an indefinite element. The Lie algebra extension of S3gH by the 2-cocycle c is the C-vector

space S3gH ⊕Ca endowed with the following bracket:

[φ⊗X , ψ ⊗ Y ]∧ = (φ · ψ)⊗ (X Y ) − (ψ · φ)⊗ (Y X) + c(φ, ψ)(X|Y ) a ,

[a , φ⊗X ]∧ = 0 , (6)

for the basis vectors X and Y of U(g) and φ, ψ ∈ S3H.
In Section 2 we shall review the theory of spinor analysis after [8,9]. Let D : S+ −→ S−

be the ( half spinor ) Dirac operator. Let D = γ+( ∂
∂n
− ∂/) be the polar decomposition on

S3 ⊂ C2 of the Dirac operator, where ∂/ is the tangential Dirac operator on S3 and γ+ is the Clifford
multiplication of the unit normal derivative on S3. The eigenvalues of ∂/ are given by {m

2
, −m+3

2
; m =

0, 1, · · · }, with multiplicity (m + 1)(m + 2). We have an explicitly written formula for eigenspinors{
φ+(m,l,k), φ−(m,l,k)

}
0≤l≤m, 0≤k≤m+1

corresponding to the eigenvalue m
2

and−m+3
2

respectively and they
give rise to a complete orthogonal system in L2(S3, S+). A spinor φ on a domain G ⊂ C2 is called a
harmonic spinor on G if Dφ = 0. Each φ+(m,l,k) is extended to a harmonic spinor on C2, while each
φ−(m,l,k) is extended to a harmonic spinor on C2 \ {0}. Every harmonic spinor ϕ on C2 \ {0} has a
Laurent series expansion by the basis φ±(m,l,k):

ϕ(z) =
∑
m,l,k

C+(m,l,k)φ
+(m,l,k)(z) +

∑
m,l,k

C−(m,l,k)φ
−(m,l,k)(z). (7)

If only finitely many coefficients are non-zero it is called a spinor of Laurent polynomial type . The
algebra of spinors of Laurent polynomial type is denoted by C[φ±]. C[φ±] is a subalgebra of S3H

that is algebraically generated by φ+(0,0,1) =

(
1

0

)
, φ+(0,0,0) =

(
0

−1

)
, φ+(1,0,1) =

(
z2

−z1

)
and

φ−(0,0,0) =

(
z2

z1

)
.

As a Lie subalgebra of S3gH, C[φ±] ⊗ U(g) has the central extension by the 2-cocycle c . That is,
the C-vector space ĝ(a) = C[φ±] ⊗ U(g) ⊕ Ca endowed with the Lie bracket Equation (6) becomes
an extension of C[φ±]⊗ U(g) with 1-dimensional center Ca. Finally we shall construct the Lie algebra
which is obtained by adding to ĝ(a) a derivation d which acts on ĝ(a) by the Euler vector field d0 on S3.
The Euler vector field is by definition d0 = 1

2
(z1

∂
∂z1

+ z2
∂
∂z2

+ z1
∂
∂z1

+ z2
∂
∂z2

). We have the following
fundamental property of the cocycle c .

c( d0φ1 , φ2 ) + c(φ1 , d0φ2 ) = 0.
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Let ĝ = (C[φ±]⊗ U(g) )⊕ (Ca)⊕ (Cd). We endow ĝ with the bracket defined by

[φ⊗X , ψ ⊗ Y ]ĝ = [φ⊗X , ψ ⊗ Y ]∧ , [ a , φ⊗X ]ĝ = 0 ,

[ d, a ]ĝ = 0 , [ d, φ⊗X ]ĝ = d0φ⊗X .

Then ( ĝ , [ , ]ĝ ) is an extension of the Lie algebra ĝ(a) on which d acts as d0. In Section 4, when g is
a simple Lie algebra with its Cartan subalgebra h , we shall investigate the weight space decomposition
of ĝ with respect to the subalgebra ĥ = (φ+(0,0,1) ⊗ h) ⊕ (Ca) ⊕ (Cd), the latter is a commutative
subalgebra and ad(ĥ) acts on ĝ diagonally. For this purpose we look at the representation of the adjoint
action of h on the enveloping algebra U(g). Let g =

∑
α∈∆ gα be the root space decomposition of g. Let

Π = {αi; i = 1, · · · , r = rank g} ⊂ h∗ be the set of simple roots and {α∨i ; i = 1, · · · , r } ⊂ h be the set
of simple coroots. The Cartan matrixA = ( aij )i,j=1,··· ,r is given by aij = 〈α∨i , αj〉. Fix a standard set of
generators Hi = α∨i , Xi = Xαi

∈ gαi
, Yi = X−αi

∈ g−αi
, so that [Xi, Yj] = Hjδij , [Hi, Xj] = −ajiXj

and [Hi, Yj] = ajiYj . We see that the set of weights of the representation (U(g), ad(h)) becomes

Σ = {
r∑
i=1

kiαi ∈ h∗ ; ki ∈ Z, i = 1, · · · , r }. (8)

The weight space of λ ∈ Σ is by definition

gUλ = {ξ ∈ U(g) ; ad(h)ξ = λ(h)ξ, ∀h ∈ h}, (9)

when gUλ 6= 0. Then, given λ =
∑r

i=1 kiαi , we have

gUλ = C[Y q1
1 · · · Y qr

r H l1
1 · · ·H lr

r X
p1
1 · · ·Xpr

r ; pi, qi, li ∈ N ∪ 0, ki = pi − qi , i = 1, · · · , r ] .

The weight space decomposition becomes

U(g) =
⊕
λ∈Σ

gUλ , gU0 ⊃ U(h). (10)

Now we proceed to the representation ( ĝ, ad(ĥ) ). The dual space h∗ of h can be regarded naturally
as a subspace of ĥ ∗. So Σ ⊂ h∗ is seen to be a subset of ĥ ∗. We define δ ∈ ĥ ∗ by putting 〈δ, hi 〉 =

〈δ, a〉 = 0, 1 5 i 5 r, and 〈δ, d〉 = 1. Then the set of weights Σ̂ of the representation ( ĝ, ad(ĥ) ) is

Σ̂ =
{m

2
δ + λ; λ ∈ Σ , m ∈ Z

}
⋃{m

2
δ; m ∈ Z

}
. (11)

The weight space decomposition of ĝ is given by

ĝ =
⊕
m∈Z

ĝm
2
δ

⊕( ⊕
λ∈Σ, m∈Z

ĝm
2
δ+λ

)
. (12)
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Each weight space is given as follows

ĝm
2
δ+λ = C[φ±; m ]⊗ gUλ for m 6= 0 and λ 6= 0 ,

ĝm
2
δ = C[φ±; m ]⊗ gU0 for m 6= 0 ,

ĝ0δ = (C[φ±; 0 ]⊗ gU0 )⊕ (Ca)⊕ (Cd) ⊃ ĥ ,

where

C[φ±;m ] =

{
ϕ ∈ C[φ±]; |z|mϕ(

z

|z|
) = ϕ(z)

}
.

2. Quaternification of a Lie Algebra

2.1. Quaternion Algebra

The quaternions H are formed from the real numbers R by adjoining three symbols i, j, k satisfying
the identities:

i2 = j2 = k2 = −1 ,

ij = −ji = k, jk = −kj = i, ki = −ik = j . (13)

A general quaternion is of the form x = x1 + x2i + x3j + x4k with x1, x2, x3, x4 ∈ R. By taking
x3 = x4 = 0 the complex numbers C are contained in H if we identify i as the usual complex number.
Every quaternion x has a unique expression x = z1 + jz2 with z1, z2 ∈ C. This identifies H with C2 as
C-vector spaces. The quaternion multiplication will be from the right x −→ xy where y = w1 + jw2

with w1, w2 ∈ C:

xy = (z1 + jz2 )(w1 + jw2 ) = (z1w1 − z2w2) + j(z1w2 + z2w1). (14)

The multiplication of a g = a + jb ∈ H to H from the left yields an endomorphism in
H: {x −→ gx} ∈ EndH(H). If we look on it under the identification H ' C2 mentioned above
we have the C-linear map

C2 3

(
z1

z2

)
−→

 a −b

b a

( z1

z2

)
∈ C2 . (15)

This establishes the R-linear isomorphism

H 3 a+ jb
'−→

 a −b

b a

 ∈ mj(2,C), (16)
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where we defined

mj(2,C) =


 a −b

b a

 : a, b ∈ C

 . (17)

The complex matrices corresponding to i, j, k ∈ H are

e3 =

 i 0

0 −i

 , e2 =

 0 −1

1 0

 , e1 =

 0 −i

−i 0

 . (18)

These are the basis of the Lie algebra su(2). Thus we have the identification of the following objects

H ' mj(2,C) ' R⊕ su(2). (19)

The correspondence between the elements is given by

a+ jb ≡

(
a

b

)
←→

 a −b

b a

 ←→ s+ pe1 + qe2 + re3 , (20)

where a = s+ ir, b = q + ip.
H becomes an associative algebra with the multiplication law defined by(

z1

z2

)
·

(
w1

w2

)
=

(
z1w1 − z2w2

z1w2 + z2w1

)
, (21)

which is the rewritten formula of Equation (14) and the right-hand side is the first row of the
matrix multiplication  z1 −z2

z2 z1

  w1 −w2

w2 w1

 .

It implies the Lie bracket of two vectors in H, that becomes[(
z1

z2

)
,

(
w1

w2

)]
=

(
z2w2 − z2w2

(w1 − w1)z2 − (z1 − z1)w2

)
. (22)

These expressions are very convenient to develop the analysis on H, and give an interpretation on the
quaternion analysis by the language of spinor analysis.

Proposition 1. Let z =

(
z1

z2

)
, w =

(
w1

w2

)
∈ H . Then the trace of z · w ∈ H ' mj(2,C) is

given by
tr (z ·w) = 2Re(z1w1 − z2w2), (23)

and we have, for z1, z2, z3 ∈ H,

tr ( [ z1, z2 ] · z3 ) = tr ( z1 · [ z2 , z3 ] ) . (24)
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The center of the Lie algebra H is

{(
t

0

)
∈ H; t ∈ R

}
' R, and Equation (19) says that H is

the trivial central extension of su(2).
R3 being a vector subspace of H:

R3 3

 p

q

r

 ⇐⇒ (
ir

q + ip

)
= ir + j(q + ip) ∈ H, (25)

we have the action of H on R3.

2.2. Lie Algebra Structure on H⊗ U(g)

Let ( g ,
[

,
]
g

) be a complex Lie algebra. Let U(g) be the enveloping algebra of g. Let
gH = H⊗ U(g) and define the following bracket on gH :

[ z⊗X , w ⊗ Y ]gH = (z ·w)⊗ (XY )− (w · z)⊗ (Y X) (26)

for the basis vectors X and Y of U(g) and z, w ∈ H .
By the quaternion number notation every element of H⊗g may be written as X+ jY with X, Y ∈ g.

Then the above definition is equivalent to[
X1 + jY1 , X2 + jY2

]
gH

= [X1, X2]g − (Y 1Y2 − Y 2Y1 )

+ j
(
X1Y2 − Y2X1 + Y1X2 −X2Y1

)
, (27)

where X is the complex conjugate of X .

Proposition 2. The bracket
[
· , ·
]
gH

defines a Lie algebra structure on H⊗ U(g) .

In fact the bracket defined in Equations (26) or (27) satisfies the antisymmetry equation and the
Jacobi identity.

Definition 1. The Lie algebra
(
gH = H⊗ U(g) ,

[
,
]
gH

)
is called the quaternification of the Lie

algebra g .

3. Analysis on H

In this section we shall review the analysis of the Dirac operator on H ' C2. The general references
are [10,11], and we follow the calculations developed in [8,9,12].
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3.1. Harmonic Polynomials

The Lie group SU(2) acts on C2 both from the right and from the left. Let dR(g) and dL(g) denote
respectively the right and the left infinitesimal actions of the Lie algebra su(2). We define the following
vector fields on C2:

θi = dR

(
1

2
ei

)
, τi = dL

(
1

2
ei

)
, i = 1, 2, 3, (28)

where {ei; i = 1, 2, 3} is the normal basis of su(2), Equation (18) . Each of the triple θi(z), i = 1, 2, 3,
and τi(z), i = 1, 2, 3, gives a basis of the vector fields on the three sphere {|z| = 1} ' S3.

It is more convenient to introduce the following vector fields:

e+ = −z2
∂

∂z̄1

+ z1
∂

∂z̄2

= θ1 −
√
−1θ2, (29)

e− = −z̄2
∂

∂z1

+ z̄1
∂

∂z2

= θ1 +
√
−1θ2, (30)

θ = z1
∂

∂z1

+ z2
∂

∂z2

− z̄1
∂

∂z̄1

− z̄2
∂

∂z̄2

= 2
√
−1 θ3. (31)

ê+ = −z̄1
∂

∂z̄2

+ z2
∂

∂z1

= τ1 −
√
−1τ2, (32)

ê− = z̄2
∂

∂z̄1

− z1
∂

∂z2

= τ1 +
√
−1τ2, (33)

θ̂ = z2
∂

∂z2

+ z̄1
∂

∂z̄1

− z̄2
∂

∂z̄2

− z1
∂

∂z1

= 2
√
−1 τ3. (34)

We have the commutation relations;

[θ, e+] = 2e+, [θ, e−] = −2e−, [e+, e−] = −θ. (35)

[θ̂, ê+] = 2ê+, [θ̂, ê−] = −2ê−, [ê+, ê−] = −θ̂. (36)

Both Lie algebras spanned by (e+, e−, θ) and (ê+, ê−, θ̂) are isomorphic to sl(2,C).
In the following we denote a function f(z, z̄) of variables z, z̄ simply by f(z). For m = 0, 1, 2, · · ·,

and l, k = 0, 1, · · · ,m, we define the polynomials:

vk(l,m−l) = (e−)kzl1z
m−l
2 , (37)

wk(l,m−l) = (ê−)kzl2z̄
m−l
1 . (38)

Then vk(l,m−l) and wk(l,m−l) are harmonic polynomials on C2;

∆vk(l,m−l) = ∆wk(l,m−l) = 0 ,

where ∆ = ∂2

∂z1∂z̄1
+ ∂2

∂z2∂z̄2
.{

1√
2π
vk(l,m−l) ; m = 0, 1, · · · , 0 ≤ k, l ≤ m

}
forms a L2(S3)-complete orthonormal basis of the

space of harmonic polynomials, as well as
{

1√
2π
wk(l,m−l) ; m = 0, 1, · · · , 0 ≤ k, l ≤ m

}
.
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Proposition 3.

e+v
k
(l,m−l) = −k(m− k + 1)vk−1

(l,m−l),

e−v
k
(l,m−l) = vk+1

(l,m−l), (39)

θvk(l,m−l) = (m− 2k)vk(l,m−l) .

ê+w
k
(l,m−l) = −k(m− k + 1)wk−1

(l,m−l),

ê−w
k
(l,m−l) = wk+1

(l,m−l), (40)

θ̂wk(l,m−l) = (m− 2k)wk(l,m−l).

Therefore the space of harmonic polynomials on C2 is decomposed by the right action of SU(2) into∑
m

∑m
l=0 Hm,l. Each Hm,l =

∑m
k=0 C vk(l,m−l) gives an (m + 1) dimensional irreducible representation

of SU(2) with the highest weight m
2

, [13].
We have the following relations.

wk(l,m−l) = (−1)k
l!

(m− k)!
vm−l(k,m−k) , (41)

vk(l,m−l) = (−1)m−l−k
k!

(m− k)!
vm−k(m−l,l) . (42)

3.2. Harmonic Spinors

∆ = H⊗C = H⊕H gives an irreducible complex representation of the Clifford algebra Clif(R4):

Clif(R4)⊗C ' End(∆) .

∆ decomposes into irreducible representations ∆± = H of Spin(4). Let S = C2 × ∆ be the trivial
spinor bundle on C2. The corresponding bundle S+ = C2 ×∆+ ( resp. S− = C2 ×∆− ) is called the
even ( resp. odd ) spinor bundle and the sections are called even ( resp. odd ) spinors. The set of even
spinors or odd spinors on a set M ⊂ C2 is nothing but the smooth functions on M valued in H:

Map(M,H) = C∞(M,S+) . (43)

The Dirac operator is defined by
D = c ◦ d (44)
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where d : S → S ⊗ T ∗C2 ' S ⊗ TC2 is the exterior differential and c : S ⊗ TC2 → S is the bundle
homomorphism coming from the Clifford multiplication. By means of the decomposition S = S+⊕S−

the Dirac operator has the chiral decomposition:

D =

(
0 D†

D 0

)
: C∞(C2, S+ ⊕ S−)→ C∞(C2, S+ ⊕ S−). (45)

We find that D and D† have the following coordinate expressions;

D =


∂
∂z1

− ∂
∂z̄2

∂
∂z2

∂
∂z̄1

 , D† =


∂
∂z̄1

∂
∂z̄2

− ∂
∂z2

∂
∂z1

 . (46)

An even (resp. odd) spinor ϕ is called a harmonic spinor if Dϕ = 0 ( resp. D†ϕ = 0 ).
We shall introduce a set of harmonic spinors which, restricted to S3, forms a complete orthonormal

basis of L2(S3, S+) .
Let ν and µ be vector fields on C2 defined by

ν = z1
∂

∂z1

+ z2
∂

∂z2

, µ = z2
∂

∂z2

+ z̄1
∂

∂z̄1

. (47)

Then the radial vector field is defined by

∂

∂n
=

1

2|z|
(ν + ν̄) =

1

2|z|
(µ+ µ̄). (48)

We shall denote by γ the Clifford multiplication of the radial vector ∂
∂n

, Equation (48). γ changes
the chirality:

γ : S+ ⊕ S− −→ S− ⊕ S+; γ2 = 1.

The matrix expression of γ becomes as follows:

γ|S+ =
1

|z|

(
z̄1 −z2

z̄2 z1

)
, γ|S− =

1

|z|

(
z1 z2

−z̄2 z̄1

)
. (49)

In the sequel we shall write γ+ (resp. γ−) for γ|S+ (resp. γ|S+).

Proposition 4. The Dirac operators D and D† have the following polar decompositions:

D = γ+

(
∂

∂n
− ∂/
)
,

D† =

(
∂

∂n
+ ∂/+

3

2|z|

)
γ− ,
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where the tangential (nonchiral) Dirac operator ∂/ is given by

∂/ = −

[
3∑
i=1

(
1

|z|
θi

)
· ∇ 1

|z| θi

]
=

1

|z|

−1
2
θ e+

−e− 1
2
θ

 .

Proof. In the matrix expression Equation (46) of D and D†, we have ∂
∂z1

= 1
|z|2 (z̄1ν − z2e−) etc., and

we have the desired formulas.

The tangential Dirac operator on the sphere S3 = {|z| = 1};

∂/|S3 : C∞(S3, S+) −→ C∞(S3, S+)

is a self adjoint elliptic differential operator.
We put, for m = 0, 1, 2, · · · ; l = 0, 1, · · · ,m and k = 0, 1, · · · ,m+ 1,

φ+(m,l,k)(z) =

√
(m+ 1− k)!

k!l!(m− l)!

kv
k−1
(l,m−l)

−vk(l,m−l)

 , (50)

φ−(m,l,k)(z) =

√
(m+ 1− k)!

k!l!(m− l)!

(
1

|z|2

)m+2

w
k
(m+1−l,l)

wk(m−l,l+1)

 . (51)

φ+(m,l,k) is a harmonic spinor on C2 and φ−(m,l,k) is a harmonic spinor on C2\{0} that is regular
at infinity.

From Proposition 3 we have the following.

Proposition 5. On S3 = {|z| = 1} we have:

∂/φ+(m,l,k) =
m

2
φ+(m,l,k) , (52)

∂/φ−(m,l,k) = −m+ 3

2
φ−(m,l,k) . (53)

The eigenvalues of ∂/ are
m

2
, −m+ 3

2
; m = 0, 1, · · · , (54)

and the multiplicity of each eigenvalue is equal to (m+ 1)(m+ 2).
The set of eigenspinors{

1√
2π
φ+(m,l,k),

1√
2π
φ−(m,l,k) ; m = 0, 1, · · · , 0 ≤ l ≤ m, 0 ≤ k ≤ m+ 1

}
(55)

forms a complete orthonormal system of L2(S3, S+).



Symmetry 2015, 7 2162

The constant for normalization of φ±(m,l,k) is determined by the integral:∫
S3

|za1zb2|2dσ = 2π2 a!b!

(a+ b+ 1)!
, (56)

where σ is the surface measure of the unit sphere S3 = {|z| = 1}:∫
S3

dσ3 = 2π2. (57)

3.3. Spinors of Laurent Polynomial Type

If ϕ is a harmonic spinor on C2 \ {0} then we have the expansion

ϕ(z) =
∑
m,l,k

C+(m,l,k)φ
+(m,l,k)(z) +

∑
m,l,k

C−(m,l,k)φ
−(m,l,k)(z), (58)

that is uniformly convergent on any compact subset of C2 \ {0}. The coefficients C±(m,l,k) are given by
the formula:

C±(m,l,k) =
1

2π2

∫
S3

〈ϕ, φ±(m,l,k)〉 dσ, (59)

where 〈 , 〉 is the inner product of S+.

Lemma 1. ∫
S3

tr ϕ dσ = 4π2Re.C+(0,0,1), (60)∫
S3

tr Jϕ dσ = 4π2Re.C+(0,0,0).

The formulas follow from Equation (59) if we take φ+(0,0,1) =

(
1

0

)
and J = φ+(0,0,0) =

(
0

−1

)
.

Definition 2.

1. We call the series Equation (58) a spinor of Laurent polynomial type if only finitely many
coefficients C±(m,l,k) are non-zero . The space of spinors of Laurent polynomial type is denoted
by C[φ±].

2. For a spinor of Laurent polynomial type ϕ we call the vector resϕ =

(
−C−(0,0,1)

C−(0,0,0)

)
the residue

at 0 of ϕ.

We have the residue formula [9].

resϕ =
1

2π2

∫
S3

γ+(z)ϕ(z)σ(dz). (61)

Remark 1. To develop the spinor analysis on the 4-sphere S4 we patch two local coordinates C2
z

and C2
w together by the inversion w = − z

|z|2 . This is a conformal transformation with the conformal
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weight u = − log |z|2. An even spinor on a subset U ⊂ S4 is a pair of φ ∈ C∞(U ∩ C2 × ∆) and
φ̂ ∈ C∞(U ∩ Ĉ2 × ∆) such that φ̂(w) = |z|3(γ+φ)(z) for w = − z

|z|2 . Let ϕ be a spinor of Laurent

polynomial type on C2 \ 0 = Ĉ2 \ 0̂. The coefficient C±(m,l,k) of ϕ and the coefficient Ĉ±(m,l,k) of ϕ̂ are
related by the formula:

Ĉ−(m,l,k) = C+(m,l,k), Ĉ+(m,l,k) = C−(m,l,k). (62)

Proposition 6. The residue of ϕ̂ is related to the trace of ϕ , Lemma 1, by

res ϕ̂ =
1

2π2

∫
S3

ϕ̂ dσ =

(
C+(0,0,1)

−C+(0,0,0)

)
. (63)

3.4. Algebraic Generators of C[φ±]

In the following we show that C[φ± ] restricted to S3 becomes an algebra. The multiplication of two
harmonic polynomials on C2 is not harmonic but its restriction to S3 is again the restriction to S3 of
some harmonic polynomial. We shall see that this yields the fact that C[φ± ], restricted to S3, becomes
an associative subalgebra of S3H. Before we give the proof we look at examples that convince us of the
necessity of the restriction to S3 .

Example 1. φ+(1,0,1) · φ−(0,0,0) is decomposed to the sum

φ+(1,0,1)(z) · φ−(0,0,0)(z) =
1

|z|4
(

2

3
φ+(2,0,1)(z) +

√
2

3
φ+(2,1,2)(z) ) +

1

|z|2
1

2
φ+(0,0,1)(z),

which is not in C[φ±]. But the restriction to S3 is

2

3
φ+(2,0,1) +

√
2

3
φ+(2,1,2) +

1

2
φ+(0,0,1) +

1

6
φ−(1,1,1) +

1

3
√

2
φ−(1,0,0) ∈ C[φ±]|S3 .

See the table at the end of this subsection.

We start with the following facts:

1. We have the product formula for the harmonic polynomials vk(a,b).

vk1(a1,b1)v
k2
(a2,b2) =

a1+a2+b1+b2∑
j=0

Cj|z|2j vk1+k2−j
(a1+a2−j, b1+b2−j) (64)

for some rational numbers Cj = Cj(a1, a2, b1, b2, k1, k2). See Lemma 4.1 of [12].
2. Let k = k1 + k2, a = a1 + a2 and b = b1 + b2. The above Equation (64) yields that, restricted to
S3, the harmonic polynomial vk(a,b) is equal to a constant multiple of vk1(a1,b1)v

k2
(a2,b2) modulo a linear

combination of polynomials vk−j(a−j,b−j) , 1 ≤ j ≤ min(k, a, b).

3.

(
vk(l,m−l)

0

)
and

(
0

vk+1
(l,m−l)

)
are written by linear combinations of φ+(m,l,k+1) and φ−(m−1,k,l).
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4. Therefore the product of two spinors φ±(m1,l1,k1) · φ±(m2,l2,k2) belongs to C[φ±]|S3 . C[φ±]|S3

becomes an associative algebra.
5. φ±(m,l,k) is written by a linear combination of the products φ±(m1,l1,k1) · φ±(m2,l2,k2) for 0 ≤ m1 +

m2 ≤ m− 1 , 0 ≤ l1 + l2 ≤ l and 0 ≤ k1 + k2 ≤ k .

Hence we find that the algebra C[φ±]|S3 is generated by the following I, J, κ, µ:

I = φ+(0,0,1) =

(
1

0

)
, J = φ+(0,0,0) =

(
0

−1

)
,

κ = φ+(1,0,1) =

(
z2

−z1

)
, µ = φ−(0,0,0) =

(
z2

z1

)
. (65)

The others are generated by these basis. For example,

λ = φ+(1,1,1) =

(
z1

z2

)
= −κJ , ν = φ−(0,0,1) =

(
−z1

z2

)
= −µJ,

φ+(1,0,0) =
√

2

(
0

−z2

)
=

1√
2
J(κ+ µ), φ+(1,0,2) =

√
2

(
z1

0

)
=

1√
2
J(µ− κ) ,

φ+(1,1,2) =
√

2

(
−z2

0

)
= − 1√

2
J(λ+ ν), φ+(1,1,0) =

√
2

(
0

−z1

)
=

1√
2
J(λ− ν),

φ−(1,0,0) =
√

2

(
z2

2

z2z1

)
=

1√
2
νJ(κ+ µ), φ−(1,1,0) =

√
2

(
z2z1

z2
1

)
=

1√
2
µJ(µ− κ),

φ−(1,1,2) =
√

2

(
−z1z2

z2
2

)
=

1√
2
νJ(λ+ ν), φ−(1,0,2) =

√
2

(
z2

1

−z1z2

)
=

1√
2
µJ(λ− ν)

φ−(1,0,1) =

(
−2z1z2

|z2|2 − |z1|2

)
=
ν

2
(κ+ µ+ J(λ− ν)),

φ−(1,1,1) =

(
|z2|2 − |z1|2

2z1z2

)
=
µ

2
(−κ+ µ+ J(λ+ ν)) .

3.5. 2-Cocycle on S3H

Let S3H = Map(S3,H) = C∞(S3, S+) be the set of smooth even spinors on S3. We define the

Lie algebra structure on S3H after Equation (22), that is, for even spinors φ1 =

(
u1

v1

)
and φ2 =

(
u2

v2

)
,

we have the Lie bracket [
φ1 , φ2

]
=

 v1v̄2 − v̄1v2

(u2 − ū2)v1 − (u1 − ū1)v2

 . (66)
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For a ϕ =

(
u

v

)
∈ S3H, we put

Θϕ =

 1
2
√
−1
θ 0

0 − 1
2
√
−1
θ

( u

v

)
=

1

2
√
−1

 θ u

θ v

 .

Lemma 2. For any φ, ψ ∈ S3H, we have

Θ (φ · ψ ) = (Θφ) · ψ + φ · (Θψ) , (67)∫
S3

Θϕdσ = 0 . (68)

The second assertion follows from the fact∫
S3

θf dσ = 0 ,

for any function f on S3.

Proposition 7.

2
√
−1 Θφ+(m,l,k) =

m(m+ 1− k)

m+ 1
φ+(m,l,k) + 2(−1)l

√
k(m+ 1− k)

m+ 1
φ−(m−1,k−1,l) ,

2
√
−1 Θφ−(m,l,k) = (m− 2l)

m+ 3

m+ 2
φ−(m,l,k) + 2(−1)k

√
(l + 1)(m+ 1− l)

m+ 2
φ+(m+1,k,l+1) ,

on S3.

Now we shall introduce a non-trivial 2-cocycle on S3H .

Definition 3. For φ1 and φ2 ∈ S3H , we put

c(φ1, φ2) =
1

2π2

∫
S3

tr ( Θφ1 · φ2 ) dσ. (69)

Example 2.

c(
1√
2
φ+(1,1,2) ,

√
−1

2
(φ+(1,0,1) + φ−(0,0,0)) ) =

1

2
. (70)

Proposition 8. c defines a non-trivial 2-cocycle on the algebra S3H . That is, c satisfies the
following equations:

c(φ1 φ2) = − c(φ2, φ1) , (71)

c(φ1 · φ2 , φ3) + c(φ2 · φ3 , φ1 ) + c(φ3 · φ1 , φ2 ) = 0. (72)

And there is no 1-cochain b such that c(φ1.φ2) = b( [φ1, φ2] ).
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Proof. By Equation (68) and the Leibnitz rule Equation (67) we have

0 =

∫
S3

tr ( Θ (φ1 · φ2) ) dσ =

∫
S3

tr ( Θφ1 · φ2 ) dσ +

∫
S3

tr (φ1 · Θφ2 ) dσ

Hence
c(φ1 , φ2 ) + c(φ2 , φ1 ) = 0 .

The following calculation proves Equation (72).

c(φ1 · φ2 , φ3) =

∫
S3

tr ( Θ(φ1 · φ2 ) · φ3 ) dσ

=

∫
S3

tr ( Θφ1 · φ2 · φ3 )dσ +

∫
S3

tr ( Θφ2 · φ3 · φ1 )dσ

= c(φ1 , φ2 · φ3 ) + c(φ2 , φ3 · φ1 ) = −c(φ2 · φ3 , φ1 ) − c(φ3 · φ1 , φ2).

Suppose now that c is the coboundary of a 1-cochain b : S3H −→ C. Then

c(φ1, φ2) = (δ b)(φ1, φ2) = b( [φ1, φ2] )

for any φ1, φ2 ∈ S3H. Take φ1 = 1√
2
φ+(1,1,2) =

(
−z2

0

)
and φ2 =

√
−1
2

(φ+(1,0,1) + φ−(0,0,0)) =( √
−1z2

0

)
. Then [φ1, φ2 ] = 0, so (δb)(φ1, φ2) = 0. But c(φ1, φ2) = 1

2
. Therefore c can not be

a coboundary.

3.6. Calculations of the 2-Cocycle on the Basis

We shall calculate the values of 2-cocycles c for the basis {φ±(m,l,k)} of C[φ±]. First we have a lemma
that is useful for the following calculations.

Lemma 3.

1. ∫
S3

vk(a,b) v
l
(c,d) dσ = 2π2 a!b!

(a+ b+ 1)

k!

(a+ b− k)!
δa,c δb,d δk,l . (73)

2. ∫
S3

vk(a,b) v
l
(c,d) dσ = (−1)b−k 2π2 a!b!

(a+ b+ 1)
δa,d δb,c δ(a+b−k),l . (74)

3. ∫
S3

wk(a,b) w
l
(c,d) dσ = 2π2 a!b!

(a+ b+ 1)

k!

(a+ b− k)!
δa,c δb,d δk,l . (75)

4. ∫
S3

wk(a,b) w
l
(c,d) dσ = (−1)b−k 2π2 a!b!

(a+ b+ 1)
δa,d δb,c δ(a+b−k),l . (76)
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Lemma 4.

1.
c(φ±(m,l,k), φ±(p,q,r)) = 0 .

2.

c(φ+(m,l,k),
√
−1φ+(p,q,r)) = (−1)m−l−k+1 (m− 2k + 2)

√
k(m+ 2− k)

m+ 1
δm,p δl,p−q δk, p−r+2

− (m− 2k)(m− k + 1)

m+ 1
δm,p δl,q δk,r.

3.

c(φ+(m,l,k),
√
−1φ−(p,q,r)) = (−1)k−1 (m− 2k + 2)

√
(k − 1)k

m+ 1
δm,p+1 δl, p−r+1 δk,p−q+2

+ (−1)l
(m− 2k)

√
k(m+ 1− k)

m+ 1
δm,p+1δl,rδk,q+1 .

4.

c(φ−(m,l,k),
√
−1φ+(p,q,r)) = (−1)m+1−l (m− 2l + 1)

√
(m− l + 1)(m− l + 2)

m+ 2
δm,p−1δl, p−r+1δk,p−q

+(−1)k
(m− 2l + 1)

√
(l + 1)(m− l + 1)

m+ 2
δm,p−1δl,r−1δk,q .

5.

c(φ−(m,l,k),
√
−1φ−(p,q,r)) = (−1)l−k

(m− 2l + 1)
√
l(m− l + 1)

m+ 2
δm,pδl,p−q+1δk,p−r+1

− (m− 2l − 1)(l + 1)

m+ 2
δm,pδl,qδk,r

Proof. Since θ vk(a,b) = (a+ b− 2k)vk(a,b), we have

c(φ+(m,l,k),
√
−1φ+(p,q,r)) =

1

2π2

∫
S3

tr [Θφ+(m,l,k) ·
√
−1φ+(p,q,r)]dσ

=
1

4π2

√
(m+ 1− k)!

k!l!(m− l)!

√
(p+ 1− r)!
r!q!(p− q)!

∫
S3

tr

k(m− 2k + 2)vk−1
(l,m−l)

−(m− 2k)vk(l,m−l)

 ·
 rvr−1

(q,p−q)

−vr(q,p−q)

 dσ .
By the above lemma we obtain the value of c(φ+(m,l,k),

√
−1φ+(p,q,r)). The others

follow similarly.
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3.7. Radial Derivative on S3H

We define the following operator d0 on C∞(S3):

d0 f(z) = |z| ∂
∂n
f(z) =

1

2
(ν + ν̄)f(z). (77)

For an even spinor ϕ =

(
u

v

)
we put

d0 ϕ =

 d0 u

d0 v

 .

Note that if ϕ ∈ C[φ±] then d0ϕ ∈ C[φ±].

Proposition 9.

1.
d0(φ1 · φ2) = (d0φ1) · φ2 + φ1 · (d0φ2) . (78)

2.
d0φ

+(m,l,k) =
m

2
φ+(m,l,k), d0φ

−(m,l,k) = −m+ 3

2
φ−(m,l,k). (79)

3. Let ϕ = φ1 · · ·φn such that φi = φ+(mi,li,ki) or φi = φ−(mi,li,ki), i = 1, · · · , n. We put

N =
∑

i:φi=φ+(mi,li,ki)

mi −
∑

i:φi=φ−(mi,li,ki)

(mi + 3).

Then
d0(ϕ) =

N

2
ϕ. (80)

4. Let ϕ be a spinor of Laurent polynomial type:

ϕ(z) =
∑
m,l,k

C+(m,l,k)φ
+(m,l,k)(z) +

∑
m,l,k

C−(m,l,k)φ
−(m,l,k)(z). (81)

Then ∫
S3

tr ( d0 ϕ ) dσ = 0 . (82)

Proof. The Formula (79) follows from the Definition Equation (50). The last assertion follows from the
fact that the coefficient of φ+(0,0,1) in the Laurent expansion of d0ϕ vanishes.

Definition 4. Let C[φ±; N ] be the subspace of C[φ±] consisting of those elements that are of
homogeneous order N : ϕ(z) = |z|Nϕ( z

|z|).
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C[φ±; N ] is spanned by the spinors ϕ = φ1 · · ·φn such that each φi is equal to φi = φ+(mi,li,ki) or
φi = φ−(mi,li,ki) , where mi ≥ 0 and 0 ≤ li ≤ mi + 1, 0 ≤ ki ≤ mi + 2 as before, and such that

N =
∑

i:φi=φ+(mi,li,ki)

mi −
∑

i:φi=φ−(mi,li,ki)

(mi + 3).

C[φ±] is decomposed into the direct sum of C[φ±; N ]:

C[φ±] =
⊕
N∈Z

C[φ±; N ] .

Equation (80) implies that the eigenvalues of d0 on C[φ±] are
{
N
2

; N ∈ Z
}

and C[φ±; N ] is the
space of eigenspinors for the eigenvalue N

2
.

Example

φ+(1,0,1) · φ−(0,0,0) ∈ C[φ±; −2 ],

d0(φ+(1,0,1) · φ−(0,0,0)) = −2

2
(φ+(1,0,1) · φ−(0,0,0)).

Proposition 10.
c( d0φ1 , φ2 ) + c(φ1 , d0φ2 ) = 0 . (83)

In fact, since θ d0 = (ν − ν̄)(ν + ν̄) = ν2 − ν̄2 = d0 θ , we have

0 =

∫
S3

tr ( d0(Θφ1 · φ2) ) dσ =

∫
S3

tr ( (d0Θφ1) · φ2 + Θφ1 · d0φ2 ) dσ

=

∫
S3

tr ((Θ d0φ1) · φ2 ) dσ +

∫
S3

tr (Θφ1 · d0φ2 ) dσ.

= c(d0φ1, φ2) + c(φ1, d0φ2)

4. Extensions of the Lie Algebra C[φ±]⊗ U(g)

In this section we shall construct a central extension for the 3-dimensional loop algebra
Map(S3, gH) = S3H ⊗ U(g) associated to the above 2-cocycle c, and the central extension of
C[φ±] ⊗ U(g) induced from it. Then we shall give the second central extension by adding a derivative
to the first extension that acts as the radial derivation.

4.1. Extension of S3gH = S3H⊗ U(g)

From Proposition 2 we see that S3gH = S3H ⊗ U(g) endowed with the following bracket [ , ]S3gH

becomes a Lie algebra.

[φ⊗X , ψ ⊗ Y ]S3gH = (φ · ψ)⊗ (XY ) − (ψ · φ)⊗ (Y X), (84)
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for the basis vectors X and Y of U(g) and φ, ψ ∈ S3H .
We take the non-degenerate invariant symmetric bilinear C-valued form ( · | · ) on g and extend it to

U(g). For X = X l1
1 · · ·X lm

m and Y = Y k1
1 · · ·Y km

m written by the basis X1, · · · , Xm, Y1, · · · , Ym of g,
(X|Y ) is defined by

(X|Y ) = tr(ad(X l1
1 ) · · · ad(X lm

m )ad(Y k1
1 ) · · · ad(Y km

m )).

Then we define a C-valued 2-cocycle on the Lie algebra S3gH by

c(φ1 ⊗X , φ2 ⊗ Y ) = (X|Y ) c(φ1, φ2). (85)

The 2-cocycle property follows from the fact (XY |Z) = (Y Z|X) and Proposition 8.
Let a be an indefinite number. There is an extension of the Lie algebra S3gH by the 1-dimensional

center Ca associated to the cocycle c. Explicitly, we have the following theorem.

Theorem 5. The C-vector space

S3gH(a) = (S3H⊗ U(g) )⊕ (Ca), (86)

endowed with the following bracket becomes a Lie algebra.

[φ⊗X , ψ ⊗ Y ]̂ = (φ · ψ)⊗ (XY )− (ψ · φ)⊗ (Y X) + (X|Y ) c(φ, ψ) a , (87)

[ a , φ⊗X ]̂ = 0 , (88)

for the basis vectors X and Y of U(g) and φ, ψ ∈ S3H .

As a Lie subalgebra of S3gH we have C[φ±]⊗ U(g).

Definition 6. We denote by ĝ(a) the extension of the Lie algebra C[φ±]⊗ U(g) by the 1-dimensional
center Ca associated to the cocycle c:

ĝ(a) = C[φ±]⊗ U(g) ⊕ (Ca). (89)

The Lie bracket is given by

[φ⊗X , ψ ⊗ Y ]̂ = (φ · ψ)⊗ (XY )− (ψ · φ)⊗ (Y X) + (X|Y ) c(φ, ψ) a , (90)

[ a , φ⊗X ]̂ = 0 , (91)

for X, Y ∈ U(g) and φ, ψ ∈ C[φ±] .
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4.2. Extension of ĝ(a) by the Derivation

We introduced the radial derivative d0 acting on S3H. d0 preserves the space of spinors of Laurent
polynomial type C[φ±]. The derivation d0 on C[φ±] is extended to a derivation of the Lie algebra
C[φ±]⊗ U(g) by

d0 (φ⊗X ) = (d0φ )⊗X . (92)

In fact we have from Equation (78)

d0

(
[φ1 ⊗X1 , φ2 ⊗X2 ]̂ ) = d0 ( (φ1φ2) ⊗ (X1X2) − (φ2φ1)⊗ (X2X1) )

= (d0φ1 · φ2)⊗ (X1X2) − (φ2 · d0φ1)⊗ (X2X1) + (φ1 · d0φ2)⊗ (X1X2)

− (d0φ2 · φ1)⊗ (X2X1) .

On the other hand

[ d0(φ1 ⊗X1) , φ2 ⊗X2 ]̂ + [φ1 ⊗X1 , d0(φ2 ⊗X2) ]̂
= (d0φ1 · φ2)⊗ (X1X2) − (φ2 · d0φ1)⊗ (X2X1) + (φ1 · d0φ2)⊗ (X1X2)

− (d0φ2 · φ1)⊗ (X2X1) + (X1|X2) ( c(d0φ1, φ2) + c(φ1, d0φ2)) a .

Since c(d0φ1, φ2) + c(φ1, d0φ2) = 0 from Proposition 10 we have

d0

(
[φ1 ⊗X1 , φ2 ⊗X2 ]̂ )

= [ d0(φ1 ⊗X1) , φ2 ⊗X2 ]̂ + [φ1 ⊗X1 , d0(φ2 ⊗X2) ]̂ .
Thus d0 is a derivation that acts on the Lie algebra C[φ±]⊗ U(g) .
We denote by ĝ the Lie algebra that is obtained by adjoining a derivation d to ĝ(a) which acts on

C[φ±]⊗ U(g) as d0 and which kills a. More explicitly we have the following

Theorem 7. Let a and d be indefinite elements. We consider the C vector space:

ĝ =
(
C[φ±]⊗ U(g)

)
⊕ (C a)⊕ (Cd) , (93)

and define the following bracket on ĝ. For φ, ψ ∈ C[φ±] and the basis vectorsX and Y of U(g), we put

[φ⊗X , ψ ⊗ Y ]ĝ = [φ⊗X , ψ ⊗ Y ]̂ (94)

= (φ · ψ)⊗ (XY )− (ψ · φ)⊗ (Y X) + (X|Y ) c(φ, ψ) a ,

[ a , φ⊗X ]ĝ = 0 , [ d, φ⊗X ]ĝ = d0φ⊗X , (95)

[ d , a ]ĝ = 0 . (96)

Then ( ĝ , [ ·, · ]ĝ ) becomes a Lie algebra.
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Proof. It is enough to prove the following Jacobi identity:

[ [ d , φ1 ⊗X1 ]ĝ , φ2 ⊗X2 ]ĝ + [ [φ1 ⊗X1, φ2 ⊗X2 ]ĝ , d ]ĝ + [ [φ2 ⊗X2, d ]ĝ, φ1 ⊗X1 ]ĝ = 0.

In the following we shall abbreviate the bracket [ , ]ĝ simply to [ , ]. We have

[ [ d , φ1 ⊗X1 ] , φ2 ⊗X2 ] =[ d0φ1 ⊗X1, φ2 ⊗X2 ]

= ( d0φ1 · φ2)⊗ (X1X2)− (φ2 · d0φ1 )⊗ (X2X1)

+ (X1|X2)c( d0φ1 , φ2) a .

Similarly

[ [φ2 ⊗X2, d ], φ1 ⊗X1 ] =(φ1 · d0φ2)⊗ (X1X2)− ( d0φ2 · φ1)⊗ (X2X1)

+ (X1|X2) c(φ1, d0φ2 ) a .

[ [φ1 ⊗X1, φ2 ⊗X2 ] , d ] =−
[
d , (φ1 · φ2)⊗ (X1X2)− (φ2 · φ1)⊗ (X2X1) + (X1|X2)c(φ1 , φ2) a

]
=− d0(φ1 · φ2)⊗ (X1X2) + d0(φ2 · φ1)⊗ (X2X1) .

The sum of three equations vanishes by virtue of Equation (78) and Proposition 10.

Remember from Definition 4 that C[φ±; N ] denotes the subspace in C[φ±] generated by the products
φ1 · · ·φn with each φi being φi = φ+(mi,li,ki) or φi = φ−(mi,li,ki), i = 1, · · · , n, such that∑

i;φi=φ+(mi,li,ki)

mi −
∑

i;φi=φ−(mi,li,ki)

(mi + 3) = N .

Proposition 11. The centralizer of d in ĝ is given by

(C[φ±; 0] ⊗ U(g) ) ⊕ Ca ⊕Cd . (97)

The proposition follows from Equation (80) .

5. Structure of ĝ

5.1. The Weight Space Decomposition of U(g)

Let ( g , [ , ]g ) be a simple Lie algebra. Let h be a Cartan subalgebra of g and g = h ⊕
∑

α∈∆ gα be
the root space decomposition with the root space gα = {X ∈ g; ad(h)X =< α, h > X, ∀h ∈ h}.
Here ∆ = ∆(g, h) is the set of roots and dim gα = 1. Let Π = {αi; i = 1, · · · , r = rank g} ⊂ h∗ be
the set of simple roots and {α∨i ; i = 1, · · · , r } ⊂ h be the set of simple coroots. The Cartan matrix
A = ( aij )i,j=1,··· ,r is given by aij = 〈α∨i , αj〉. Fix a standard set of generators Hi = α∨i , Xi ∈ gαi

,
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Yi ∈ g−αi
, so that [Xi, Yj] = Hjδij , [Hi, Xj] = ajiXj and [Hi, Yj] = −ajiYj . Let ∆± be the set of

positive (respectively negative) roots of g and put

n± =
∑
α∈∆±

gα .

Then g = n+ ⊕ h⊕ n−. The enveloping algebra U(g) of g has the direct sum decomposition:

U(g) = U(n−) · U(h) · U(n+) . (98)

In the following we summarize the known results on the representation (ad(h), U(g) ) [14,15].
The set

{Y m1
1 · · · Y mr

r H l1
1 · · ·H lr

r X
n1
1 · · ·Xnr

r ; mi, ni, li ∈ N ∪ 0 }.

forms a basis of the enveloping algebra U(g). The adjoint action of h is extended to that on U(g):

ad(h)(x · y) = ( ad(h)x ) · y + x · ( ad(h)y ) .

λ ∈ h∗ is called a weight of the representation (U(g), ad(h) ) if there exists a non-zero x ∈ U(g) such
that ad(h)x = hx − xh = λ(h)x for all h ∈ h . Let Σ be the set of weights of the representation
(U(g), ad(h) ). The weight space for the weight λ is by definition

gUλ = {x ∈ U(g) ; ad(h)x = λ(h)x, ∀h ∈ h}.

Let λ =
∑r

i=1 niαi −
∑r

i=1 miαi , ni, mi ≥ 0. For any l1, l2, · · · , lr ≥ 0 ,

Xλ = Y m1
1 · · · Y mr

r H l1
1 · · ·H lr

r X
n1
1 · · ·Xnr

r

gives a weight vector with the weight λ ; Xλ ∈ gUλ . Conversely any weight λ may be written in the form
λ =

∑r
i=1 niαi −

∑r
i=1 miαi , though the coefficients ni ,mi are not uniquely determined.

Lemma 5.

1. The set of weights of the adjoint representation (U(g), ad(h)) is

Σ = {
∑

kiαi ; αi ∈ Π , ki ∈ Z }. (99)

If we denote
Σ± = {±

∑
niαi ∈ Σ ; ni > 0 } (100)

then Σ± ∩∆ = ∆±.
2. If λ ∈ Σ then −λ ∈ Σ.
3. For each λ =

∑r
i=1 kiαi ∈ Σ , gUλ is generated by the basis

Xλ(l1, · · · , lr,m1, · · · ,mr, n1, · · · , nr) = Y m1
1 · · · Y mr

r H l1
1 · · ·H lr

r X
n1
1 · · ·Xnr

r
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with ni, mi, li ∈ N ∪ 0 such that ki = ni −mi , i = 1, · · · , r .
In particular gU0 is generated by the basis

X0(l1, · · · , lr, n1, · · · , nr, n1, · · · , nr) = Y n1
1 · · · Y nr

r H l1
1 · · ·H lr

r X
n1
1 · · ·Xnr

r

with ni, li ∈ N ∪ 0 , i = 1, · · · , r . In particular

U(h) ⊂ gU0 .

4.
[ gUλ , g

U
µ ] ⊂ gUλ+µ . (101)

5.2. Weight Space Decomposition of ĝ

In the following we shall investigate the Lie algebra structure of

ĝ =
(
C[φ±]⊗ U(g)

)
⊕ (C a)⊕ (Cd) . (102)

Remember that the Lie bracket was defined by

[φ⊗X , ψ ⊗ Y ]ĝ = (φψ)⊗ (XY )− (ψφ)⊗ (Y X) + (X|Y ) c(φ, ψ) a ,

[ a , φ⊗X ]ĝ = 0 , [ a, d ]ĝ = 0 ,

[ d, φ⊗X ]ĝ = d0φ⊗X ,

for the basis vectors X and Y of U(g). Since φ+(0,0,1) =

(
1

0

)
we identify X ∈ U(g) with φ+(0,0,1)⊗X .

Thus we look g as a Lie subalgebra of ĝ :[
φ+(0,0,1) ⊗X, φ+(0,0,1) ⊗ Y

]
ĝ

= [X, Y ]g , (103)

and we shall write φ+(0,0,1) ⊗X simply as X .
Let

ĥ = ( (Cφ+(0,0,1) )⊗ h) ⊕ (C a)⊕ (C d) = h⊕ (C a)⊕ (Cd) . (104)

We write ĥ = h + sa + td ∈ ĥ with h ∈ h and s, t ∈ C. For any h ∈ h, φ ∈ C[φ±] and X ∈ U(g),
it holds that

[φ+(0,0,1) ⊗ h, φ⊗X ]ĝ = φ⊗ (hX −Xh) ,

[ d, φ⊗X ]ĝ = (d0φ )⊗X ,

[φ+(0,0,1) ⊗ h, a ]ĝ = 0 , [φ+(0,0,1) ⊗ h, d ]ĝ = 0, [ d, a ]ĝ = 0 .
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Then the adjoint action of ĥ = h+ sa+ td ∈ ĥ on ĝ is written as follows

ad(ĥ) (φ⊗X + µa+ νd) = φ⊗ (hX −Xh) + td0φ⊗X , (105)

for ξ = φ⊗X + µa+ νd ∈ ĝ.
An element λ of the dual space h∗ of h can be regarded as an element of ĥ ∗ by putting

〈λ, a〉 = 〈λ, d〉 = 0. (106)

So ∆ ⊂ h∗ is seen to be a subset of ĥ ∗. We define the elements δ , Λ0 ∈ ĥ ∗ by

〈δ, α∨i 〉 = 〈Λ0, α
∨
i 〉 = 0, (1 5 i 5 r), (107)

〈 δ, a〉 = 0 , 〈 δ, d 〉 = 1, (108)

〈Λ0, a〉 = 1 , 〈Λ0, d 〉 = 0. (109)

Then the set {α1, · · · , αr, Λ0, δ } forms a basis of ĥ ∗. Similarly Σ is a subset of ĥ∗.
Since ĥ is a commutative subalgebra of ĝ , ĝ is decomposed into a direct sum of the simultaneous

eigenspaces of ad (ĥ), ĥ ∈ ĥ .
For λ = γ + k0δ ∈ ĥ ∗, γ =

∑r
i=1 kiαi ∈ Σ, ki ∈ Z, i = 0, 1, · · · , r, we put,

ĝλ =
{
ξ ∈ ĝ ; [ ĥ, ξ ] = 〈λ, ĥ〉 ξ for ∀ĥ ∈ ĥ

}
. (110)

λ is called a weight of ĝ if ĝλ 6= 0. ĝλ is called the weight space of λ .
Let Σ̂ denote the set of weights of the representation

(
ĝ , ad(ĥ)

)
.

Theorem 8.

1.

Σ̂ =
{m

2
δ + λ; λ ∈ Σ , m ∈ Z

}
⋃{m

2
δ; m ∈ Z

}
.

2. For λ ∈ Σ, λ 6= 0 and m ∈ Z, we have

ĝm
2
δ+λ = C[φ±; m ]⊗ gUλ . (111)

3.

ĝ0δ = (C[φ±; 0 ]⊗ gU0 )⊕ (Ca)⊕ (Cd) ⊃ ĥ ,

ĝm
2
δ = C[φ±; m ]⊗ gU0 , for 0 6= m ∈ Z .
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4. ĝ has the following decomposition:

ĝ =
⊕
m∈Z

ĝm
2
δ

⊕ ⊕
λ∈Σ,m∈Z

ĝm
2
δ+λ . (112)

Proof. First we prove the second assertion. Let X ∈ gUλ for a λ ∈ Σ, λ 6= 0, and let ϕ ∈ C[φ±; m] for
a m ∈ Z. We have, for any h ∈ h,

[φ+(0,0,1) ⊗ h, ϕ⊗X ]ĝ = ϕ⊗ (hX −Xh) = 〈λ, h〉ϕ⊗X,

[ d, ϕ⊗X ]ĝ =
m

2
ϕ⊗X,

that is, for every ĥ ∈ ĥ, we have

[ ĥ , ϕ⊗X]ĝ =
〈m

2
δ + λ , ĥ

〉
(ϕ⊗X) . (113)

Therefore we have ϕ⊗X ∈ ĝm
2
δ+λ.

Conversely, for a given m ∈ Z and a ξ ∈ ĝm
2
δ+λ, we shall show that ξ has the form φ ⊗ X with

φ ∈ C[φ±;m] and X ∈ gUλ . Let ξ = φ⊗X + µa + νd for φ ∈ C[φ±], X ∈ U(g) and µ, ν ∈ C. φ is
decomposed to the sum

φ =
∑
n∈Z

φn

by the homogeneous degree; φn ∈ C[φ±;n]. We have

[ĥ, ξ] = [φ+(0,0,1) ⊗ h+ sa+ td , φ⊗X + µa+ νd ] = φ⊗ [h , X ]

+ t(
∑
n∈Z

n

2
φn ⊗X )

for any ĥ = φ+(0,0,1) ⊗ h+ sa+ td ∈ ĥ. From the assumption we have

[ ĥ, ξ ] = 〈 m
2
δ + λ , ĥ 〉 ξ

= < λ, h > φ⊗X + (
m

2
t+ < λ, h >)(µa+ νd)

+
m

2
t (
∑
n

φn)⊗X.

Comparing the above two equations we have µ = ν = 0, and φn = 0 for all n except for n = m.
Therefore φ ∈ C[φ±;m]. We also have [ĥ, ξ] = φ ⊗ [h,X] = 〈λ, h〉φ ⊗X for all ĥ = φ+(0,0,1) ⊗ h +

sa+ td ∈ ĥ. Hence X ∈ gUλ and ξ = φm ⊗X ∈ ĝm
2
δ+λ . We have proved

ĝm
2
δ+λ = C[φ±;m]⊗ gUλ .

The proof of the third assertion is also carried out by the same argument as above if we revise it for
the case λ = 0 . The above discussion yields the first and the fourth assertions.
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Proposition 12. We have the following relations:

1. [
ĝm

2
δ+α , ĝn

2
δ+β

]
ĝ
⊂ ĝm+n

2
δ+α+β , (114)

for α, β ∈ Σ̂ and for m,n ∈ Z.
2. [

ĝm
2
δ , ĝn

2
δ

]
ĝ
⊂ ĝm+n

2
δ , (115)

for m,n ∈ Z.

Proof. Let φ⊗X ∈ ĝm
2
δ+α and ψ ⊗ Y ∈ ĝn

2
δ+β . Then we have, for h ∈ h,

[h, [φ⊗X,ψ ⊗ Y ] ] = −[φ⊗X, [ψ ⊗ Y, h ] ]− [ψ ⊗ Y, [h, φ⊗X] ]

=< β, h > [φ⊗X,ψ ⊗ Y ]+ < α, h > [φ⊗X,ψ ⊗ Y ]

=< α + β, h > [φ⊗X,ψ ⊗ Y ].

On the other hand,

[ d, [φ⊗X,ψ ⊗ Y ] ] = −[φ⊗X, [ψ ⊗ Y, d] ]− [ψ ⊗ Y, [ d, φ⊗X] ]

=
m+ n

2
[φ⊗X,ψ ⊗ Y ] .

Hence

[ ĥ, [φ⊗X,ψ ⊗ Y ] ] =

〈
m+ n

2
δ + α + β , ĥ

〉
[φ⊗X,ψ ⊗ Y ] (116)

for any ĥ ∈ ĥ. Therefore [
ĝm

2
δ+α , ĝn

2
δ+β

]
ĝ
⊂ ĝm+n

2
δ+α+β , (117)

The same calculation for φ⊗H ∈ ĝm
2
δ and ψ ⊗H ′ ∈ ĝn

2
δ yields[

ĝm
2
δ , ĝn

2
δ

]
ĝ
⊂ ĝm+n

2
δ . (118)

5.3. Generators of ĝ

Let {αi}i=1,··· ,r ⊂ h∗ be the set of simple roots and {hi}i=1,··· ,r ⊂ h be the set of simple coroots. ei,
fi, i = 1, · · · , r, denote the Chevalley generators;

[ ei, fj ] = δijhi,

[h, ei ] = αi(h) , [h, fi ] = −αi(h), for ∀h ∈ h.

Let A = ( aij )i,j=1,··· ,r be the Cartan matrix of g; aij = αi(hj).
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By the natural embedding of g in ĝ we have the vectors

ĥi = φ+(0,0,1) ⊗ hi ∈ ĥ, (119)

êi = φ+(0,0,1) ⊗ ei ∈ ĝ0δ+αi
, f̂i = φ+(0,0,1) ⊗ fi ∈ ĝ0δ−αi

, i = 1, · · · , r . (120)

It is easy to verify the relations:[
êi , f̂j

]
ĝ

= δij ĥi , (121)[
ĥi , êj

]
ĝ

= aij êj,
[
ĥi , f̂j

]
ĝ

= −aij f̂j , 1 ≤ i, j ≤ r. (122)

We have obtained a part of generators of ĝ that come naturally from g.
We recall that for an affine Lie algebra (C[t, t−1] ⊗ g) ⊕ (Ca) ⊕ (Cd) there is a special Chevalley

generator coming from the irreducible representation spaces t±1 ⊗ g of the simple Lie algebra g. Let θ
be the highest root of g and suppose that eθ ∈ gθ and e−θ ∈ g−θ satisfy the relations (eθ|e−θ) = 1 and
[eθ, e−θ] = hθ, then we have a Chevalley generator { t⊗ e−θ, t−1⊗ eθ, −t0⊗hθ + a} for the subalgebra
(C[t, t−1]⊗ g)⊕ (Ca) and adding d we have the Chevalley generators of the affine Lie algebra [2,5,16].
In the sequel we shall do a similar observation for our Lie algebra ĝ. We put

κ = φ+(1,0,1) , κ∗ =
√
−1

(
z2

z1

)
= −

√
−1√
2
φ+(1,1,2) +

√
−1

2
(φ−(0,0,0) − φ+(1,0,1)) .

µ = φ−(0,0,0) , µ∗ =
√
−1

(
z2

−z1

)
= −

√
−1√
2
φ+(1,1,2) −

√
−1

2
(φ−(0,0,0) − φ+(1,0,1)) .

We recall that J = φ+(0,0,0) =

(
0

−1

)
.

Lemma 6.

1.
κκ∗ = κ∗ κ = µµ∗ = µ∗ µ =

√
−1φ+(0,0,1). (123)

2.
c(κ, κ∗) = c(µ, µ∗) = 1. (124)

We consider the following vectors of ĝ:

f̂J = J ⊗ e−θ ∈ ĝ0δ−θ , êJ = (−J)⊗ eθ ∈ ĝ0δ+θ , (125)

f̂κ = κ⊗ e−θ ∈ ĝ 1
2
δ−θ , êκ = κ∗ ⊗ eθ ∈ ĝ 1

2
δ+θ ⊕ ĝ− 3

2
δ+θ , (126)

f̂µ = µ⊗ e−θ ∈ ĝ− 3
2
δ−θ , êµ = µ∗ ⊗ eθ ∈ ĝ 1

2
δ+θ ⊕ ĝ− 3

2
δ+θ . (127)
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Then we have the generators of ĝ(a) that are given by the following three tuples:(
êi, f̂i, ĥi

)
i = 1, 2, · · · , r,(

êµ, f̂µ, ĥθ

)
,
(
êκ, f̂κ, ĥθ

)
,

(
êJ , f̂J , ĥθ

)
.

These three tuples satisfy the following relations.

Proposition 13.

1. [
êπ , f̂i

]
ĝ

=
[
f̂π , êi

]
ĝ

= 0 , for 1 ≤ i ≤ r, and π = J, κ, µ . (128)

2. [
êJ , f̂J

]
ĝ

= ĥθ , (129)

3. [
êµ , f̂µ

]
ĝ

=
√
−1 ĥθ + a,

[
êκ , f̂κ

]
ĝ

=
√
−1 ĥθ + a . (130)
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