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Abstract: Dynamical symmetries of the collisionless Boltzmann transport equation, or
Vlasov equation, but under the influence of an external driving force, are derived from
non-standard representations of the 2D conformal algebra. In the case without external
forces, the symmetry of the conformally-invariant transport equation is first generalized
by considering the particle momentum as an independent variable. This new conformal
representation can be further extended to include an external force. The construction and
possible physical applications are outlined.
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1. Introduction

The Boltzmann transport equation (BTE) [1–4] furnishes a semi-classical description of the effects of
particle transport, including the influence of external forces on the effective single-particle distribution
function f = f(t, r,p) of a small cell in phase phase, centered at position r and momentum p. For a
system with identical particles of mass m, the Boltzmann equation reads:

∂f

∂t
+

p

m
· ∂f
∂r

+ F · ∂f
∂p

=

(
∂f

∂t

)
coll

. (1)
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Here, dN = f(t, r,p, )dr dp is the number of particles in a cell of phase volume dr dp, centered at
position r and momentum p [3]. In addition, F = F (t, r) is the force field acting on the particles
in the fluid. The term on the right-hand side is added to describe the effect of collisions between
particles. It is a statistical term and requires knowledge of the statistics that the particles obey, like
the Maxwell–Boltzmann, Fermi–Dirac or Bose–Einstein distributions. In his famous “Stoßzahlansatz”
(or hypothesis of molecular chaos), Boltzmann obtained an explicit form for it. In modern notation, for
example for an interacting Fermi gas, where a particle from a state with momentum p is scattered to a
state with momentum p′, whereas a second particle is scattered from a momentum q to a momentum q′,
the collision term reads:(

∂f

∂t

)
coll

= −
∫

dp′dqdq′ w({p, q} → {p′, q′})

× [f(p)f(q)(1− f(p′))(1− f(q′))− f(p′)f(q′)(1− f(p))(1− f(q))]

where w({pq} → {p′q′}) is the normalized transition probability from the two-particle state with
momenta {p, q} to the state labeled by {p′, q′}. Clearly, solving this widely-studied equation is a very
difficult task. It might be hoped that symmetries could be helpful. The equation without the collision term
is known as the Vlasov equation [5]. The relationship with Landau damping and a physicists’ derivation
can be found in [6,7]. In this work, we shall explore a class of symmetries of the (collisionless) BTE.

Throughout, we shall restrict to the d = 1 space dimension. (By analogy with other constructions
of local scale symmetries (see [8–11] and especially [12] and references therein), we expect a
straightforward extension of the results reported here to d > 1. Since we shall construct here a
finite-dimensional Lie algebra of dynamical conformal symmetries of the 1D collisionless BTE, one
should indeed expect that an extension to d > 1 exists. That symmetry algebra should contain
three generators X±1,0, along with a vector of generators Y n and also spatial rotations.) We start
from a non-standard representation, isomorphic to the infinite-dimensional Lie algebra of conformal
transformations in d = 2 dimensions. (For the sake of clarity, we shall adopt the following convention of
terminology: the infinite-dimensional Lie algebra 〈Xn, Yn〉n∈Z will be called a (centerless) “conformal
Virasoro algebra”. Its maximal finite-dimensional sub-algebra 〈Xn, Yn〉n∈{−1,0,1} will be called a
“conformal algebra”) This Lie algebra is spanned by the generators 〈Xn, Yn〉n∈Z and can be defined
from the commutators [9,12]:

[Xn, Xm] = (n−m)Xn+m, [Xn, Ym] = (n−m)Yn+m, [Yn, Ym] = µ(n−m)Yn+m (2)

where µ is a parameter. An explicit realization in terms of time-space transformation is [9,12]:

Xn = −tn+1∂t − µ−1[(t+ µr)n+1 − tn+1]∂r − (n+ 1)xtn − (n+ 1)
γ

µ
[(t+ µr)n − tn]

Yn = −(t+ µr)n+1∂r − (n+ 1)γ(t+ µr)n (3)

such that µ−1 can be interpreted as a velocity (“speed of light/sound”) and where x, γ are constants.
(The contraction µ→ 0 of Equation (3) produces the non-semi-simple “altern-Virasoro algebra” altv(1)

(but without central charges). Its maximal finite-dimensional sub-algebra is the conformal Galilean
algebra alt(1) ≡ CGA(1) [9,13]; see also [8,11]. The CGA(d) is non-isomorphic to either the standard
Galilei algebra or else the Schrödinger algebra.) Writing Xn = `n + ¯̀

n and Yn = µ−1 ¯̀
n, where the
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generators 〈`n, ¯̀
n〉n∈Z satisfy [`n, `m] = (n − m)`n+m, [¯̀n, ¯̀

m] = (n − m)¯̀
n+m, [`n, ¯̀

m] = 0, it can
be seen that, provided µ 6= 0, the above Lie algebra Equation (2) is isomorphic to a pair of Virasoro
algebras vect(S1)⊕vect(S1) with a vanishing central charge. However, this isomorphism does not imply
that physical systems described by two different representations of the conformal Virasoro algebra, or
the conformal algebra, with commutators Equation (2), were trivially related. For example, it is well
known that if one uses the generators of the standard representation of conformal invariance or else the
non-standard representation Equation (4) in order to find co-variant two-point functions, the resulting
scaling forms are different [9].

Now, consider the maximal finite-dimensional sub-algebra 〈X±1,0, Y±1,0〉, which for µ 6= 0, in turn, is
isomorphic to the direct sum sl(2,R)⊕sl(2,R). The explicit realization follows from from Equation (3):

X−1 = −∂t, X0 = −t∂t − r∂r − x, X1 = −t2∂t − 2tr∂r − µr2∂r − 2xt− 2γr

Y−1 = −∂r, Y0 = −t∂r − µr∂r − γ, Y1 = −t2∂r − 2µtr∂r − µ2r2∂r − 2γt− 2γµr (4)

Here, the generators X−1, Y−1 describe time- and space-translations, Y0 is a (conformal) Galilei
transformation (since the commutator [Y0, Y−1] does not vanish and does not give a central element of
the Lie algebra Equation (2), its structure is fundamentally different from algebras containing the usual
Galilei algebra as a sub-algebra), X0 gives the dynamical scaling t 7→ λt of r 7→ λr (with λ ∈ R), such
that the so-called “dynamical exponent” z = 1, since both time and space are re-scaled in the same way,
and, finally, X+1, Y+1 give “special” conformal transformations. In the context of statistical mechanics
of conformally-invariant phase transitions, one characterizes co-variant quasi-primary scaling operators
through the invariant parameters (x, µ, γ), where x is the scaling dimension.

Finally, the finite-dimensional representation Equation (4) acts as a dynamical symmetry on the
equation of motion:

Ŝφ(t, r) = (−µ∂t + ∂r)φ(t, r) = 0. (5)

in the sense that a solution φ of Ŝφ = 0 is mapped onto another solution of the same equation. Indeed,
it is easily checked that: [Ŝ, Y±1,0] = [Ŝ, X−1] = 0 and

[Ŝ, X0] = −Ŝ, [Ŝ, X1] = −2tŜ + 2(µx− γ) (6)

It follows that for fields φ with scaling dimensions xφ = x = γ/µ, the algebra Equation (4) really
leaves the solution space of Equation (5) invariant.

In order to return to the Boltzmann equation, we consider Equation (5) in the form:

L̂f = (µ∂t + v∂r)f(t, r, v) = 0 (7)

where f = f(t, r, v) is interpreted as a single-particle distribution function and where we consider v as
an additional variable. Equation (7) is a simple Boltzmann equation, without an external force, without
a collision term and in one space dimension. From Equation (6), with v fixed (and normalized to v = 1),
its solution space is conformally invariant. (With respect to Equation (5), µ 7→ −µ was replaced. This
change must also be made in the generators Equation (4) and commutators Equation (2)). In Section 2,
we shall generalize the above representation of the conformal algebra to the situation with v as a further
variable. In Section 3, we shall further extend this to the case when an external force F = F (t, r, v),
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possibly depending on time, spatial position and velocity, is included. The aim of these calculations is
to determine which situations of potential physical interest with a non-trivial conformal symmetry might
be identified. This explorative study aims at identifying lines for further study, which might lead later to
a more comprehensive understanding of the possible symmetries of Boltzmann equations. Taking into
account the collision term is left for future work. We shall concentrate on the d = 1 space dimension
throughout. Conclusions and final comments are given in Section 4.

2. Collisionless Boltzmann Equation without External Forces

In our construction of conformal dynamical symmetries of the 1D collisionless BTE, we shall
often meet Lie algebras of a certain structure. These will be isomorphic to the two-dimensional
conformal algebra.

Proposition 1. The Lie algebra 〈Xn, Yn〉n∈Z defined by the commutators:

[Xn, Xm] = (n−m)Xn+m, [Xn, Ym] = (n−m)Yn+m, [Yn, Ym] = (n−m) (kXn+m + qYn+m) (8)

where k, q are constants, is isomorphic to the pair of centerless Viraso algebras vect(S1)⊕ vect(S1).

Proof. For either k = 0 or q = 0, this is either evident or else has already been seen in Section 1. In
the other case, consider the change of basis Xn = `n + ¯̀

n and Yn = α`n − β¯̀
n, where `n, ¯̀

n are two
families of commuting generators of vect(S1) and α and β are constants, such that α + β 6= 0. It then
follows k = αβ and q = α− β.

This implies in particular the isomorphism of the maximal finite-dimensional sub-algebras, or
“conformal algebras” in the terminology chosen here. By definition, this “conformal algebra” obeys
the commutators Equation (8), but with n,m ∈ {−1, 0, 1}.

Our construction of dynamical symmetries of the Equation (7) follows the lines of the construction of
local scale-invariance in time-dependent critical phenomena [9]. The physically-motivated requirements
are: First of all it, is clear that the equation is invariant under time-translations:

X−1 = −∂t, [L̂,X−1] = 0 (9)

Some kind of dynamical scaling must be present, as well. Its most general form is:

X0 = −t∂t −
r

z
∂r −

1− z
z

v∂v − x, [L̂,X0] = −L̂. (10)

Whenever the dynamical exponent z 6= 1, we shall find an explicit dependence on v. In general, we
look for a family of generators Xn, for which we make the ansatz:

Xn = −an(t, r, v)∂t − bn(t, r, v)∂r − cn(t, r, v)∂v − dn(t, r, v). (11)

We shall find Xn from the following three conditions (throughout, we use the notations
∂tf = ḟ , ∂rf = f ′):
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1. Xn must be a symmetry for the Equation (7); hence, [L̂,Xn] = λnL̂. This gives:

µȧn + va′n + µλn = 0, µḃn + vb′n − cn + λnv = 0 (12)

µċn + vc′n = 0, µḋn + vd′n = 0.

2. The generator X0 is assumed to be in the Cartan sub-algebra; hence, [Xn, X0] = αn,0Xn.
It follows:

(1 + αn,0)an − tȧ1 −
r

z
a′n −

1− z
z

v∂van = 0 (13)

(1/z + αn,0)bn − tḃn −
r

z
b′n −

1− z
z

v∂vbn = 0 (14)

((1− z)/z + αn,0)cn − tċ1 −
r

z
c′n −

1− z
z

v∂vcn = 0 (15)

αn,0dn − tḋn −
r

z
d′n −

1− z
z

v∂vdn = 0. (16)

3. The action of X−1 is as a lowering operator; hence, [Xn, X−1] = αn,−1Xn−1. It follows:

ȧn = αn,−1t, ḃn = αn,−1r/z (17)

ċn = αn,−1v(1− z)/z, ḋn = αn,−1x/z.

These conditions, combined with the following initial conditions:

a0 = t, b0 =
r

z
, c0 =

1− z
z

v, d0 = x

a−1 = 1, b−1 = 0, c−1 = 0, d−1 = 0. (18)

must be sufficient for the determination of all admissible forms of Xn.
In the special case n = 1, we have α1,0 = 1 and find the most general form of X1 as a symmetry

of Equation (7) as follows (the requirement that 〈X±1,0〉 close into the Lie algebra sl(2,R) fixes
α1,−1 = 2):

X1 = −a1(t, r, v)∂t − b1(t, r, v)∂r − c1(t, r, v)∂v − d1(t, r, v) (19)

and

a1(t, r, v) = t2 + A12r
2v−2 + A110rv

2z−1
1−z + A100v

2z
1−z (20)

b1(t, r, v) =
2

z
tr +

(
A12

µ
+
z − 2

z
µ

)
r2v−1 +B110rv

z
1−z +B100v

z+1
1−z (21)

c1(t, r, v) =
2

z
(1− z)(vt− µr) + (B110 −

A110

µ
)v

z
1−z (22)

d1(t, r, v) =
2

z
xt− 2

z
µxrv−1 +D0v

z
1−z (23)

with a certain set of undetermined constants.
For conformal invariance, a family of generators Yn must also be found. Its construction is

straightforward if the explicit form of Y−1 is known. Really, X1 must act as a raising operator, in both
hierarchies, such that [9]:

[X1, Y−1] ∼ Y0, [X1, Y0] ∼ Y1. (24)



Symmetry 2015, 7 1600

which implies that [Y−1, [Y−1, X1]] ∼ Y−1. However, the usual realization of Y−1 = −∂r as space
translations does not work, since if we set all undetermined constants in Equation (19) to zero, one
would have [Y−1, [Y−1, X1]] ∼ v−1Y−1. It is better to work with the form:

Y−1 = −v∂r. (25)

as we shall do from now on.
We first consider the special case, when all of the constants in the expression Equation (19) for

X1 vanish:

Case A: A12 = A110 = A100 = B110 = B100 = D0 = 0.

Proposition 2. The six generators:

X−1 = −∂t, X0 = −t∂t −
r

z
∂r −

1− z
z

v∂v −
x

z

X1 = −t2∂t −
(

2

z
tr +

z − 2

z
µr2v−1

)
∂r −

2(1− z)

z
(vt− µr)∂v −

2

z
xt+

2

z
µxrv−1

Y−1 = −v∂r, Y0 = −(tv − µ

z
r)∂r −

z − 1

z
µv∂v + µ

x

z

Y1 = −
(
t2v − 2

z
µtr − z − 2

z
µ2r2v−1

)
∂r −

2

z
(z − 1)µ(vt− µr)∂v

+
2

z
µxt− 2

z
µ2xrv−1 (26)

span a representation of the conformal algebra Equation (2), which acts as dynamical symmetry algebra
of the Equation (7), for arbitrary dynamical exponent z.

Proof. It is readily checked that the generator Equation (26) satisfies the commutation relations (2), with
µ 7→ −µ. On the other hand, for any f = f(t, r, v), one has:

[L̂,X−1] = [L̂, Y−1] = [L̂, Y0] = [L̂, Y1] = 0

[L̂,X0] = −L̂, [L̂,X1] = −2tL̂,

which establishes the asserted dynamical symmetry.

Next, we treat the general case, when all of the constants are non-zero:

Case B: A12 6= 0, A110 6= 0, A100 6= 0, B110 6= 0, B100 6= 0, D0 6= 0.

Then, the generators are modified as follows:

X̄1 = X1 + X̃1

X̃1 = −
(
A12r

2v−2 + A110rv
2z−1
1−z + A100v

2z
1−z

)
∂t

−
(
A12

µ
r2v−1 +B110rv

z
1−z +B100v

z+1
1−z

)
∂r

−(B110 −
A110

µ
)v

z
1−z ∂v −D0v

z
1−z , (27)
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Ȳ0 = Y0 + Ỹ0

Ỹ0 =
1

2
[X̃1, Y−1]

= −(A12rv
−1 +

1

2
A110v

−1+1/(1−z))∂t −
1

2µ
(2A12r + A110v

1/(1−z))∂r. (28)

Now, computing:

[Ȳ0, Y−1] = −µY−1 + A12X−1 +
A12

µ
Y−1 (29)

we conclude that the cases A12 = 0 and A12 6= 0 must be treated separately.

Case B1: A12 = 0. It follows that the constants in Equation (19) are given by:

B110 = A110/µ, A100 =
A2

110

4µ2
, B100 =

A100

µ
=
A2

110

4µ3
, D0 = 0.

Proposition 3. Let z 6= 1 and A110 be arbitrary constants. Then, the six generators:

X̄−1 = −∂t, X̄0 = −t∂t −
r

z
∂r −

1− z
z

v∂v −
x

z

X̄1 = −(t2 + A110rv
(2z−1)/(1−z) +

A2
110

4µ2
v2z/(1−z))∂t

−
(

2

z
tr +

z − 2

z
µr2v−1 +

A110

µ
rvz/(1−z) +

A2
110

4µ3
v(z+1)/(1−z)

)
∂r

−2(1− z)

z
(vt− µr)∂v −

2

z
xt+

2

z
µxrv−1

Ȳ−1 = −v∂r

Ȳ0 = −A110

2
vz/(1−z)∂t − (tv − µ

z
r +

A110

2µ
v1/(1−z))∂r −

z − 1

z
µv∂v + µ

x

z

Ȳ1 = −A110(tv
z/(1−z) − µrv(2z−1)/(1−z))∂t

−
(
t2v − 2

z
µtr − z − 2

z
µ2r2v−1 +

A110

µ
(tv1/(1−z) − µrvz/(1−z))

)
∂r

−2

z
(z − 1)µ(vt− µr)∂v +

2

z
µxt− 2

z
µ2xrv−1 (30)

span a representation of the conformal algebra (the above result of Case A is recovered upon setting
A110 = 0). These generators give more symmetries of Equation (7).

Proof. From the above, the commutator Equation (2) is readily verified, with µ 7→ −µ. For the
dynamical symmetries, one checks the commutators:

[L̂,X−1] = [L̂, Y±1,0] = 0

[L̂,X0] = −L̂, [L̂,X1] = −(2t+
A110

µ
vz/(1−z))L̂.

which proves the assertion.

In contrast to the previous Case A, the representation acting only on (t, r), but keeping v as a constant
parameter, can no longer be obtained by simply setting z = 1. Rather, one must set A110 = 0 first, and
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only then, the limit z → 1 is well-defined.

Case B2: A12 6= 0, A110 6= 0, B110 6= 0, A100 6= 0, B100 6= 0, D0 6= 0.

It turns out that for A12 6= 0, the algebra also can be closed, but only if A12 = µ and A110 = 0 (then, all
other constants also vanish).

Proposition 4. Let z be an arbitrary constant. Then, the generators 〈X±1,0,Y±1,0〉, where:

X−1 = −∂t, X0 = −t∂t −
r

z
∂r −

1− z
z

v∂v −
x

z
X−1 = X−1, X0 = X0

X1 = −
(
t2 + µr2v−2

)
∂t −

(
2

z
tr +

z + µ(z − 2)

z
r2v−1

)
∂r

−2(1− z)

z
(vt− µr)∂v −

2

z
xt+

2

z
µxrv−1

Y−1 = −v∂r

Y0 = −µrv−1∂t −
(
tv − (

µ

z
− 1)r

)
∂r −

z − 1

z
µv∂v + µ

x

z

Y1 = −µ
(
2trv−1 + (1− µ)r2v−2

)
∂t −

(
t2v − 2

z
(z − µ)tr +

z(1− µ)− (z − 2)µ2

z
r2v−1

)
∂r

−2

z
(z − 1)µ(vt− µr)∂v +

2

z
µxt− 2

z
µ2xrv−1 (31)

close into a Lie algebra, with the following non-zero commutation relations:

[Xn,Xn′ ] = (n− n′)Xn+n′ , [Xn,Ym] = (n−m)Yn+m
[Ym,Ym′ ] = (m−m′) (µXm+m′ + (1− µ)Ym+m′) , (32)

with n, n′,m,m′ ∈ {−1, 0, 1}. The algebra is isomorphic to the usual conformal algebra Equation (2)
and further extends the dynamical symmetries of Equation (7).

Proof. The commutation relation is directly verified. The isomorphism with the conformal algebra
follows from Proposition 1. The requirement to have a symmetry algebra of Equation (7) implies a
relation between the constants k, q (called α,β in Proposition 1) and µ, namely q = (k − µ2)/µ. In this
case at hand, we have k = µ, q = 1− µ. It is then verified that [L̂,X−1] = [L̂,Y−1] = 0 and:

[L̂,X0] = −L̂
[L̂,X1] = −2(t+

r

z
v−1)L̂

[L̂,Y0] = −(k/µ)L̂ = −L̂

[L̂,Y1] = −2

(
k

µ
t+

k

zµ2
rv−1

)
L̂ = −2

(
t+

1

zµ
rv−1

)
L̂.

which proves that these are dynamical symmetries of (7).

We now ask whether the finite-dimensional representation Equations (26), (30) and (31), with
µ 6= 0, acting on functions f = f(t, r, v), and having a dynamical exponent z 6= 1, can be extended
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to representations of an infinite-dimensional conformal Virasoro algebra. The answer turns out to
be negative:

Proposition 5. The representation Equations (26), (30) and (31) of the finite-dimensional conformal
algebra 〈Xn, Yn〉n∈{±1,0} with commutator Equation (8) cannot be extended to representations of an
infinite-dimensional conformal Virasoro algebra with commutator Equation (8) when z 6= 1.

Similar no-go results have been found before for variants of representations of the Schrödinger and
conformal Galilean algebras [14]. On the other hand, for µ = 0, extensions to a representation of a
conformal Virasoro algebra with z 6= 1 exist [15].

Proof. Since for the finite-dimensional representations Equations (26), (30) and (31), we have:

[Xn, Xn′ ] = (n− n′)Xn+n′ , [Xn, Ym] = (n−m)Yn+n′ , n, n′,m = 0,±1

we suppose that this must be valid for all admissible n,m ∈ Z. Now, using the condition Equation (17)
for n = 2, a conformal Virasoro algebra should contain a new generator X2. Starting from the most
general form, X2 = −a2(t, r, v)∂t − b2(t, r, v)∂r − c2(t, r, v)∂v − d2(t, r, v) we find that the coefficients
are obtained from:

a2 = t3 + a21(r, v), b2 =
3

z
t2r + 3

z − 2

z
µtr2v−1 + b21(r, v)

c2 = 3
1− z
z

(vt2/2− µrt) + c21(r, v), d2 =
3

z
xt2 − 6

z
µx+ d21(r, v),

where a21(r, v), b21(r, v), c21(r, v), d21(r, v) are unknown functions of their arguments, but do no longer
depend on the time t. We want to satisfy [X2, Y−1] = 3Y1. However, when calculating:

[X2, Y−1] = [−a2∂t − b2∂r − c2∂v − d2,−v∂r] =

= 3Y1 − va′21∂t − (3
1− z

2z
t2v − 3

z
(1− z)µtr + vb′21 − c21 + 3

z − 2

z
µ2r2v−1)∂r

−(vc′21 + 3
1− z
z

µ(tv − 2µr))∂v − vd′21 −
6

z
µγrv−1

we see that closure is not possible for z 6= 1. Indeed, although the dependence on r, v of the functions
a21, b21, c21, d21 can be chosen to satisfy the above closure condition, the t-dependence cannot be
absorbed into these functions. Hence, our new representation Equations (26), (30) and (31) of the
conformal algebra Equation (8) are necessarily finite-dimensional.

3. Symmetry Algebra of Collisionless Boltzmann Equation with an Extra Force Term

We write the collisionless Boltzmann equation in the form:

B̂f(t, r, v) = (µ∂t + v∂r + F (t, r, v)∂v) f(t, r, v) = 0. (33)

We want to determine the admissible forms of an external force F (t, r, v), such that Equation (33) is
invariant under a representation of the conformal algebra Equation (8). The unknown representation must
include the “force” term and, in particular, for F (t, r, v) = 0, it should coincide with the representations
of conformal algebra obtained in the previous section.
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The idea of the construction is similar to the one used in Section 2. First, we impose invariance under
basic symmetries:

• From invariance under time translation X−1 = −∂t, it follows:

[X−1, B̂] = −Ḟ = 0→ F = F (r, v) (34)

• From invariance under dynamical scaling X0 = −t∂t − r
z
∂r − 1−z

z
v∂v − x

z
, we obtain that:

[B̂,X0] = −B̂, (35)

if F (r, v) satisfies the equation (r∂r + (1− z)v∂v − (1− 2z))F (r, v) = 0, with solution:

F (r, v) = r1−2zϕ(rz−1v), (36)

where ϕ(u) is an arbitrary function of the scaling variable u := rz−1v.

It turns out that for the following calculations, it is more convenient to make a change of independent
variables (t, r, v) 7→ (t, r, u). In the new variables, the generator of dynamical scaling just reads:

X0 = −t∂t −
r

z
∂r −

x

z
. (37)

Next, in order to be specific, we make the following ansatz for the analogue of space translations.
(Indeed, we might also require to find Y−1 from the conditions to be (i) a symmetry of Boltzmann
equation and (ii) to form a closed Lie algebra with the other basic symmetries X−1,0. Such requirements
lead to a system of differential equations, and the ansatz Equation (38) is a particular solution of
this system, which has the special property that the Boltzmann operator can be linearly expressed
B̂ = −µX−1 − Y−1 by the generators. We believe this to be a natural auxiliary hypothesis):

Y−1 = −r1−zu∂r − r−zΦ(u)∂u, Φ(u) = (z − 1)u2 + ϕ(u). (38)

In the same coordinate system, the collisionless Boltzmann equation becomes:

B̂f(t, r, u) =
(
µ∂t + r1−zu∂r + r−zΦ(u)∂u

)
f(t, r, u) = 0. (39)

Here, some comments are in order. In the structure of Boltzmann Equation (39), as well as in
the form Equation (38) of the modified space translations, Y−1 enters an unknown function Φ(t, r, u).
Therefore, the form of X1 cannot be found only from its commutator with the other generators Xn, but
the constraints form the entire conformal algebra must be used, as well as the requirement that X1 and
Y0,1 are dynamical symmetries of Equation (39):

[B̂,X1] = λX1(t, r, v)B̂, [B̂, Y0] = λY0(t, r, v)B̂, [B̂, Y1] = λY1(t, r, v)B̂. (40)

In fact, commuting the unknown generators X1, Y0, Y1 with X−1 and X0, we can fix the t- and
r-dependence of the yet undetermined functions that occur in them:

Y0 = −rza0(u)∂t − (r1−zu+ rb0(u))∂r − (r−zΦ(u)t+ c0(u))∂u − d0(u)

X1 = −(t2 + r2za12(u))∂t − ((2/z)tr + rz+1b12(u))∂r

−rzc12(u)∂u − (2/z)xt− rzd12(u)

Y1 = −
(
2trza0(u) + r2zA(u)

)
∂t −

(
t2r1−zu+ 2trb0(u) + rz+1B(u)

)
∂r

−
(
t2r−zΦ(u) + 2tc0(u) + rzC(u)

)
∂u + (2/z)µxt− rzD(u), (41)
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with the four functions:

A(u) = 2zb0a12 + c0a
′
12 − za0b12 − a′0c12, C(u) = zb0c12 + c0c

′
12 − c′0c12 − a12Φ

B(u) =
2

z
a0 + zb0b12 + c0b

′
12 − ua′12 − b′0c12, D(u) =

2

z
xa0 + zb0d12 + c0d

′
12. (42)

In particular, looking for a representation of the analog of the extended Galilei algebra
〈X−1, X0, Y−1, Y0〉, we find that the unknown functions a0(u), b0(u), c0(u), d0(u) must satisfy
the system:

zua0(u) + Φ(u)a′0(u)− k = 0 (43)

zub0(u) + Φ(u)b′0(u)− c0(u)− qu = 0 (44)

Φ′(u)c0 − Φ(u)c′0(u) + (q − zb0)Φ = 0 (45)

Φ(u)d′0(u) = 0 (46)

Because of Equation (46), one must distinguish two cases:

1. Φ(u) = 0, when d0(u) can be arbitrary

2. Φ(u) 6= 0, when d0(u) = d0 = cste. is a constant.

In the second case, taking Equations (44) and ( 45) together, we obtain an equation for b0(u). It is:

Φ2(u)b′′0(u) + zuΦ(u)b′0(u) + (2zΦ(u)− zuΦ′(u))b0(u)− 2sΦ(u) = 0, (47)

and has in general two independent solution: b01(u), b02(u). It follows that, for a given arbitrary value
of Φ(u) 6= 0, we have in general two distinct realizations of the analogue of Galilei transformation; and
consequently, also two realizations of the analogue of the Galilei algebra. By construction, these are Lie
algebras of symmetries of the collisionless Boltzmann Equation (39) (with λY0 = −k/µ = −(µ + q)):

[Y0, X−1] = Y−1, [X0, X−1] = X−1,

[Y0, Y−1] =
k − µ2

µ
Y−1 + kX−1. (48)

Next, we include the generators of special conformal transformationX1 and Y1 to the extended Galilei
algebras Equation (48) just constructed. We must also satisfy the other commutators of the conformal
algebra Equation (8). Furthermore, the generators of the representation we are going to construct are
dynamical symmetries of the collisionless Boltzmann equation (we use the commutators [Y1, Y0] =

KX1 +QY1 and [Y1, Y−1] = k0X0 + q0Y0 in order to establish a relation between the constants k, q and
K,Q, k0, q0). We find:

λX1(t, r, u) = −2t− (rz/µ)(2zua12 + Φ(u)a′12(u)) = −2t− 2rza0(u)/µ (49)
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for the eigenvalue and:

c12(u) = (2/z)µ− (u/µ)(2za12(u) + Φ(u)a′12(u)) + (2zub12 + Φ(u)b′12(u)) (50)

zuc12(u) + Φc′12(u)− c12(u)Φ′(u) + zb12(u)Φ(u)− 2c0(u) = 0 (51)

zud12(u) + Φ(u)d′12(u) + (2/z)µx = 0 (52)

Φ2(u)b′′12(u) + 3zuΦ(u)b′12(u) + z[2zu2 + 3Φ(u)− 2uΦ′(u)]b12(u)

− (u/µ)Φ2(u)a′′12(u)− [3zu2 + 2Φ(u)](Φ/µ)a′12(u)

− [zu2 + 3Φ(u)− uΦ′(u)](2zu/µ)a12(u) + (2µ/z)(zu− Φ′(u)) = 0 (53)

2zua12(u) + Φ(u)a′12(u)− 2a0(u) = 0 (54)

2zub12(u) + Φ(u)b′12(u)− c12(u)− 2b0(u) = 0 (55)

b0(u) = (u/µ)a0(u)− µ/z (56)

c0(u) = (Φ/µ)a0(u) (57)

d0(u) = cste. = −µx/z. (58)

k0 = α0k = 2k, q0 = α0q = 2q

2zuA(u) + Φ(u)A′(u)− 2qa0(u) = 0 (59)

2zuB(u) + Φ(u)B′(u)− C(u)− 2(k/z + qb0(u)) = 0 (60)

zuC(u) + Φ(u)C ′(u)− Φ′(u)C(u) + zΦ(u)B(u)− 2qc0(u) = 0 (61)

zuD(u) + Φ(u)D′(u)− (2x/z)(k − µq) = 0. (62)

K = k, Q = q (63)

(q − 2zb0)A(u)− c0A′(u) + za0(u)B(u) + a′0(u)C(u) + ka12(u)− 2a20 = 0 (64)

(q − zb0)B(u)− c0B′(u) + uA(u) + b′0C(u) + kb12(u)− 2a0(u)b0(u) = 0 (65)

(q − zb0 + c′0(u))C(u)− c0C ′(u) + Φ(u)A(u) + kc12(u)− 2a0(u)c0(u) = 0 (66)

(q − zb0)D(u)− c0D′(u) + kd12(u) +
2a0(u)µx

z
= 0 (67)

2z(b12(u)A(u)− a12(u)B(u)) + c12(u)A′(u)− a′12(u)C(u) + 2a0(u)a12(u) = 0 (68)

(2/z)A(u)− c12(u)B′(u) + b′12C(u)− 2b0(u)a12(u) = 0 (69)

(zb12(u)− c′12(u))C(u) + c12C
′(u)− zc12(u)B(u) + 2c0(u)a12(u) = 0 (70)

(2x/z)(µa12(u) + A(u)) + zd12(u)B(u) + d′12(u)C(u)

− zb12D(u)− c12(u)D′(u) = 0 (71)

The system of Equations (43)–(45) and (50)–(71) must give a solution for the unknown functions
a0(u), b0(u), c0(u), d0(u), a12(u), b12(u), c12(u), d12(u). Of course, it is possible that several of the
above equations are equivalent. Because of this fact, although the above system might look to be
over-determined, we have not yet been able to produce an explicit solution without making an auxiliary
assumption. A classification of all solutions of the above system is left as an open problem. We shall
now describe some examples of solutions of this large system.
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Example 1: Let Φ(u) = 0. This case seems to be quite simple, provided it is compatible with our system.
From Equation (43), we obtain:

a0(u) =
k

z
u−1 (72)

Using this value of a0(u) from Equations (52)–(54) and (56)–(58), we directly obtain:

b0 = cste. =
k

zµ
− µ

z
, c0(u) = 0, d0 = cste. = −µ

z
x, (73)

a12(u) =
k

z2
u−2, b12(u) =

1

µz2
(k − µ2)u−1, c12(u) = 0, d12(u) = −2µx

z2
u−1. (74)

When we substitute the above results in relation Equation (42), we also find:

A(u) =
k

µz2
(k − µ2)u−2, B(u) =

1

µ2z2
(
k(k − µ2) + µ4

)
u−1

C(u) = 0, D(u) =
2µ2x

z2
u−1. (75)

One can now verify that the above results for the functions a0(u), b0(u), c0(u), d0(u) and
a12(u), b12(u), c12(u), d12(u), A(u), B(u), C(u), D(u) satisfy all equations of the above system. Now,
we can finally write the algebra generators:

X−1 = −∂t, X0 = −t∂t −
r

z
∂r −

x

z

X1 = −
(
t2 +

k

z2
r2zu−2

)
∂t −

(
2

z
tr +

k − µ2

z2µ
rz+1u−1

)
∂r −

2

z
xt+

2µx

z2
rzu−1,

Y−1 = −r1−zu∂r,

Y0 = −k
z
rzu−1∂t −

(
tr1−zu+

k − µ2

zµ
r

)
∂r +

µx

z
,

Y1 = −
(

2k

z
trzu−1 +

k(k − µ2)

z2µ
r2zu−2

)
∂t

−
(
t2r1−zu+ 2

k − µ2

zµ
tr +

k(k − µ2) + µ4

z2µ2
rz+1u−1

)
∂r +

2

z
µxt− 2µ2x

z2
rzu−1. (76)

We return to the original variables via the change (t, r, u) 7→ (t, r, v), done through the substitutions
u→ rz−1v and ∂r → ∂r + (1− z)r−1v∂v. Finally, we have the following representation of a conformal
symmetry algebra of the collisionless Boltzmann Equation (33):

X−1 = −∂t, X0 = −t∂t −
r

z
∂r −

1− z
z

v∂v −
x

z

X1 = −
(
t2 +

k

z2
r2v−2

)
∂t −

(
2

z
tr +

k − µ2

z2µ
r2v−1

)
∂r

− (1− z)

(
2

z
tv +

k − µ2

z2µ
r

)
∂v −

2

z
xt+

2µx

z2
rv−1,

Y−1 = −v∂r − (1− z)r−1v2∂v,

Y0 = −k
z
rv−1∂t −

(
tv +

k − µ2

zµ
r

)
∂r − (1− z)

(
tr−1v2 +

k − µ2

zµ
v

)
∂v +

µx

z
,

Y1 = −
(

2k

z
trv−1 +

k(k − µ2)

z2µ
r2v−2

)
∂t −

(
t2v + 2

k − µ2

zµ
tr +

k(k − µ2) + µ4

z2µ2
r2v−1

)
∂r

−(1− z)

(
t2r−1v2 + 2

k − µ2

zµ
tv +

k(k − µ2) + µ4

z2µ2
r

)
∂v +

2

z
µxt− 2µ2x

z2
rv−1. (77)
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Proposition 6. The generator Equation (77) close into the following Lie algebra:

[Xn, Xn′ ] = (n− n′)Xn+n′ , [Xn, Ym] = (n−m)Yn+m

[Ym, Ym′ ] = (m−m′)
(
kXm+m′ +

k − µ2

µ
Ym+m′

)
, (78)

for n, n′,m,m′ ∈ {−1, 0, 1} and for an arbitrary dynamical exponent z. They give a representation of
the finite-dimensional conformal algebra, which acts as a dynamical symmetry algebra of the Boltzmann
equation in the form:

B̂f(t, r, v) = (µ∂t + v∂r + (1− z)r−1v2∂v)f(t, r, v) = 0. (79)

Proof. The commutation relation Equation (78) is directly checked. From the commutators
[B̂,X−1] = [B̂, Y−1] = 0 and:

[B̂,X0] = −B̂, [B̂,X1] = −2

(
t+

k

zµ
rv−1

)
B̂

[B̂, Y0] = −(k/µ)B̂, [B̂, Y1] = −2

(
k

µ
t+

k

zµ2
rv−1

)
B̂.

it is seen that they generate dynamical symmetries.

Example 2: Let k = 0. In this case, Φ(u) left arbitrary, which leads to a0 = 0 from Equation (43) and:

b0 = cste. = −µ/z, c0 = 0, d0 = −µx/z (80)

Then, from Equation (42), we obtain:

A(u) = −2µa12(u), B(u) = −µb12(u)− ua′12(u)

C(u) = −µc12(u)− a12(u)Φ(u), D(u) = −µd12. (81)

However, when substituting in Equations (64)–(67), taking also into account that q = −µ, we find
that A(u) = a12(u) = 0. Then, it is easy to check that the condition Equations (68)–(71) are fulfilled.
This allows us to formulate:

Proposition 7. Let Φ(u) = (z − 1)u2 + ϕ(u). Consider the generators:

X−1 = −∂t, X0 = −t∂t −
r

z
∂r −

1− z
z

v∂v −
x

z

X1 = −t2∂t −
(

2

z
tr + rz+1b12(u)

)
∂r

− (1− z)

(
2

z
tv + rzvb12(u) +

r1−2z

1− z
c12(u)

)
∂v −

2

z
xt− rzd12(u),

Y−1 = −v∂r − (1− z)

(
r−1v2 +

r1−2z

1− z
Φ(u)

)
∂v = −v∂r − r1−2zϕ(u)∂v,

Y0 = −
(
tv − µ

z
r
)
∂r − (1− z)

(
r1−2z

1− z
ϕ(u)t− µ

z
v

)
∂v +

µx

z
,

Y1 = −
(
t2v − 2

µ

z
tr − µrz+1b12(u)

)
∂r +

2

z
µxt+ µrzd12(u) (82)

−(1− z)

(
t2
r1−2z

1− z
ϕ(u)− 2

z
µtv − nµrzvb12(u)− µr

1−2z

1− z
c12(u)

)
∂v,
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where c12(u) = 2zub12(u) + ((z − 1)u2 + ϕ(u))b′12(u) + 2µ/z and ϕ(u), b12(u), d12(u) satisfy:

[(z − 1)u2 + ϕ(u)]2b′′12(u) + 3zu[(z − 1)u2 + ϕ(u)]b′12(u)

+z[(z + 1)u2 − 2uϕ′(u) + 3ϕ(u)]b12(u) + [(2− z)u− ϕ′(u)]2µ/z = 0 (83)

zud12(u) + [(z − 1)u2 + ϕ(u)]d′12(u) + 2µx/z = 0. (84)

For any triplet (ϕ(u), b12(u), d12(u)), which gives a solution of the system Equations (83) and (84),
the generator Equation (82) close into the following Lie algebra:

[Xn, Xn′ ] = (n− n′)Xn+n′ , [Xn, Ym] = (n−m)Yn+m

[Ym, Ym′ ] = −µ (m−m′)Ym+m′ , (85)

for n, n′,m,m′ ∈ {−1, 0, 1} and for an arbitrary constant z. Equation (82) is a representation
of the finite-dimensional conformal algebra and acts as the dynamical symmetry algebra of the
Vlasov–Boltzmann equation, with a quite general “force” term:

B̂f(t, r, v) = (µ∂t + v∂r + r1−2zϕ(u)∂v)f(t, r, v) = 0.

Proof. The commutators are satisfied for k = 0 and q = −µ if condition Equations (83) and (84) are
fulfilled. Under the same conditions, the symmetries are proven by the relations:

[B̂,X−1] = [B̂, Y−1] = [B̂, Y0] = [B̂, Y1] = 0

[B̂,X0] = −B̂, [B̂,X1] = −2tB̂.

In particular, if we implement the physical requirement that the “force” term should depend only
on the positions r, that is ϕ(u) = ϕ0 = cste., we can compute explicitly the representation of the
algebra Equation (82). To do this, one must find a solution of the system:

[(z − 1)u2 + ϕ0]
2b′′12(u) + 3zu[(z − 1)u2 + ϕ0]b

′
12(u)

+z[(z + 1)u2 + 3ϕ0]b12(u) + 2µ
2− z
z

u = 0 (86)

zud12(u) + [(z − 1)u2 + ϕ0]d
′
12(u) + 2µx/z = 0. (87)

The solution of the second equation is relatively simple, even for an arbitrary z:

d12(u) = −δ0[(z − 1)u2 + ϕ0]
z

2(1−z)

∫
R
du [(z − 1)u2 + ϕ0]

z−2
2(1−z) , δ0 = cste. (88)

The solution of the Equation (86) for an arbitrary z can be expressed in terms of hypergeometric
functions, but we shall not give its explicit form here. However, for z = 2, the system Equations (86)
and ( 87) have an elementary solution:

b12(u) = b120
u

(u2 + ϕ0)2
+ b121

u2 − ϕ0

(u2 + ϕ0)2
, b120 = cste., b121 = cste.

d12(u) = −µx u

u2 + ϕ0

. (89)
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Substituting this into the generator Equation (82) for z = 2 gives a finite-dimensional representation
of the dynamical conformal symmetry of a collisionless Boltzmann equation of the form:

B̂f(t, r, v) = (µ∂t + v∂r + ϕ0r
−3∂v)f(t, r, v) = 0. (90)

4. Conclusions

In this work, we have described the results of the first exploration of dynamical symmetries
of collisionless Vlasov–Boltzmann transport equations. Our main finding is that these equations
admit conformal dynamical symmetries, although it does not seem to be possible to extend this to
infinite-dimensional conformal Virasoro symmetries, not even in the case of d = 1 space dimensions.
These conformal symmetries are new representations of the conformal algebra and are inequivalent
to the standard representation, which is habitually used in conformal field-theory descriptions of
equilibrium critical phenomena. Our first class of new symmetries was found by admitting the
momentum p (or equivalently, the velocity v = p/µ) as an additional independent variable, leading
to the representations Equations (26), (30) and (31). The second class of symmetries also allowed for
external driving forces F (t, r, v), and it has been one of the questions of which types of forces should
be compatible with conformal invariance. As an example, we have seen that time-independent forces
F (r, v) = r1−2zϕ(rz−1v), with an arbitrary scaling function ϕ, are admissible and lead to the general
representation Equation (82). However, the solutions of the associated system of equations for the
coefficients have not yet been classified and the complete content of these representations remains to
be worked out in the future.

Some intuition can be gleaned from some examples. We have written down the explicit
representations for the force F (r, v) = (1 − z)r−1v2, with an z > 1 arbitrary Equation (77) and for
F (r, v) = ϕ0 r

1−2z Equations (82), (86), (87) with an arbitrary z > 1. In the later case, which could
be related to physical situations, we have given the explicit representation of the conformal algebra for
z = 2, when F (r, v) = ϕ0r

−3, Equations (82) and (89). Having identified these symmetries, the next
step would be to use these to find either exact solutions [16] or else to use the algebra representations
for fixing the form of co-variant n-point correlation functions, in analogy to time-dependent critical
phenomena; see, e.g., [12].

The results derived here can be used as a starting point to derive forms of the transition rates w in
the collision terms, which would be compatible with the dynamical symmetries of the collision-free
equations. This kind of approach would be analogous to the one used for finding dynamical symmetries
of non-linear Schrödinger equations; see, e.g., [17,18]. We hope to return to this elsewhere.
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