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Abstract: Animal development relies on repeated symmetry breaking, e.g., during axial 

specification, gastrulation, nervous system lateralization, lumen formation, or organ coiling. 

It is crucial that asymmetry increases during these processes, since this will generate higher 

morphological and functional specialization. On one hand, cue-dependent symmetry breaking 

is used during these processes which is the consequence of developmental signaling. On the 

other hand, cells isolated from developing animals also undergo symmetry breaking in the 

absence of signaling cues. These spontaneously arising asymmetries are not well understood. 

However, an ever growing body of evidence suggests that these asymmetries can originate 

from spontaneous symmetry breaking and self-organization of molecular assemblies into 

polarized entities on mesoscopic scales. Recent discoveries will be highlighted and it will be 

discussed how actomyosin and microtubule networks serve as common biomechanical 

systems with inherent abilities to drive spontaneous symmetry breaking. 

Keywords: actin; myosin; microtubules; polarity; embryogenesis; chirality; symmetry 
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1. Introduction 

Symmetry breaking in biological systems is a pivotal phenomenon that has fascinated both biologists 

and researchers of other disciplines for decades [1]. The discovery of signaling pathways underlying 

symmetry breaking by inductive cues has led to great efforts in identifying the responsible signaling 

centers and molecules that constitute the cue. Several models have been proposed that unify the functions 
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of signaling pathways in different organisms [2–5]. In parallel, our understanding of symmetry breaking 

in biological systems has also grown substantially in the recent past. In many cases, causal relationships 

between inductive cue and biophysical outcome have been demonstrated (Table 1). It has even been 

possible to rewire existing biological systems that undergo symmetry breaking in a way that competing 

polarities can be generated [6]. 

Independently of the specific developmental process, metazoa seem to use a remarkably conserved 

molecular toolset for cue-dependent symmetry breaking including actomyosin and microtubule networks, 

the PAR genes, Wnt and Notch signaling [7–10]; differential deployment and the vast number of 

accessory factors ensure that this toolset can generate drastically different species-specific outcomes on 

a macroscopic scale. 

Table 1. Examples for symmetry breaking processes in animal development for which both 

polarizing cue and biophysical mechanism are known. 

System Polarizing Cue Physical Effect 
Effector 

Molecule 
Developmental Outcome 

S. cerevisiae Cdc42 activation 
transport of Cdc42 to 

plasma membrane 
F-actin 

polar cap formation followed by 

budding [11,12] 

C. elegans Sperm entry 
A/P polarized cortical 

actomyosin flows 

cortical 

actomyosin 

A/P symmetry breaking by 

segregation of PAR domains  

[13–16] 

D. melanogaster Toll 

planar polarized 

actomyosin 

contractility 

non-muscle 

myosin II 

convergent extension during 

gastrulation [17] 

Danio rerio 

fluctuating adhesion, 

myosin contraction 

at cell rear 

large-scale actin 

network disassembly 

by myosin II 

cortical 

actomyosin 

symmetry breaking and 

polarized migration [18] 

Mus musculus 
non-canonical Wnt 

signaling 

posterior tilt of  

nodal cilia 
nodal cilia 

L/R symmetry breaking by 

asymmetric nodal flow [19,20] 

In contrast to cue-dependent symmetry breaking, spontaneous symmetry breaking relies on inherent 

instabilities which endow cellular systems with the ability to couple a metastable state to a non-spontaneous 

event (e.g., a developmental signal), thereby generating a new state or pattern [21]. A well-studied example 

for spontaneous symmetry breaking is the emergence of chirality during development. Here, many 

different and often organism-specific mechanisms and molecules have been described. Such diversity 

notwithstanding, it seems that anisotropies at the level of the microtubule and actomyosin cytoskeleton 

represent a common biophysical principle underlying spontaneous symmetry breaking. 

While symmetry breaking in physics implies a transition from a homogenous to a patterned state,  

a superficially homogenous structure in a biological system often already contains imperfections and 

thus seeds of asymmetry. This might be one reason why it has been challenging to elucidate the mechanisms 

of spontaneous symmetry breaking in development since capturing the precise state and configuration 

of a biological systems is much more difficult than in a reconstituted physical, chemical or biophysical 

systems. Notably, recent breakthroughs further strengthen this notion: The generation of organoids in vitro 

has revealed that systems originating from a few different cell types (derived from stem cells or organ 
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progenitors) can self-organize into structures that resemble to their in vivo counterparts. Organoids 

recapitulate cell sorting, spatially restricted lineage commitment and pattern formation [22]. Hence, 

complex developmental processes can apparently take place independently of developmental history or 

topology, and, thus, most likely also without some of the intricate cue-dependent symmetry breaking 

phenomena identified previously. It is therefore essential to better understand emergent phenomena such 

as collective cell shape changes, establishment of gene expression domains and signaling centers in the 

context of inherent metastabilities of biological systems. 

In this review, recent advances achieved by utilizing in vitro and single cell systems to better 

understand the molecular and biophysical origins of spontaneous symmetry breaking will be discussed. 

Further, how these discoveries relate to findings in developmental biology will be explained. Finally, 

several discoveries that broaden our understanding of cue-dependent symmetry breaking in vivo will be 

highlighted with a focus on examples that use the same biophysical principles as discussed for spontaneous 

symmetry breaking. 

2. Spontaneous Symmetry Breaking in Vitro and in Single Cells 

For animal development to proceed, it is important that a biological system initially is in an intrinsically 

metastable state so that symmetry breaking can occur. Metastability ensures that an energy barrier has 

to be overcome which is higher than the inherent energetic fluctuations (noise) of the system [21]. 

Metastability has been particularly well described on the level of morphogens [23] and on the level of 

transcriptional networks, leading to cell differentiation, and overcoming earlier concepts of hierarchical 

cell fates [24]. For developing biological systems, biomechanical metastability at the level of the 

cytoskeleton is equally important. The two major bio-architectural elements in this context are 

microtubule-motor systems and actomyosin networks. 

As symmetry breaking in vivo involves protein-protein interaction networks [25,26], it is difficult to 

reconstitute such a process in vitro. Nevertheless, reductionist in vitro systems based on purified proteins 

frequently supplemented with cell extracts can be highly valuable to better understand how individual 

components contribute to a complex process. Also, they help in identifying common emergent properties 

of systems that show spontaneous symmetry breaking.  

2.1. Microtubules and Microtubule-Motor Systems in Vitro 

Microtubules are comprised of α/β-tubulin dimers polymerized in 13 parallel, staggered proto-filaments 

which associate laterally and close on themselves, thereby forming a hollow tube. The contacts in the 

tube are homotypic in that α-α and β-β contacts are formed with the exception of heterotypic contacts 

(α-β) at the seam where the protofilament lattice has closed to form the hollow tube (Figure 1a). 

Polymerization takes place when tubulin is bound to guanosine tri-phosphate (GTP) (usually at the (+)-end), 

while de-polymerization is favored when GTP is hydrolyzed to guanosine di-phosphate (GDP) (at the  

(–)-end) (Figure 1a). Seminal experiments by Mitchison and Kirschner have demonstrated that microtubules 

show the striking intrinsic property of dynamic instability, meaning that growing and shrinking 

microtubules can co-exist in the same system [27,28]. Additionally, microtubule de-polymerization can 

also occur stochastically in a catastrophic process [29]. This has been explained phenomenologically by 

microtubules being stabilized by a cap of tubulin-GTP, which when lost, triggers de-polymerization 
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catastrophe [30]. Several models have been generated to account for these instabilities [31–37]. 

Furthermore, the term “structural plasticity” has been introduced to describe additional changes in 

filament/polymer structure without change(s) in the chemical state of its bound nucleotide [38]. The 

conceptual difference to older models being that microtubule dynamics observed in vivo are more 

complex than simple polymerization/de-polymerization models would predict. For instance,  

de-polymerizing ends are curling while stable ends are straight, the latter has been explained to depend 

on a conformational change after GTP binding that straightens the α/β-tubulin dimer to favor lateral 

contacts [39]. These conformational changes not only contribute to the intrinsic polymerization dynamics 

of microtubules but also seem crucial for microtubule-associated proteins to monitor, control, build, and 

modify microtubule networks [40]. Most recently, it was shown that structural plasticity is key to the 

modulation of microtubule dynamics by (+)-end-binding proteins since they recognize a structural state 

rather than a chemical state and promote compaction of the microtubule lattice, thereby facilitating GTP 

hydrolysis [41]. 

These intrinsically non-linear properties have made microtubule preparations an attractive  

in vitro model for the study of dissipative processes, e.g., to understand oscillations [42,43], symmetry 

breaking [44], and self-organized formation of spatial patterns in the form of traveling waves and 

polygonal networks [45]. Notably, these behaviors can be attributed to the fact that dense solutions of 

rod-shaped polymers generally tend to behave like nematic liquid crystals [46]. 

Concerning the forces that drive spontaneous symmetry breaking in dense microtubule solutions  

in vitro, it has been discussed that a gravitational field can apparently be sufficient in vitro [47], which 

has fueled the idea that gravitational force might also contribute to microtubule self-organization and 

therefore symmetry breaking in cellular systems [48]. It has been proposed that such in vitro patterning 

of microtubule solutions by gravity is most likely due to (1) interactions between microtubules through 

tubulin concentration gradients if microtubules are separated by a distance less than the diffusion growth 

length (meaning very high concentrations); (2) constant turnover at microtubule ends; and (3) so-called 

“avalanche-like correlated clusters” or longer microtubule fragments generated by dynamic instability 

that can re-associate with neighboring microtubules [49]. The latter effect will lead to far-from equilibrium 

kinetics and spatially correlated dynamics at the macroscopic level most likely due to the liquid  

crystal-like properties of such dense solutions. It should be pointed out that these gravity-dependent 

phenomena are restricted to non-physiologically dense in vitro preparations and their in vivo relevance 

is controversial [50–52], especially since forces generated in microtubule assemblies are orders of 

magnitude greater than those generated by gravity. However, independent of the forces needed to organize 

microtubules into liquid crystal-like states, there is recent bona fide evidence of liquid crystal-like 

behavior of microtubules in cells [53,54]. 

More than 25 years ago it has been proposed that fluid motion in rod-containing solutions might not 

be continuous but organized in small domains and what has been called gelation in such systems might 

simply represent liquid crystal domain formation [46]. To be endowed with liquid crystalline-like  

self-organizing potential, such microtubule systems need motor proteins. The two main microtubule 

motors are kinesins and dyneins [55]. They exhibit specific end-directed motor activity either versus the 

(+)-end (many kinesins) or the (−)-end (dyneins and several kinesins) (Figure 1b). Capitalizing on the 

liquid crystal-like properties of microtubule-motor in vitro systems, different bio-mimicking systems 

have been designed that either exhibit polar or nematic symmetries. The former systems show liquid 
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crystal defects in the form of asters and vortexes (Figure 1d), the latter so-called disclination defects 

(Figure 1c, right). Leibler and co-workers conceived the polar system that forms dynamic crosslinks 

between adjacent microtubules through tetrameric kinesin motors [56,57]. 

 

Figure 1. Microtubule organization, motors and properties of microtubule-motor systems. 

(a) Microtubule structure and polarity. Note the difference in the size of the guanosine  

tri-phosphate (GTP)-cap after hydrolysis. This will lead to de-stabilization of the (+)-end. 

Microtubule model adapted from [58]; (b) Microtubule motors and their polarity. Models 

adapted from [59] (c) Left: Behavior of the reconstituted system used in [60,61]. Note the 

extensile behavior of the system with microtubules of opposite polarity moving in opposite 

directions; Right: Disclination defects observed in these systems; (d) Different concentrations 

of the motor (kinesin) in microtubule-motor reconstituted systems [56,57] leads to different 

outcomes. False-colored experimental outcomes adapted from [56]. 

In this system, asters that resemble monopolar mitotic spindles are formed when the system is 

confined in a nearly two-dimensional space. However, asters in round confinement are not stable and 

transit into vortex structures. Without confinement, this system can either develop into a lattice of vortices 

(at low kinesin concentration), a lattice of asters (at higher kinesin concentrations) [56], or into a network 

of poles that are connected by aligned microtubules (when both a (−)- and (+)-end-directed motor are 

used) [57] (Figure 1d). The type of network formed is determined by the relative amount and ratio of 

motors as well as their residence time on microtubule ends. Notably, the vortex-type of self-organization 

has been investigated in more detail recently [62]. Analyzing the microtubule alignment process necessary 

to form a vortex, the authors find that a direct collision of microtubules is followed by bending. Reptation 
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or snake-like slithering in smooth trajectories will eventually lead to mesoscopic self-organization. 

These characteristics can also give rise to long persistent lengths required for formation of vortices 

spanning ~400 micrometers [62]. 

Further modifying the original system by Leibler and co-workers (Figure 1c), the Dogic and Bausch 

laboratories have recently described experiments using microtubules-motor systems that assemble into 

differently dynamically behaving, self-organized structures. They exhibit chaotic flow and autonomous 

motility [60], thereby reflecting in vivo phenomena like cytoplasmic streaming [63] or microtubule 

arrays in plant cells [64], respectively. Importantly, also here self-organization relies on microtubule 

collisions and alignment after collisions. However, in this system, polarity sorting is observed after 

collisions leading to the formation of a nematic material that are mostly (if not exclusively) extensile on 

mesoscopic scales (Figure 1c, arrows). This is in stark contrast to reconstituted actomyosin systems that 

usually exhibit contractile behavior. If the microtubule-motor system is assembled as active nematic 

vesicles, it can even change its shape with streaming filopodia-like protrusions [61]. This is the result of 

topological defects (disclinations) that are caused by spherical confinement (Figure 1c, right). Furthermore, 

when the same reductionist system is assembled on a surface, it can exhibit beating patterns that resemble 

those of cilia [65]. Although not organized into cross-linked microtubule doublets as in cilia, elastic 

microtubule bundles can spontaneously synchronize their activity to produce collective behavior similar 

to waves observed in ciliary fields [65]. 

Taken together, minimal microtubule-motor systems—with far from equilibrium kinetics—are able 

to recapitulate basic collective phenomena that are most likely also occurring during developmental 

symmetry breaking. These include nematic liquid crystal-like behavior with polar or nematic polarities, 

self-organization into macroscopic dissipative structures, and chirality (as far as vortex structures  

are concerned). 

2.2. Microtubules in Neuronal Polarity and Spontaneous Phenomena during Cell Division 

Although microtubules fulfill central functions during asymmetric cell division, they are usually not 

the structural element where symmetry is broken first. This seems to be due to microtubules usually not 

constituting a boundary element of animal cells that directly regulates cell shape. Therefore, they play a 

less prominent role in spontaneous symmetry breaking than actomyosin networks as will be discussed 

in detail below. Notwithstanding these differences between cytoskeletal systems, the role microtubules 

play during establishment of polarity in neurons will be highlighted using two examples where alterations 

of microtubule organization leads to spontaneous symmetry breaking during cell division. 

Neurons in vitro represent a system with elaborate broken symmetry on a single cell level and intrinsic 

polarity without external cues. In this symmetric in vitro environment, neurons grow multiple processes 

or neurites from which only one will form the axon [66–68]. This is the neurite with the growth cone of 

lower actin density and highest actin turnover [69]. The other processes later become dendrites. It has 

become clear that axon specification requires both a complex interplay between microtubule ends and 

cortical actin [70,71] strongly dependent on microtubule ends undergoing simultaneous reorganization 

via dynamic instability [72]. Initially, it was suggested that after stochastic entry into the axon, selective 

stabilization of microtubules occurs either by a spatial or temporal gradient of microtubule dynamics  

or by cortical capture of dynamic microtubule ends. This would then contribute to symmetry breaking 
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during axon specification [73] (and references therein). However, it has now been demonstrated that 

microtubules will accumulate in the longer process most likely without any selective stabilization, 

confirming that symmetry breaking at the level of cell shape (in this case deploying actomyosin) directs 

axon specification [73]. These findings also explain why axonal polarity is established over hours/days 

and not in minutes, since both length-dependent axon selection and restriction of the activity of the 

polarizing machinery to one growth cone are both very slow processes. Specifically, polarization of the 

axonal growth cone involves the interaction of conserved polarity regulators (the Par3/Par6/aPKC 

complex) with axonal microtubules. This complex consists of two PDZ domain-containing proteins 

(Par3 and Par6, which engage in multiple protein-protein interactions, see Figure 2a) as well as an atypical 

protein kinase C (aPKC) [26,74,75]. The complex is initially localized at all neurites’ growth cones but 

then becomes restricted to the axon due to positive feedback [76]. Here, Par3 directly regulates microtubules 

by binding, bundling and stabilizing them with its N-terminal part, which is intra-molecularly suppressed 

by its C-terminal part [77]. These activities are crucial for axonal polarization and could reflect some of 

the properties that have been observed in in vitro systems, where emergent phenomena also rely on high 

local concentrations and nematic-like ordering. 

In sum, it seems that spontaneous symmetry breaking in neuronal growth cones by alterations in 

actomyosin dynamics leads to transient lengthening of a neurite, which through positive feedback on the 

level of microtubule end capture and stabilization by gradual enrichment of the Par3/Par6/aPKC complex 

allows the system to stochastically switch from a metastable into a stable state with broken symmetry. 

Interestingly, the polarity system used here to reinforce the asymmetric state acquired through a stochastic 

process can also operate on much smaller time scales (few minutes) in the case of embryonic polarization 

processes that are induced and not stochastic. 

A quite different example where interactions of microtubules with the actomyosin cortical network 

can exhibit spontaneous symmetry breaking is during monopolar cell division: Here, an initially radially 

symmetric cell simultaneously polarizes both microtubules and the cell cortex as well as concentrates 

components of the cytokinetic furrow into a cap at one side of the cell [78]. This scenario can be 

generated by first inhibiting kinesin-5 which is responsible for generating a bipolar spindle, and then 

forcing them into cytokinesis by inhibiting the kinases Cdk1 or Mps1. Similar to the positive feedback 

between actomyosin symmetry breaking and microtubule enrichment in axons, it has been proposed that 

feedback loops between cell division furrow components and microtubules promote symmetry breaking 

during monopolar cytokinesis [78] (Figure 2b). 

Less polarized spontaneous symmetry breaking that relies on coupling of cortical actomyosin 

dynamics to the microtubule cytoskeleton during cell division has also been observed when unnaturally 

long astral microtubules are generated by depletion of the microtubule depolymerizing mitotic 

centromere-associated kinesin (MCAK) [79]. Under these conditions, longitudinal spindle oscillations 

were observed after anaphase which were driven by non-muscle myosin II oscillations between polar 

cortices that probably became weakened before by excessive contacts to microtubules (Figure 2c). This 

suggests that under these specific conditions, microtubules can initiate spontaneous symmetry breaking 

similar to partial polarization by microtubule dynamics in developing embryos when actomyosin activity 

is compromised [80]. 
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Figure 2. Microtubules in neuronal symmetry breaking and spontaneous symmetry breaking 

during mitosis. (a) Network of proteins centered around the atypical protein kinase C 

(aPKC)/Par3/Par6 complex. Direct interactions and activation are indicated by double arrows. 

Activities on actin dynamics are shown in green, activities on microtubule dynamics in red. 

Note that Par3/Par6 can directly interact with microtubules. Schematic adapted from [81];  

(b) Spontaneous polarization of cleavage furrow components (green) and midzone 

components (orange) during forced exit of mitosis of cells with monopolar spindles. Note 

the continuous blebbing starting during anaphase. Red = microtubules; blue = chromatin. 

Schematic adapted from [78]; (c) Left: Differences in astral microtubule organization 

compared to wild type mitotic cells after depletion of the kinesin MCAK [79]. Spontaneous 

oscillations following anaphase onset. Note the re-polarization of cortical actomyosin during 

oscillation. Coloring as in panel (b). For high-resolution dynamics of oscillations, visit the 

supplemental material of [79] (time-lapse video microscopy data). 

2.3. Actomyosin in Vitro 

Attached to the inner face of the plasma membrane is the cortex, which gives cells their shape and 

allows them to polarize, divide, and move [82–84]. The main constituents of the cortex are actin filaments, 

non-muscle myosin II motors and various actin-binding, -cross-linking and -nucleating factors. These 
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factors form a hydrated network ranging from 0.1 to 1 µm in thickness. Key parameters that indicate 

how this network behaves biophysically are its degree of crosslinking, the ratio of branched to unbranched 

actin filaments, the amount of force-generating motors that create tension, and the strength of cortex-plasma 

membrane linkages. Tension in this molecular network can lead to multiple outcomes [21]: (1) If tension 

can relax through stochastic network breakage, this will lead to formation of blebs (Figure 3a), thereby 

releasing elastic energy. It will lead to actomyosin-membrane detachment and formation of a membrane 

protrusion (if the hydrostatic pressure in the model system is high enough) and constriction of actomyosin 

at distal sites in the network; (2) In contrast to blebbing, which is a singular elastic relaxation, continued 

contraction and relaxation accompanied by turnover of network constituents can lead to long-range 

rearrangements that reveal fluid-like properties for actomyosin networks [85]. In case of long-range 

coordination of contraction and expansion mesoscopic flows can be generated. This type of actomyosin 

flow-generating dissipative system is crucial for many morphogenetic processes in developing animals 

which will be discussed later [86]. Biophysical models of actomyosin based on hydrodynamic theory of 

active gels can explain flow-like dynamics by focusing on viscoelasticity and liquid crystal-like 

properties of the system [87,88]. 

Using starting conditions that were inspired by two very differently organized cortical actomyosin 

networks, the red blood cell’s cortex with short filaments integrated into a loose network with a low 

degree of crosslinking and the outer hair cell’s cortex with long-range filament order and a high degree 

of crosslinking, Dalhaimer et al. explored possible transitions and behaviors of these actomyosin 

networks [89]. In addition to the already discussed nematic liquid crystal-like properties of filamentous 

systems, crosslinkers can introduce elasticity into systems behaviors [90]. Based on simulations, it could 

be shown that while loose networks only resemble nematic liquid crystal-like fluids when under 

compression or shear, tight actomyosin networks like that of outer hair cells generally show this type of 

mesoscopic organization. Thus, systems properties do not simply rely on the relative concentration and 

filament length but also on intrinsic and extrinsic mechanical forces as well as additional factors that 

modulate filament polarity and organization. 

To better understand how changes in systems properties affect biophysical dynamics of actomyosin, 

reconstituted systems have been developed that usually recapitulate actin polymerization on a surface 

and where additional molecules like cross-linkers or motor proteins can be added [91,92]. Consistent 

with the behavior of an active nematic fluid, collective motion (density waves, swirls) of actin filaments 

with directional persistence has been demonstrated when these interact with immobilized myosin in a 

high-density motility assay with planar geometry [93], thus in similar confinement as the self-organizing 

microtubule arrays discussed above. Another similarity to microtubule-motor systems at high densities 

is that cooperativity between interacting filaments together with weak alignment interactions generates 

these collective, mesoscopic phenomena. Hence, filament sorting is an important feature for these systems 

to develop liquid crystal-like properties and sorting can either lead to overall contractile (actomyosin) or 

extensile (microtubule-motor systems) dissipative structures. It seems likely that collective motion 

observed in planar confined reconstituted actomyosin systems represents density waves and therefore in vivo 

correlates of the dynamics observed during cortical flow. 
  



Symmetry 2015, 7 2071 

 

 

 

Figure 3. Spontaneous cellular symmetry breaking by blebbing and rear contraction.  

(a) Bleb formation. Schematic according to [94]. See text for details; (b) Spontaneous 

symmetry breaking by blebbing and persistent migration; adapted from [18]. Small black 

arrows show acotmyosin cortical contractile flow. F = contractile force; red dots = monomeric 

actin. The green arrow indicates the direction of migration; (c) Top: Polar blebbing releases 

tensile stress and ensures symmetric ingression of the furrow (green arrows). Bottom:  

If a high pressure difference exists between the poles, shape fluctuations can occur that  

might lead to cytokinesis failure. Schematic adapted from [95]; (d) Asymmetric mechanical 

properties and blebbing of the invading cell contribute to entosis; see [96]; (e) Spontaneous 

symmetry breaking through rear contractility and forward-directed actomyosin flow can 

initiate cell migration; adapted from [97]. The small black arrows indicate tension force, the 

green arrow indicates the direction of migration. See also [98] and text for details. 
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Moreover, in a reconstituted system with planar geometry but inverse topology (where actin is bound 

to a membrane and myosin is added), actin turnover can be mediated by myofilament-driven actin 

fragmentation [99]. The latter findings and the tunability of physical parameters of actin networks by 

small changes in cross-linker concentrations [87] might explain how contractile networks can undergo 

fast remodeling in vivo. This is also consistent with the interpretation from the Sykes laboratory that 

symmetry breaking in reconstituted systems can be attributed to rupture of spherical actin networks when 

cortical tension surpasses a certain threshold [100]. The threshold is determined by a concentration 

window of capping protein that limits growth of branched networks nucleated by the Arp2/3 complex, 

and by a sufficient number of motors that pull on actin filaments [101]. Importantly, all these different 

molecular origins of spontaneous symmetry breaking in vitro (1) changes in contractility; (2) changes in 

cross-linker concentrations; (3) local changes in the rate of actin polymerization; and (4) different forms 

of actin polymerization (switches between unbranched and branched networks) have been found to either 

drive symmetry breaking in vivo or to remodel actomyosin networks in order to amplify broken symmetry 

from the cellular to the tissue, organ or organism level [84]. 

Besides reconstituted systems with planar geometries, one of the first systems were spontaneous 

symmetry breaking in vitro can trigger biological phenomena like cell motility was a system of beads 

coated uniformly with Listeria monocytogenes ActA that catalyzes actin polymerization [102]. In these 

experiments, beads are first surrounded by symmetrical clouds of actin filaments which undergo 

spontaneous symmetry breaking that can lead to stripping of the actin coat or to directional motion of 

the beads. The biophysical mechanisms underlying these behaviors depend on the tensile stress that can 

build up in the actin-network surrounding the bead. Above a critical force value that depends on the actin 

coats thickness, the network will break at an imperfection. To robustly observe symmetry breaking in 

these systems, coat polymerization and/or de-polymerization has to be controlled in a way that the coat 

does not become too thick [103,104], thereby reaching a metastable state where small fluctuations in 

tensile stress can yield coat rupture. 

Results confirming these mechanisms have been reported in a minimal system using an amphiphatic 

complex of the branched actin polymerizer ActA from L. monocytogenes localized to the inner interface 

of water-in-oil emulsions. Here, actin filaments polymerize and form dynamic cortices by self-organization 

that only require nucleation factors [105]. In these spherical structures, spontaneous symmetry breaking 

and formation of polar actin caps can be observed, which depends on temperature and cross-linkers and 

is generated through myosin dependent cortical flows in absence of any external cues. Moreover, other 

forms of spontaneous symmetry breaking such as blebbing also occur in this system [105]. Using 

elasticity theory and linear flux-force relationships, a theoretical model has been built. It posits that interfacial 

polymerization can trigger an instability which induces spontaneous symmetry breaking [106]. In the light 

of work from the Schwille group [99] and the model of Lewis et al. [107], myosin-mediated actin 

fragmentation or viscous/elastic stress originating from turnover/de-polymerization might also be possible 

explanations for spontaneous symmetry breaking observed experimentally in the ActA system.  

Thus, under certain conditions, viscous and elastic stresses are sufficient to break symmetry without 

polarized myosin activity in vitro. Although similar stresses are also found in vivo, these usually require 

anisotropic myosin contractility. One explanation for these differences might stem from positive feedback 

mechanisms and coupling to other cytoskeletal structures, most importantly microtubules, in vivo. 
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A different type of dissipative self-organized structure has been reported from a reconstituted system 

where meiotic extract is confined to droplets in an emulsion [108]. Here, actomyosin flow generates 

stable vortices that depend on actin polymerization and de-polymerization. Strikingly, inhibition of 

either polymerization or de-polymerization leads to collapse of vortices while fusion of two droplets 

with vortices leads to re-organization of the two halos into one that scales to the size of the droplet [108]. 

These observations have led to the development of a mathematical model that can explain this emergent 

phenomenon: Lewis et al., using an isotropic viscoelastic model, show that these dissipative structures 

can emerge from the viscoelasticity of the system when rearrangements in the actomyosin network are 

slower than the disassembly rate while not requiring a specific polarity of its constituents [107]. Thus, 

unlike in the microtubule-motor examples above, polarity sorting does not seem to contribute to formation 

of mesoscopic structures in this case [60–62]. 

2.4. Actomyosin in Single Cells 

2.4.1. Blebbing and Migration 

In cellular systems, spontaneous symmetry breaking can also occur in the form of blebbing [21] 

(Figure 3a). Here, a biophysical mechanism for bleb formation has been put forward by Charras et al. [94]: 

The important assumption of this model is the cytoplasm resembling a porous elastomer that is 

contractile and infiltrated with a fluid. If the cortex surrounding such a fluid-filled elastomer locally 

contracts, the hydrostatic pressure will also locally increase and fluid will flow out of the porous 

elastomer at a breakpoint in the cortex leading to membrane detachment and blebbing. Importantly, since 

local cortex contraction and breakpoint can be at some distance and since the tensile force of the cortex 

is transduced to the elastomer, there is no instantaneous propagation. From this model it is obvious that 

blebbing can be regulated by altering actomyosin cortex strength (density and thickness), tensile stress 

(myosin concentration and activation), hydrostatic pressure [101,109–112], and porosity of the elastomer 

(difficult to modulate in vivo). 

Symmetry breaking by blebbing can lead to cell migration [113–115] (Figure 3b). This type of cell 

migration works without classical cell-substrate adhesion—in fact, cells seem to be able to switch 

between the adhesion-dependent and blebbing-based motility by altering actin polymerization rate [116]. 

Instead of contraction of the substrate as observed during adhesion-dependent migration, the substrate 

is expanded during blebbing-based motility [117]. This can lead to surprisingly fast polarized movement 

if blebbing is maintained by a positive feedback between contractility and cortical flow [18]. 

Blebbing as a ubiquitous biomechanical mechanism also plays a role in cell-in-cell invasion, also 

coined entosis [118]. Entosis is an integrin-independent process that seems to be driven by blebbing and 

a uropod-like actin structure at the rear of the invading cell [96] (Figure 3c). During entosis, fate 

symmetry breaking is determined by mechanical deformability—highly deformable cells preferentially 

engulf and out-compete neighboring cells by internalizing and degrading them [119]. 

In contrast, blebbing can also inhibit spontaneous symmetry breaking by leading to a stabilization of 

the cleavage furrow, when releasing cortical tension symmetrically [95] (Figure 3d). Hence, inherent 

instabilities in actomyosin cytoskeletal mechanics can be deployed for symmetry breaking which can 

have complex consequences during tumorigenesis (entosis), cell division, or migration (blebbing). 
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Besides blebbing, other forms of actomyosin-based spontaneous symmetry breaking are involved in 

cell migration (reviewed in [120,121]): While actin polymerization at the future cell front promotes 

symmetry breaking when chemotactic or other cues are involved, contractility through non-muscle 

myosin II polarizes the rear of the cell [97,122]. This leads to an anisotropic organization of the cell’s 

actomyosin machinery and drives translocation. Translocation will further reinforce actomyosin asymmetry, 

favoring further translocation [123] (Figure 3e). Similarly, in three-dimensional environments, both 

amoeboid and mesenchymal migration start with non-muscle myosin II accumulating at the cell rear to 

initiate actomyosin contractility which in turn drives cells to move; additionally, mesenchymal migration 

also requires stress fibers to be generated before directional migration [124]. The force distribution 

during this type of migration is anisotropic with the front generating traction by actin network-substrate 

interactions, while the cell’s sides and its back produce traction by the actin network slipping over the 

substrate [125]. Strikingly, it was now shown that spontaneous motility in this case does not originate 

from rear contraction itself but is initiated by stochastic fluctuations in adhesion strength and myosin 

localization in the prospective cell rear [98]. This will generate high actin network flow that can trigger 

a switch in cell adhesion from gripping to slipping. This switch in turn allows flow acceleration resulting 

in rear retraction. Then, the above mentioned anisotropic state is reached that is self-sustained through 

additional positive feedback. 

The biological relevance of rear contractility-based spontaneous migration is not fully clear yet. It has 

been proposed to be utilized when cells move away from certain cues, during reverse cell turns, or during 

cell intercalation [120]. 

In addition, another component seems to contribute to spontaneous symmetry breaking that triggers 

cell migration, confinement. Using D. discoideum cells, it has been recently demonstrated that cells  

can spontaneously polarize inside narrow channels in the form of highly persistent, unidirectional 

migration [126]. Under these conditions, their actin network is organized in dense, stationary actin foci 

at the sides and an enrichment of non-muscle myosin II at the rear, which is however not required for 

persistent migration under confinement. The topology of non-muscle myosin II polarization is very 

similar to stable bleb migration that has been found to stochastically occur in cells of developing embryos 

under similar confinement [18] and probably in many mesenchymal cells under confinement that use 

non-muscle myosin II contractility to trigger mechanical instability [127]. However, unlike spontaneous 

confinement-induced migration in D. discoideum, stable bleb migration in vertebrate cells requires  

long-range cortical flow and depends on non-muscle myosin II activity [18,127]. 

2.4.2. Defining Singularities in Cells 

As briefly explained above, axon specification of neurons in culture also represents a process of 

spontaneous symmetry breaking where actomyosin plays a key role [66–69] and where a singularity has 

to emerge from a stochastic process. Current models of this process always require positive feedback 

but differ in that they either assume competition of each neurite for a limited amount of certain molecules 

or an activator-inhibitor pair [128]. In the latter model an activator is generated within one neurite and 

this in turn mounts a global inhibitory signal. In both cases, this will lead to local activation of actin 

polymerization either in a “one-takes-all” or in a “local activation-global inhibition” mechanism (Figure 4a). 

Proof for the former mechanisms comes from the finding that H-Ras might indeed be a molecule that is 
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present in limited amounts [129]. However, it does not seem to influence actin dynamics directly since 

other Ras isoforms have been shown to act either through GSK3β signaling [130] or through the  

actin-binding protein afadin [131].  

Following the establishment of a single site for axon formation, actin polymerization and forces 

generated by non-muscle myosin II in the axonal growth cone lead to retrograde flow, which will lead 

to protrusion formation when flow is coupled to movement of cell adhesion molecules [132,133] (Figure 4b). 

This flow induces actin arcs in the transition zone of the growth cone (between the growth cone’s center 

and the ruffled periphery). These arcs inhibit growth of microtubules into the peripheral zone of the 

growth cone [134]. Further, contractile actin arc structures are regulated by Rho Kinase-mediated non-muscle 

myosin II activation and indeed coordinate microtubule movements in the growth cone neck [70]: 

Laterally moving actin arcs interact with growing axonal microtubules and transport them from the sides 

of the growth cone into the central domain. This led to the conclusion that non-muscle myosin  

II-dependent compressive forces are necessary for microtubule alignment in the growth cone neck [71]. 

Taken together, this complex chain of events shows that multiple (potentially redundant) signaling 

pathways through positive feedback first locally activate retrograde actomyosin flow that then establishes 

secondary structures like actin arcs. These in turn are important for proper organization of microtubules 

in the growing axon. 

In the asymmetrically dividing budding yeast S. cerevisiae, spontaneous symmetry breaking has been 

extensively studied (Figure 4c). Similar to neurons, a single location has to grow into the bud based on 

a stochastic process and competition. This process also occurs without an external cue by self-enhancing 

positive feedback centered on the polarity factor Cdc42, a small, prenylated GTPase that associates with 

the plasma membrane [11]. Numerous studies have established a mechanism in which recruitment  

of Cdc42 to the site of polarization (where activated, GTP-bound Cdc42 seems to laterally diffuse, [135]) 

requires actin-mediated transport of vesicle-bound Cdc42 [136] or GTPase-activating protein  

(GAP)-mediated recruitment of Cdc42 [137]. In addition, Cdc42 cycling between GTP-bound/active and 

GDP-bound/inactive states is crucial for polarization, which is controlled by a guanine nucleotide 

exchange factor (GEF, Cdc24), GAPs (Bem2, Bem3, Rga1, Rga2), a Rho-guanine nucleotide dissociation 

inhibitor (GDI, Rdi1) [138], and plasma membrane lipid anisotropy [139] (Figure 4d). Recent work has 

shown that actin-mediated recycling of Cdc42 induces robust symmetry breaking but does not restrict 

polarization to a single site [6]. A synthetic approach has been used in this case in which the scaffold 

protein Bem1 (which affects actin filament attachment to the polarization site) was fused to the v-SNARE 

Snc2 (which very efficiently transports vesicles and slowly diffuses from the site of membrane fusion) 

(Figure 4e, top). Under these engineered conditions, cells can generate two polarization sites, which 

when given sufficient time will start to slowly compete and sometimes fail to develop a single polarization 

site before budding begins [6] (Figure 4e, bottom). Thus, actin-based delivery needs additional inputs to 

ensure that a singularity emerges from a spontaneous process. This is similar to neurons where a complex 

machinery—after a spontaneous event—also establishes positive feedback to generate a singularity, 

which is crucial for proper physiological function of the cell. 
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Figure 4. How to generate a singularity in neurons and in S. cerevisiae. (a) Models  

that explain the generation of a single axon. Adapted from [128]; see text for details;  

(b) Actomyosin-dependent remodeling of axonal microtubules. The enlarged area shows a 

schematic that summarizes dynamics during growth cone advancement. Adapted from [70]. 

In the peripheral domain of the growth cone (right), dynamics microtubules (green arrows) 

polymerize parallel to filopodial actin filaments that are subject to retrograde flow (red 

arrows). Therefore, peripheral microtubules cannot reach filopodial tips. Slowing of retrograde 

flow (not shown) and centripetal forces generated in actomyosin arcs (blue arrows) lead to 

opening of the central zone (depicted in grey) and microtubule advancement; (c) Cell 

division in S. cerevisiae. Note the re-structuring of actin cables and the formation of a bud 

site that contains Cdc42. At this site, also the septin ring forms (see [12] for details);  

(d) Positive feedback leads to enrichment of Cdc42 at a single site during budding. Schematic 

adapted from [12]. Cortically bound Cdc42-GTP (bound through stochastic events, (1*) can 

recruit the cytoplasmically assembled complex of the scaffold protein Bem1 with PAK 

(Cla4/Ste20) and a Cdc42 guanine nucleotide exchange factor (GEF) (Cdc24) (1). GEF 

activity leads to local enrichment of Cdc42-GTP (2), thereby establishing positive feedback. 

Higher amounts of Cdc42-GTP promote recruitment and activation of the formin Bni1 (3) 

that leads to the capture/formation of actin cables (4). Along actin cables, vesicle-bound 

Cdc42 can be transported (using the myosin motor Myo2, (5)). This will lead to further 

enrichment of Cdc42 and start a second positive feedback; (e) Fusion of the scaffold Bem1 

to the exocytic v-SNARE Snc2 (top) can lead to the simultaneous formation of two buds 

(bottom, dark grey). See text and [6] for details. 
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Remarkably, besides the complex machinery that ensures singularity in the spontaneous polarization 

process of yeast, polarization can also be triggered by an electric field. Here, bud emergence occurs 

towards the cell membrane with depolarized potential [140], probably coordinated by plasma membrane 

lipid polarization [138]. 

2.5. Actomyosin-Dependent Chiral Symmetry Breaking 

A special form of spontaneous symmetry breaking is the generation of chiral symmetry where an 

initially symmetric state at the mesoscopic level is transformed into a state that shows a particular 

handedness. This transition is of great importance for cells and organisms since it creates an additional 

layer of diversification in form and function. The most plausible explanation underlying this phenomenon 

is that biological systems use homochiral building blocks [141]. From these, macromolecules with 

specific biases concerning their chirality can be formed. A particular macromolecular handedness can 

then be propagated either through biochemical reactions or through interaction of handed macromolecules 

with each other (e.g., through polymerization or formation of active materials at mesoscopic scales). 

Filamentous actin fulfills these requirements of an intrinsically chiral macromolecule. It is formed by 

actin protomers that assemble into a right-handed double helix with a full turn after 13 protomers or 

every 72 nm [142]. Sequential interactions of myosin motors with one of the helical strands can therefore 

generate a right-handed rotation of the filament around its axis [143]. Moreover, the myosin working 

stroke is not perfectly parallel to the axis of the actin filament [144] (and references therein), thus resulting 

in a small angular component that can generate torque. Torque is clearly seen in in vitro assays: 

Nishizaka et al. [145] showed that during myosin-driven sliding of actin filaments, a torque component 

can be observed that induce rotation of an actin filament around its long axis. Later, Sase et al. [143] 

have confirmed that actin filaments undergo one revolution per sliding distance of approximately 1 µm. 

Similar rotation or twirling of actin filaments have been confirmed in more recent reports [144,146]. 

Interestingly, both left-handed and right-handed rotation has been demonstrated (for myosin II and 

myosin VI, respectively [144,147]. Rotation is insensitive to myosin concentration, filament length, and 

filament velocity but its handedness depends on the length of the myosin lever arm [144]. In the following 

two main types of chiral symmetry breaking in single cells will be discussed, spontaneous events and 

events that are triggered by confinement. 

Spontaneous chiral symmetry breaking in actomoysin systems seems to originate from chiral 

interactions of its constituents. This has been confirmed by the identification of spontaneous chiral transitions 

in in vitro experiments where cells autonomously form asymmetric patterns without directional cues: 

Neurites of varying origins such as retinal explants [148], retinal ganglion cells [149], neocortical 

neurons [150], hippocampal explants [151] all show clockwise growth on 2D substrates. This chiral 

outgrowth of neurites is driven by force generation through filopodia rotation. Since filopodia are actin-rich 

structures, perturbation of the actin cytoskeleton inhibits neurite turning and the left-handed spiral 

myosin-V motor generates directionality of rotation [151]. Besides neurons, clockwise rotation of actin 

bundles also occurs in melanophores [152]. Rotation has also been observed in 3D cultures of glandular 

cells where single cells undergo multiple rotations and keep rotating cohesively after divisions [153]. 

However, it seems likely that this intrinsic chirality of cells is not solely rooted in the chirality of actomyosin 

but also uses the core polarity machinery in conjunction with the microtubule cytoskeleton [154]. 
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Besides spontaneously occurring, chiral behavior of cells can also be induced: Micropatterns mimic 

tissue architecture by confining cells in certain geometries. Upon meeting boundary restrictions cells are 

forced to break symmetry to acquire lower energy states. This spontaneous decision seems to be made 

by almost all cell types and is highly consistent for a given cell type [155–157]. Notably, actin function 

is critical for chiral transitions on patterned surfaces [155]. 

More generally, it has been proposed that rotating movements seems to be a general feature of normal 

epithelial cells when confined [158,159], however, not in transformed cells [153,158]. This behavior can 

even be further extended to unicellular organisms (e.g., Dictyostelium discoideum [160]). As demonstrated 

theoretically, one possible mechanism underlying rotation seems to be intracellular torque that results 

from the correlation of actomyosin force vectors in a cell pair (which depends on actomyosin forcing) 

and interfacial deflection (which depends on cortical tension) [161]. 

Comprehensive experimental and computational analysis using micro-patterns has provided valuable 

insights into chiral properties of actin filaments and how they break symmetry [162]. Using adhesive 

islands, it was shown that actin filaments with focal adhesions transition from an isotropic radial pattern 

into a chiral pattern with invariant handedness. First, radial actin fibers originate from focal adhesions 

and polymerize towards the cell center. Formation of self-organized radial actin structures depends on 

formin, an actin nucleation factor that generates unbranched filaments. Also, active contractile transverse 

fibers can be observed moving centripetally along radial fibers. Subsequently, radial fibers start to tilt 

and form a chiral pattern. Centripetal force is generated by actomyosin contractility in transverse fibers 

moving along radial fibers. Transfer of contractile centripetal stress creates a tangential force leading to 

chiral tilting or rotational movement of radial fibers. Some of the mechanisms found in this system might 

also explain the handedness observed for turning of single cells since they might also contain spatially 

and molecularly polarized actin filaments. 

The neutrophil represents a cell type that is well known for chemotaxis-induce polarized migration in 

the form of biased random walks. Similar to confined epithelial cells, neutrophils in enclosed microfluidic 

channels show directional symmetry breaking by forming symmetric bifurcations, through splitting of 

their leading edge [163]. Which branch of the bifurcation is used for further migration is ultimately 

resolved by a stochastic symmetry-breaking behavior, probably involving actin polymerization similar 

to axon selection in neurons. 

Somewhat similar to neutrophils, human pro-myelocytic leukemia cells (dHL60) respond to a 

uniform concentration of attractant by migrating leftward to a line connecting the nucleus of the  

un-polarized cell to its centrosome before start of migration [154]. This bias relies on the GTPase Cdc42, 

the Par3/Par6/aPKC complex, and the kinase GSK3. In addition, cells loose this directional bias if their 

microtubules are depolymerized. Xu et al. [154] suggested that the centrosome could serve as an 

intrinsically chiral structure directing polarity in the absence of spatial cues. However, it also seems 

likely that chirality of the microtubule cytoskeleton itself contributes to leftward bias. 
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3. Chiral Symmetry Breaking in Vivo 

3.1. Left/Right (L/R) Asymmetry and the “Conversion Hypothesis” 

In most animals, an invariant form of primary L/R asymmetry exists, therefore, most animals are 

homo-chiral (reviewed in [164]). Invariant asymmetry is rooted in a decision taken during early development. 

Somewhat surprisingly, this decision is a binary choice since even in homo-chiral animals rare 

individuals can be found that are mirror-symmetric to the rest of the population, a phenotype called 

situs inversus [165,166]. A situs inversus can be functionally equivalent and phenotypically 

asymptomatic if all L/R asymmetries are inverted, however, if only some L/R asymmetries are inverted, 

global L/R coordination is usually lost, which leads to severe physiological defects [167,168].  

Brown and Wolpert conceived the “conversion hypothesis” to mechanistically explain the origin of 

organismal chirality and to account for the prevalence of invariant primary L/R asymmetries [169]. They 

hypothesized that L/R asymmetry develops from an intrinsic property of the developing system and lies 

at the molecular level. They proposed the existence of a so-called “F-molecule”, a chiral molecule able 

to orient itself along the anteroposterior (A/P) and dorsoventral (D/V) axes, which were created by 

external cues and/or inductive signaling. Further, they suggested that the asymmetric structure of the  

“F-molecule” could cause oriented action along its arms and inadvertently result in polarization along 

the midline. Like this, an L/R axis is formed. Thus, an “F-molecule” would render a dedicated signaling 

mechanism for L/R symmetry breaking unnecessary. 

Although many biological molecules are asymmetric or chiral, some obvious candidates are 

cytoskeletal elements as they are capable of producing handed dynamics. Nevertheless, organismal L/R 

patterning in animals has been previously discussed to be accomplished by mechanisms incompatible 

with a universal “F-molecule” since it was thought that invertebrates and vertebrates use different 

mechanisms for L/R patterning. In contrast, solid evidence exists that chirality of the cytoskeleton 

(representing the “F-molecule”) is mainly responsible for organismal chirality in invertebrates. Moreover, 

embryonic structure responsible for organismal chirality in vertebrates, the node, a transient embryonic 

cavity that forms at the anterior end of the developing notochord, seems to use the same cytoskeletal 

chirality and the same regulatory pathways rendering it L/R asymmetric. 

3.2. Chiral Symmetry Breaking in Invertebrates 

Famous examples which directly illustrate organismal primary L/R asymmetry emerging during early 

embryonic development are the leech Helobdella robusta [170], the snail Lymnaea stagnalis [171], and 

the nematode Caenorhabditis elegans [165]. For C. elegans and L. stagnalis, it could be demonstrated 

that early embryonic L/R symmetry breaking requires a particular, transient chiral arrangement of cells 

in the early embryo affecting all later L/R asymmetries [165,172], including lateralization of the nervous 

system [173]. 
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3.2.1. Helobdella 

The spirally cleaving glossiphoniid leech Helobdella robusta, which belongs to the Lophotrochoza, 

shows asymmetric divisions at the first and second round of cell divisions (unlike the snails discussed 

below) [174]. During the second round of division, the larger D quadrant is generated on the left side of 

the embryo, which gives rise to bilaterally symmetric mesoderm/ectoderm tissues and inherits unequally 

segregated developmental determinants. Unequal cleavage seems to be due to the initially symmetric 

mitotic apparatus anisotropically extending rightward in an actomyosin-dependent process. Interestingly, 

a morphological left-right asymmetry is already present in the 2-cell embryo, which precedes cytokinesis 

and predicts the chirality of the second cleavage [175]. This first asymmetric cleavage is due to transient 

down-regulation of one centrosome and the partial collapse of its aster [176] and rather insensitive to 

changes in actomyosin contractility [175]. Hence, symmetry breaking, potentially initiated through 

asymmetric regulation of microtubule growth/density, is propagated through yet unknown asymmetric 

regulation of cortical actomyosin to break L/R symmetry. There are, however, also Lophotrochozoa 

where chiral cell arrangements do not seem to be propagated through development [177,178]; it will be 

interesting to find out how microtubules and actomyosin interact in this system and why chiral cellular 

configurations do not always establish invariant developmental L/R patterning. 

3.2.2. Lymnaea 

In the gastropod Lymnaea stagnalis and Lymnaea peregra, chirality is an inherited trait from a single 

locus with the sinistral form being recessive and the dextral from being dominant [179–182]. During the 

third round of embryonic cell divisions in dextral Lymnaea stagnalis, spindles twist clockwise and cells 

deform dextrotropically at the metaphase-anaphase transition (when viewed from the animal pole) In the 

recessive, sinistral embryos, no counter-clockwise twisting of spindles is found. Instead, chirality only 

emerges during the furrow ingression when cells deform by turning leftwards [183] (Figure 5a, right). 

Actin de-polymerization agents alter both cleavages to neutral (Figure 5b, right). Importantly, when pushing 

the surface of each cell in the directions opposite to the normal third cleavage at the metaphase-anaphase 

transition (for dextral embryos) or telophase (for sinistral embryos), animals with inverted chirality are 

obtained [172] (Figure 5c). Although the chirality of cell rotations during the first and second round of 

cell divisions indicates organismal chirality [184], it does not seem to be directly linked to the decisive 

event at the third round of division [172]. This has been explained by the chirality at the third round of 

cell divisions more directly influencing the cell arrangement of the organizer, which emerges at the  

24-cell stage [174]. Moreover, asymmetric expression of genes of the Nodal pathway [185], which is a 

conserved gene expression module operating in Deuterostomia, is directly dependent on the chirality of 

the third round of cell divisions. 
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Figure 5. Chiral blastomere arrangements in C. elegans and L. stagnalis are crucial for L/R 

patterning (a) Top: Formation of chiral blastomere arrangements during early embryogenesis. 

The ectodermal founder cells (C. elegans) that skew their spindles are shown in light grey, 

their spindles in red. Middle: Staggered, chiral configurations at the 6-cell stage (C. elegans) 

or third round of division (L. stagnalis), daughter cells are connected by a red line. Bottom: 

Adult worms have an invariant body handedness, manifesting in gonad (black) coiling around 

the gut (red). See text for details (b) Genetic manipulation or drug treatment can either lead 

to situs randomization (C. elegans) or loss of chirality (L. stagnalis) (c) Micromanipulations 

used to unveil the decisive step in L/R patterning. See text for details. 

3.2.3. C. elegans 

Although active chiral processes play an important role in biological pattern formation [186] (see 

above), it has been only recently confirmed by Grill and coworkers that the underlying mechanism for 

cellular chirality in C. elegans is rooted in chiral cortical actomyosin dynamics. Grill and coworkers 

could reveal that chiral dynamics in the actomyosin cortex can be observed already during the initial 

polarizing flow that generates the A/P axis in the 1-cell embryo [187]. Using active chiral fluid theory, 
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they proposed that chiral flow is generated by gradients in active torque density along the A/P axis and 

could demonstrate that Rho signaling controls chiral flows.  

In addition to handedness at the 1-cell stage, Wood and coworkers have recently described that at the 

transition of the 2- to the 3-cell embryo, L/R symmetry is broken concomitantly with establishment of 

D/V axis polarity during division of the ectodermal founder cell, AB [188]. They suggested that due  

to L/R asymmetries in the AB cell’s cortex, its cleavage furrow initiates asymmetrically, invariantly 

from the left, thereby pre-patterning subsequent events. Moreover, they observed that cortical rotation 

occurs during the first cleavage with invariant chirality (a clockwise rotation, when viewed from anterior; 

Figure 6a), which confirms the findings from the Grill lab that the one-cell embryo has an intrinsic 

chirality [187]. 

Subsequently, during the division of the two ectodermal founder cells in the C. elegans 4-cell embryo, 

their spindles are first parallel to the L/R axis and then invariantly skew clockwise (with the embryo 

oriented dorsal up). Like this, the four ectodermal daughters acquire a staggered configuration (Figure 5a, 

left) [189]. When the actin cytoskeleton is perturbed either by growing embryos at low temperatures  

(10 °C, [190,191]) or genetically ([191] and unpublished observations), embryos with a mirror-symmetric 

chiral cell arrangement are obtained. In the case of genetic perturbation, this can lead to a quantitative 

randomization of adult L/R asymmetries (unpublished observations) (Figure 5b, left). Wood has 

accomplished a mechanical inversion of the chiral arrangement by micromanipulation of cells and could 

demonstrate that this leads to L/R inversion in adults. Therefore, the decisive step for L/R symmetry 

breaking is the chiral cell arrangement in the 6-cell embryo [165] (Figure 5c, left). Furthermore, active 

torque seems to facilitate L/R symmetry breaking: The clockwise skew of ectodermal cells at the 4- to 

6-cell transition (Figure 5a, left) is accompanied by chiral cortical dynamics during cytokinesis in that 

the cortex in the nascent daughter cells of ABa and ABp show counter-rotating flows [187]. 

However, although L/R symmetry is broken by chiral flows at the transition from the 4-cell to the  

6-cell stage, a chiral morphogenetic process follows that patterns the embryonic L/R axis in C. elegans [191]. 

This process, coined chiral symmetry breaking, directly succeeds spindle skewing of the ectodermal 

cells at the 6-cell stage and relies on the differential regulation of cortical contractility between the ABpl 

and ABpr sister cells. Chiral morphogenesis generates rotational force in the embryo that leads to a chiral 

re-arrangement of cell positions (Figure 6b). Hence, it constitutes a process with torque on a multi-cellular 

level. This is accomplished by cytoskeletal dynamics generating a chiral cell arrangement and is therefore 

highly similar to the one breaking symmetry during gastropod development [172,183]. Remarkably, 

Grill and coworkers could uncover that Wnt signaling known to regulate this chiral symmetry breaking 

process [191] is also required for chiral flow as early as the 1-cell stage and later for counter-rotating 

flows during skewing of the ABa/ABp division [187]. Thus, the same genes seem to affect both cortical 

actomyosin chirality and L/R symmetry breaking. These findings provide further support for the idea 

that chirality on the molecular level of the cytoskeleton could indeed represent the “F-molecule” responsible 

for organismal L/R asymmetries. 
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Figure 6. Chiral processes that mediate axis formation and anteroposterior (L/R) asymmetric 

patterning. (a) Before dorsoventral (D/V) axis formation starts, cortical rotation can be 

observed in the C. elegans embryo (left). This has been interpreted as a first sign of cellular 

chirality [188]. Cortical rotation occurs again during the next division and re-positions  

the cell division remnant of the first division (yellow) asymmetrically onto the future ventral 

side (middle). Due to persistent spindle-cell division remnant interactions, the spindle in  

the posterior cell (white lines) is also skewed ventrally, thereby generating the invariant 

configuration of the 4-cell embryo [192,193]; (b) After spindle skewing during the L/R 

divisions of the two ectodermal founder cells ABa and ABp (see Figure 5a), a chiral 

morphogenetic process starts (left): The left daughter of ABp, ABpl changes its shape due 

to differential regulation of cortical actomyosin, and migrates ventrally (middle). Due to 

asymmetric cell-cell contacts, this leads to a clockwise rotation of cells when viewed  

from anterior (right); (c) During most of gastrulation, the embryo uses a skewed midline 

(dashed red line) for asymmetric L/R inductions. Gradually, bilaterally symmetric lineages 

(red and yellow) undergo a chiral, coordinated transition into a symmetric configuration. See 

text for details. 

Moreover, recent work from Singh and Pohl could uncover how chiral cortical dynamics coordinate 

D/V and L/R axial patterning (reviewed in [192,194]). During the transition from the 2- to the 3-cell 

embryo, rotational cortical actomyosin flow, polarized orthogonally to the A/P axis in the ectodermal 

founder cell AB, positions the cell division remnant of the first cell division onto the future ventral side 

of the animal [193] (Figure 6a). Perturbation of rotational cortical actomyosin flow revealed that 

asymmetric cell division remnant positioning is crucial for D/V axis formation. The cell division remnant 
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serves as a cortical landmark for spindle orientation in the posterior cell, P1, that needs this cue to break 

the Hertwig rule and rotate its spindle onto the A/P axis (which is the shorter axis of the cell). This ensures 

successful cell positioning, asymmetric cell division and asymmetric Notch/Wnt inductions [192,193].  

Thus, cortical actomyosin regulation through Rho and Wnt signaling ensures proper intracellular 

chirality. This chirality is then further amplified through cell-cell interactions to chirality on a global 

scale: Chiral symmetry breaking through cell rotation at the 6-cell stage not only increases L/R asymmetry 

established by the spindle skewing at the 4- to 6-cell transition but establishes an asymmetrically 

positioned midline (Figure 6b) [191]. Importantly, this asymmetrically positioned midline is maintained 

during the time window of all major asymmetric inductions that differentially pattern left and right  

body halves [195,196]. Due to complex cell rearrangements during late stages of gastrulation, the global 

asymmetry is gradually transformed into superficial L/R symmetry with a symmetrically positioned 

midline (Figure 6c, left) [197]. A comprehensive analysis of these cell rearrangements uncovered a  

chiral collective migration phase which seems to be driven by cortical actomyosin dynamics (Figure 6c, 

right) [197]. This migration resembles the directional rotation in a plane. Such rotations see to be 

generally implicated in active chiral patterning processes in vivo [198,199]. As described above, directional 

rotation in a plane has also been observed in cultured mammalian cells growing on micro-patterns with 

defined boundaries [155]. Under these conditions, cells form invariant chiral alignments that also rely 

on actomyosin function.  

Collectively, these findings suggest that complex chiral cellular behaviors might deploy intrinsic 

chirality of actomyosin differentially controlled or coupled spatiotemporally to extrinsic cues, for instance 

a globally operating signaling system that allows to decode spatial information locally [200–202]. Hence 

the work in the past years has yielded a quite complete picture of chiral symmetry breaking in C. elegans: 

(1) Cortical chirality seems to constitute the underlying molecular origin for symmetry breaking;  

(2) cortical chirality can be regulated by changing non-muscle myosin II activation through Rho and 

Wnt pathways (and probably additional, not yet identified pathways); (3) asymmetric cell-cell interactions 

amplify intracellular chirality into local and then global chirality. The currently available data allows us 

to speculate that a similar mechanism also operates in snails. 

Nevertheless, it should be noted that (again similar to Lophotrochozoa) Nematoda exist not developing 

with invariant handedness and where a chiral cellular arrangement does not seem to be the decisive L/R 

patterning step also exist [203,204]. It will be interesting to explore (a) whether intracellular chirality on 

the level of the actomyosin cytoskeleton is modified here; (b) whether intracellular chirality competes 

with other forms of intracellular chiral systems (e.g., microtubules); or (c) whether different mechanisms 

of amplification of cellular chirality exist that lead to different mechanisms for global L/R asymmetry. 

3.2.4. D. melanogaster 

Besides Lophotrochozoa and Nematoda, L/R patterning is also investigated in Arthropoda, 

particularly in Drosophila melanogaster [205]. The breakthrough discovery that fueled L/R patterning 

research was the identification of unconventional myosin ID (myoID/myo31DF) mutants. These show 

an inversion of the L/R axis and reversal of all L/R asymmetric organs, e.g., gut looping, spermiduct 

coiling, rotation of the male terminalia [206–208]. MyoID belongs to the class I non-filamentous 

myosins, which are actin-binding motor proteins known for roles in actin cytoskeleton organization, cell 
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motility, and endocytosis [209]. Membrane anchored type 1 myosin can generate chiral actin motility in vitro 

and this chirality is a property of the working stroke of myosin. [210]. Very recently, the Matsuno 

laboratory has demonstrated that besides MyoID other myosin I motors have overlapping functions with 

MyoID in tissue chirality [211]. Thus, D. melanogaster type I myosins seem to generate chiral forces by 

interacting with actin filaments. 

Unlike in Lophotrochozoa, Nematoda, or vertebrates (see below), L/R tissue asymmetries do not seem 

to be coordinated by a decisive step in early embryogenesis or a globally acting L/R organizer. Instead, 

depletion of MyoID in a tissue-specific manner only leads to the reversal of its lateralization without 

affecting other tissue L/R asymmetries [206,207]. 

MyoID function during L/R symmetry breaking also relies on its interaction with β-catenin [212], a 

key molecule in cell-cell adhesion and Wnt signaling [213]. β-catenin is a component of adherens 

junctions that also contain E-cadherin and α-catenin. It has been shown that adherens junctions are 

crucial to transduce L/R asymmetry information [212], and MyoID affects their L/R asymmetric 

distribution important for maintaining chiral cell shapes [199]. Notably, individual cellular chirality is 

integrated into planar polarity in the case of hindgut morphogenesis and thereby leads to asymmetric 

organ patterning [199]. Here, the atypical cadherin Dachous and the Dachsous/Fat/Frizzled planar cell 

polarity pathway (see below) are involved in transducing intracellular information [214]. This pathway 

is known to be responsible for cytoskeletal organization and junctional remodeling [215]. In later work 

from the Matsuno laboratory, it was demonstrated that organ handedness is indeed rooted in individual 

cell chirality, since in genetic mosaics composed of Myo31DF mutant and overexpressing cells only 

overexpressing cells formed proper cell-shape chirality [216]. In addition, canonical Wnt signaling has 

also been implicated in L/R organ asymmetry [217]. Thus, although regulated organ-specifically and 

organ-restricted, intracellular chirality generated by actin-myosin interactions also generates chirality 

similar to Lophotrochozoa and Nematoda and uses components of the Wnt pathway important for 

cellular and organismal chirality in C. elegans [164,187,191]. 

Recently, it has been shown that the well-known transcription factor Abdominal-B operates upstream 

of MyoID (and possibly also other factors that affect L/R patterning) [218]. This transcription factor is 

required for myoID expression. Surprisingly, its loss does not lead to reversion of L/R asymmetries like 

the loss of myoID, rather, L/R asymmetry is lost. Noselli and colleagues have argued that this reveals 

the existence of a sinistral activity since inversion is only apparent in a myoID mutant context [208]. 

Furthermore, there are also other recently identified rotational tissue movements in Drosophila  

that mediate morphogenesis: Transition from a round to an elongated egg is driven by polar arrays  

of microtubules and actomyosin contraction [219–221]. Topologically similar to C. elegans cortical 

rotation [187,188,193], follicles exhibit circumferential rotation around their long (A/P) axis which is 

used to elongate the egg through deposition of polarized extracellular matrix that constrains tissue  

shape [219]. Individual egg chambers rotate either in a clockwise or counterclockwise direction and it 

could be demonstrated that SCAR-dependent lamellipodial leading edges of follicle cells [221] and 

polarized microtubules are required for rotation [220]. Microtubule polarization precedes the onset of 

egg chamber rotation and predicts the direction of rotation [220]. Besides generating polarized extracellular 

matrix, polarized actin bundles form in the follicle epithelium perpendicular to the elongation axis [221]. 

The rotation itself seems to mediate actin bundling and only becomes dispensable after the basement 

membrane is polarized [221]. This process also requires the atypical cadherin Fat [220], which is also 
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involved in L/R symmetry breaking in other organs of D. melanogaster (see above, [214]). Interestingly, 

rotational motion of mammary epithelial acini in 3D environments also leads to extracellular matrix 

deposition and lack of rotation leads to a loss of matric deposition [222]. 

Taken together, D. melanogaster also uses the actomyosin cytoskeleton to generate chirality, however, 

in a cell-type specific manner and modulated by additional accessory factors. 

3.2.5. Helical Growth Mutants from the Plant A. thaliana and Their Effects on Invertebrate Chirality 

Most of the above findings feature actomyosin as the cytoskeletal system involved in cellular, organ, 

or organismal chirality. Microtubules are much less studied in this context but also seem to play a 

conserved role in contributing to L/R asymmetries: The Levin laboratory could demonstrate that 

mutations in α-tubulin (TUA4 and TUA6) [223] and mutations in a γ-tubulin-associated protein 

(tortifolia1/Tubgcp2) [224] that had been previously shown to generate helical growth in the plant 

Arabidopsis thaliana alter organismal L/R patterning in C. elegans and vertebrates (see below) [225]. 

They generated a D256A/E259A double mutation in the tba-9 gene (orthologous to A. thaliana TUA6), 

coding for one of nine α-tubulins in C. elegans. When expressed in a neuron pair that stochastically 

establishes L/R asymmetric cell identities, similar levels of randomization as previously accomplished 

by microtubule de-polymerization [226] were reached. Furthermore, they used the neutrophil cell line 

HL60 as in vitro system (introduced above in Section 2.2; [154]) and found that the leftward bias is lost 

when mutated Tub-α6 is expressed [225]. Notably, the TUA4 (tortifolia2) mutant phenotype is most 

likely due to a loss of α-tubulin forming hydrogen bonds with the GTPase domain of β-tubulin which 

seems to lead to a handed twisting of isolated cells [227]. Consistent with patterning of dense microtubule 

arrays by gravity (see above, [47–49]), hypergravity induces reorientation of cortical microtubules in 

plant cells from transverse to longitudinal which is greatly exaggerated in α-tubulin mutants [228]. Thus, 

in addition to actomyosin, microtubule structure can directly contribute to cellular chirality. Although 

these findings are in line with aspects of microtubule behavior observed in vitro [47–49], the underlying 

mechanisms how microtubules generate chirality in animals and how chirality is amplified to the tissue 

and organ level are not yet clear, especially since plant cell cortical microtubules are contributing to cell 

shape symmetry breaking through mechanisms not present in animals [229]. 

3.3. Chiral Symmetry Breaking in Vertebrates 

In vertebrates, almost all organs are L/R asymmetric. Evidence that cytoskeletal proteins play a role 

in establishing these asymmetries emerged with the report of dysfunctional cilia causing  

situs inversus totalis [230]. In the 1990s it became clear that directional flow in the ciliated node (functionally 

orthologous structures are also called Hensen’s node, Kupffer’s vesicle, or dorsal blastopore lip), a transient 

embryonic structure that forms at the anterior end of the primitive streak in a gastrulating embryo 

mediates L/R symmetry breaking through establishment of L/R asymmetric gene expression (reviewed 

in [231–234]). The rotating monocilia of the late gastrula node are microtubule-based structures that 

differ from regular motile cilia in that they are only composed of nine peripheral microtubule doublets 

but lack the central pair of singlets. L/R asymmetric gene expression requires clockwise beating of cilia 

in the node, thereby generating leftward flow [235–240]; if rightward flow is generated mechanically, 

this leads to situs inversus [241]. Directional flow activates the conserved Nodal signaling pathway 
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which leads to L/R asymmetric expression of genes during early embryogenesis even before any 

morphological L/R asymmetries manifest [242–245]. Two biochemical/biophysical mechanisms have 

evolved that explain how directional nodal flow might lead to L/R asymmetric gene expression through 

the Nodal pathway; these mechanisms are however not compatible [233]. (1) In the experimentally less 

well supported morphogen mechanism, leftward nodal flow will lead to directional transport of 

morphogen(s) to the left side of the node, probably in the form of “nodal vesicular parcels” [246], 

however, a 100-fold reduction of nodal cilia is still sufficient to drive L/R symmetry breaking [247]. In 

this scenario, insufficient flow will be generated to drive directional transport of large cargo; (2) The 

experimentally more thoroughly supported two-cilia mechanism requires that flow generated by 

clockwise beating central nodal monocilia (with small magnitudes likely being sufficient) is sensed by 

peripheral immotile sensory cilia in order for L/R patterning to occur correctly [233,248]. 

Notwithstanding the controversy which of the two models is correct, there is also ample evidence that 

cell- or tissue-intrinsic mechanisms using the actin cytoskeleton contribute to L/R patterning either 

through affecting patterning of the node [198] or by promoting organ chirality independently of Nodal 

signaling [249]. Specifically, Gros et al. have argued that mesodermal nodal cells in the chick embryo 

do not have cilia and that the short cilia on endodermal nodal cells are unrelated to mesodermal motile 

cilia in mammals. This interpretation has been recently confirmed [250]. Interestingly, Gros et al. could 

demonstrate that the node’s L/R asymmetry is crucial for L/R asymmetric gene expression. This asymmetry 

is mediated by a non-muscle myosin II-dependent morphogenetic mechanism of asymmetric collective 

cell migration [198]. Remarkably, in the pig embryo, nodal flow is most likely also absent but the node 

itself is again L/R asymmetric, suggesting that even in other mammals nodal cilia-dependent flow does 

not cause chiral symmetry breaking [198]. Additionally, also in ciliated nodes like the zebrafish Kupffer’s 

vesicle, a non-muscle myosin II-dependent morphogenetic mechanism mediates cellular asymmetry that 

generates morphological asymmetry [251]. This has led to the conclusion that regional cell shape 

changes generate L/R organizer asymmetry which is in turn required for asymmetric fluid flow [251]. 

Moreover, dextral looping of the zebrafish heart seems to arise from a tissue intrinsic process that depends 

on actomyosin activity, which is enhanced by Nodal signaling [249]. The disruption of actin or myosin II 

activity, even in presence of asymmetric Nodal signaling, causes defects in organ laterality [249,252]. 

These findings suggest that the origin of organ laterality can be rooted in actomyosin activity. Thus, it 

seems that nodal flow might be a secondary mechanism to enforce or further amplify L/R asymmetric 

information but that actomyosin-mediated asymmetric morphogenesis of the L/R organizer or chiral 

organs is directly involved in organismal chiral symmetry breaking  

It should also be noted that other, earlier forms of chiral cytoskeletal symmetry breaking have been 

reported in vertebrates, however, different than for invertebrates, these earlier asymmetric processes do 

most likely not constitute decisive events for organismal L/R patterning [253]. Notably, Danilchik et al. 

have shown that cleaving Xenopus embryos undergo a dramatic large-scale torsion, with the actomyosin 

cortex shearing in an exclusively counterclockwise direction [254]. These dynamics are similar to what 

has now been demonstrated for torque generation during cell divisions in the early C. elegans embryo [187] 

and suggest that vertebrate embryonic cells might also possess intrinsic chirality. Moreover, as introduced 

above, injection of mRNA coding for orthologs of the A. thaliana helical growth mutant α-tubulin or 

mutant γ-tubulin associated protein Tubgcp2 in one-cell X. laevis emryos leads to heterotaxia, possibly 

through altered microtubule-based transport and actin organization in the early embryo [225]. 
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In sum, a model that unites vertebrate and invertebrate chiral symmetry breaking seems to emerge: 

While intracellular chirality (rooted predominantly in the actomyosin cytoskeleton) is amplified through 

cell-cell contacts in Invertebrates and leads to chiral cellular organization [187,191,193,199], cellular 

chirality in vertebrates can lead to similar chiral tissue dynamics [198]. However, it is currently not clear 

whether chiral tissue dynamics are a common feature in vertebrates and at what stage of development or 

organogenesis they matter. Nonetheless, chiral cellular dynamics seem to need further amplification 

through additional mechanisms like nodal flow (Figure 7). These additional mechanisms might be 

necessitated by tissue/organ size or compositional complexity. It will therefore be crucial to analyze 

organ asymmetries quantitatively and with cellular resolution, which has also been key to uncover 

organismal asymmetries and L/R patterning mechanisms in invertebrates [165,174]. 

 

Figure 7. Models for chiral symmetry breaking in invertebrates and vertebrates (a) during 

invertebrate symmetry breaking, an external cue seems to be used in conjunction with an 

intracellular, chiral structure to generate cellular chirality. Cellular chirality is then used to 

generate chiral tissue/organ patterns (D. melanogaster) or global chirality in the embryo  

(C. elegans, L. stagnalis); (b) Similarly, cellular chirality is also used in vertebrate symmetry 

breaking to generate an asymmetric node. Directional flow in the node can then further 

amplify symmetry breaking. 

4. Inductive Polarity and Symmetry Breaking 

4.1. Actomyosin 

Cortical actomyosin can undergo local contractions that generate surface waves and streaming of the 

cytoplasm, a phenomenon that has been coined cortical flow [255]. Although the actomyosin cortex has 

been described as a contractile superficial gel over 70 years ago [256], we have only very recently begun 

to understand how global aspects of cell behavior are triggered by cortical flow, namely by a gradient  

in actomyosin contractility to drive flow and a sufficiently large viscosity of the cortex to allow flow to 

be long-ranged [13]. Patterning of all three major body axes, which are established in first three 
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consecutive divisions of embryogenesis, relies on cortical actomyosin activity in C. elegans [5,7,8,25,26]. 

The inductive cue that established polarity in this system is sperm entry which triggers anteriorly directed flows 

in actomyosin cortex in the 1-cell C. elegans embryo through the RhoGAP CYK-4 [14,15,255,257–261]. 

These anteriorly directed flows are advective causing segregation of anterior and posterior polarity 

domains [16]. Grill and coworkers could demonstrate that cortical flows are fast enough and polarity 

proteins’ cortical association long enough that advection directly affects their distribution. Moreover, 

the system (1) is multistable and shows hysteresis to avoid polarization in response to fluctuations; and 

(2) its steady state is determined by front-stalling behavior due to depletion of cytoplasmic protein pools. 

With these characteristics, contractile cortical flow can serve as a mechanical patterning system that 

polarizes the embryo independently of polarity proteins directly binding to cortical actomyosin [16]. 

Following A/P polarization, chiral cortical actomyosin activity patterns the D/V and L/R  

axes [187,188,191,192,197] (see above), and cortical contractility drives cell internalization and most 

likely also cell sorting during gastrulation [197,262–267]. The central inductive cue(s) that drives non-muscle 

myosin II activation during gastrulation is constituted by Wnt signaling [200,265]. This function of  

Wnt seems to be conserved during later development [268] and among animals: Wnt signaling can  

cell-autonomously modulate actomyosin distribution, activity, and apical-basal polarization [269,270], 

and Wnt/planar cell polarity pathway components also seem to directly modulate actin dynamics [271]. 

Notably, an ancestral Wnt-like system in D. discoideum is responsible for actomyosin-mediated 

morphogenesis [272]. Hence, although the precise cues that establish Wnt signaling in animal development 

are not clear in all cases, it can be assumed that Wnt/planar cell polarity signaling is a universal cue to 

deploy actomyosin activity for polarization. 

Similar to C. elegans, D. melanogaster also uses actin for embryonic polarization, however, the cue 

in this case is not sperm entry but inductive signaling and asymmetric transport of maternal mRNAs during 

oogenesis—there is no evidence for anterior-directed contractile cortical flow; reviewed in [273,274]. 

The cortical actin network is however directly responsible for localization of the polarity factor Par1 [275] 

and together with polarized localization of the polarity regulator Cdc42 involved in oocyte polarization 

through positive feedback onto the Par3/Par6/aPKC polarity complex [276].  

Originating in the Kiehart [277,278] and Wieschaus laboratories [279–281], the role of actomyosin 

activity during gastrulation movements has been studied in great detail [282–290]: (1) Similar to  

C. elegans [257,258], cortical actomyosin contractility generates system-level hydrodynamic flow [289]; 

(2) anisotropic pulsatile actomyosin contractility (cell deformations followed by stabilization phases) 

results in irreversible cell shape changes [285,289]; (3) self-organized anisotropic force distribution regulates 

cell shape and cell-cell interactions [280,283,284,286,290]. 

The Zallen laboratory has recently uncovered that spatiotemporal regulation of signaling through the 

Toll family of receptors is responsible for actomyosin-driven junctional remodeling and axis elongation, 

thereby identifying a mechanism how axial information can be translated into morphogenetic force [17]. 

In other organisms, for instance epiboly during zebrafish gastrulation or mouse oocyte polarization, 

actin dynamics also contribute to polarization and the underlying biomechanical mechanisms are 

uncovered [291,292]. However, the spatiotemporal cues that initiate these polarized tissue movements 

are not well understood [292,293] and other pathways than those discussed above might also directly 

contribute to actomoysin-driven polarization in animals [294]. 
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Taken together, data from spontaneously polarizing systems and developing systems that use a 

polarization cue are highly consistent in that (1) tuning the threshold(s) in this metastable system through 

differential control of actin polymerization/cross-linking or non-muscle myosin II activation and  

(2) self-organization at the level of actomyosin mechanobiology and molecular interactions (both in cis 

and trans) are sufficient to drive symmetry breaking. Stochastically emerging anisotropies that occur in 

in vitro systems are transformed into directional processes in vivo through spatially patterning the system. 

Spatial patterning can bias stochastic events mainly by locally altering threshold/activation properties. 

4.2. Microtubules: Spindles and Centrosomes 

As briefly mentioned above, microtubules can transduce asymmetric information into asymmetric 

morphogenesis, thus rarely cause symmetry breaking in vivo themselves. Nonetheless, microtubules also 

have essential functions during inductive polarization. In addition to cortical actomyosin flows, microtubules 

can also organize A/P polarity in C. elegans [26,80]. Motegi et al. could demonstrate that the centrosome 

of the sperm can generate two polarity domains in the embryo by centrosomally nucleated microtubules 

locally protecting PAR-2 from phosphorylation by aPKC [80]. Other microtubule functions in C. elegans 

cell and tissue polarization are coupled to Wnt activity and affect asymmetric cell division [295–300]. 

These functions seem to be conserved in mammals [301]. Work from the Sawa lab could now uncover 

that asymmetric cortical localization of the Wnt pathway component Adenomatous polyposis coli (APC) 

can directly regulate spindle asymmetry [302]. Strikingly, Sawa and coworkers could also reverse mutant 

phenotypes by manipulating spindle asymmetry with laser ablations of centrosomes, confirming that 

asymmetric microtubule distribution is crucial for asymmetric cell division [302]. 

Other processes where microtubules decode inductive signals are symmetric and asymmetric stem 

cell divisions [303–306] and symmetric cell divisions under the control of the Wnt/planar cell polarity 

pathway [307–309]. Interestingly, the latter type of regulation is responsible for asymmetric positioning 

of motile cilia [19,20,310]. Thus, “decoding” of polarity cues by microtubules is a wide-spread 

phenomenon in animals. However, evidence is still sparse that microtubules themselves can initiate 

polarity in a self-organized fashion in vivo.  

In future, it will be necessary to more closely inspect the mechanobiology of actomyosin-microtubule 

interactions in vivo and to combine microtubule- and actomyosin-based systems in vitro. Such approaches 

might lead to the identification of previously overlooked emergent phenomena or mechanisms of  

self-organization, and might identify additional symmetry breaking mechanisms. 
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