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1. Introduction

Bäcklund transformations are a powerful tool to explore various properties of integrable nonlinear
partial differential equations [1,2]. They can be used to obtain more exact solutions of integrable systems
from a particular solution. The classical Bäcklund transformations are local geometric transformations,
which are used to construct surfaces of constant negative Gaussian curvature [1]. This provides
a geometric construction of new pseudospherical surfaces from a particular solution of an integrable
partial differential equation. Indeed, solutions of the sine-Gordon equation describe pseudospherical
surfaces. Applying Bäcklund transformations n times to a particular solution of sine-Gordon equation,
one can obtain a family of solutions of sine-Gordon equation. These solutions can be obtained
using the Bianchi’s permutability formula through purely algebraic means [2]. In [3], Chern and
Tenenblat performed a complete classification to a class of nonlinear evolution equations which describe
pseudospherical surfaces. It is noted that a nonlinear PDE describes pseudospherical surface if it
admits sl(2) prolongation structure. More generally, a Bäcklund transformation is typically a system of
first-order partial differential equations relating two equations, and usually depending on an additional
parameter. In particular, a Bäcklund transformation which relates solutions of the same equations is
called an auto-Bäcklund transformation. In [4], Wahlquist and Estabrook [4] provides a systematic
method to construct Bäcklund transformations of integrable systems by using the prolongation structure
approach. Other effective methods to construct Bäcaklund transformations of integrable systems were
also proposed in a number of literatures, see for example [2,5–12] and many more references.

A particular nice feature of integrable systems is their relationship with invariant geometric flows of
curves and surfaces in certain geometries. Those flows are invariant with respect to the symmetry groups
of the geometries [13]. A number of integrable equations have been shown to be related to motions
of curves in Euclidean geometry, centro-equiaffine geometry, affine geometry, homogeneous manifolds
and other geometries etc., and many interesting results have been obtained [14–41]. Such relationship
is helpful to explore geometric realization of several properties of integrable systems, for example,
bi-Hamiltonian structure, recursion operator, Miura transformation and Bäcklund transformation etc. On
the other hand, the topological properties of closed curves are shown to be related to the infinite number
of symmetries and the associated sequence of invariants [11]. The relationship between integrable
systems and geometric curve flows in R3 was studied in 1970s by Hasimoto [14], who showed that
the integrable cubic Schrödinger equation is equivalent to the binormal motion flow of space curves in
R3 (called vortex-filament flow or localized induction equation) by using a transformation relating the
wave function of the Schrödinger equation to the curvature and torsion of curves ( so-called Hasimoto
transformation). Furthermore, using the Hasimoto transformation, Lamb [16] verified that the mKdV
equation and the sine-Gordon equations arise from the invariant curve flows in R3. Marí-Beffa, Sanders
and Wang [25] noticed that the Hasimoto transformation is a gauge transformation relating the Frenet
frame and parallel frame. The well-known integrable equations including the KdV equation, the modified
KdV equation, the Sawada-Kotera equation,the Kaup-Kuperschmidt equation and Boussinesq equation
were also shown to arise from the invariant plane or space curve flows respectively in centro-equiaffine
geometry [18,21,35,40], Euclidean geometry [15,17,21], two-dimensional affine geometry [21,40],
projective geometry [37,39] and three-dimensional affine geometry [23].
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In this paper, we are mainly concerned with Bäcklund transformations for integrable geometric curve
flows in certain geometries. Our work is inspired by the following result.

Proposition 1.1. [26] Let γ(s) be a smooth curve of constant torsion τ in R3, parametrized by
arclength s. Let T, N and B be a Frenet frame, and k(s) the curvature of γ. For any constant C,
suppose β = β(s, k(s), C) is a solution of the differential equation

dβ

ds
= C sin β − k. (1)

then
γ̃(s) = γ(s) +

2C

C2 + τ 2
(cos βT + sin βN)

is a curve of constant torsion τ , also parametrized by arclength s.

Note that this transformation can be obtained by restricting the classical Bäcklund transformation for
pseudospherical surfaces to the asymptotic lines of the surfaces with constant torsion.

We will restrict our attention to the geometric plane curve flows

γt = fN + gT (2)

and space curve flows

γt = fT + gN + hB (3)

in Euclidean, centro-equiaffine and affine geometries, where T and N in Equation (2) denote frame
vectors of planar curves, and T, N and B in Equation (3) are frame vectors of spacial curves, f , g and
h depend on the curvatures of the curves γ and their derivatives with respect to the arclength parameter,
namely, these geometric flows are invariant with respect to the symmetry groups of the geometries.

For a planar or a spacial curve γ(t, s) in a given geometry, let γ̃(t, s) be another curve related to γ
through the following Bäcklund transformation

γ̃(t, s) = γ(t, s) + α(t, s)N + β(t, s)T (4)

or

γ̃(t, s) = γ + α(t, s)T + β(t, s)N + χ(t, s)B. (5)

Throughout the paper, we assume that both curve flows for γ and γ̃ are governed by the same
integrable system, that means the curvatures of the curves γ̃ determined by the flows (4) or (5) satisfy the
integrable systems as for the curves γ. It turns out that the functions α(t, s), β(t, s) and χ(t, s) for space
case and α(t, s) and β(t, s) for planar case satisfy systems of nonlinear evolution equations. Solving
these systems then yields Bäcklund transformations between the two flows for γ and γ̃.

The outline of this paper is as follows. In Section 2, we first study the Bäcklund transformations
of planar curve flows in R2, which include the modified KdV flow and the modified Camassa-Holm
flow. Bäcklund transformations of integrable space curve flows in R3 including the Schrödinger flow
and the extended Harry-Dym flow will be discussed in Section 3. In Section 4, we consider the
Bäcklund transformations of the KdV and Camassa-Holm flows for planar curves in centro-equiaffine
geometry. Finally in Section 5, we discuss the Bäcklund transformations of the Sawada-Kotera flow in
two-dimensional affine geometry.
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2. Bäcklund Transformations of Integrable Curve Flows in R2

The invariant geometric curve flows in R2 were discussed extensively from many points of view
in the last three decades. A number of interesting results have been obtained. It was shown that
the non-stretching plane curve flows in R2 are related closely to the integrable systems including the
modified KdV equation [15,17,21] and the modified Camassa-Holm equation [42]. In this section, we
consider the Bäcklund transformations of those integrable flows.

Let us consider the flows for planar curves in R2, governed by

γt = fn + ht, (6)

where t and n denote the unit tangent and normal vectors of the curves, respectively, which satisfy the
Serret-Frenet formulae

ts = kn, ns = −kt, (7)

where k is the curvature of the curve γ, s is the arclength of the curve and ds = gdp, p is a free parameter.
The velocities f and h in Equation (6) depend on k and it’s derivatives with respect to the arclength
parameter s. Let θ be the angle between the tangent and a fixed direction. Then t = (cos θ, sin θ),
n = (− sin θ, cos θ), and dθ = kds. Based on the flow (6), it is easy to show that the time evolutions of
those geometric invariants are given by [17]

tt = (fs + kh)n,

nt = −(fs + kh)t, (8)

gt = g(hs − kf),

and

θt = (fs + kh),

kt =

(
dθ

ds

)
t

= fss + ksh+ k2f. (9)

Assume that the flow is intrinsic, namely the arclength does not depend on time. Then equation

hs = kf (10)

follows from Equation (8).

2.1. The Modified KdV Flow in R2

In [17], Goldstein and Petrich proved that the modified KdV equation arises from an non-stretching
curve flow in Equation R2. Indeed, let f = ks, h = 1

2
k2 in Equation (6), then k satisfies the modified

KdV equation

kt = ksss +
3

2
k2ks. (11)

The corresponding curve flow is

γt = ksn +
1

2
k2t, (12)
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which is the so-called modified KdV flow [17].
Let γ̃ be another curve in R2 related to γ by

γ̃(t, s) = γ(t, s) + α(t, s)n + β(t, s)t. (13)

Assume that γ̃(t, s) is also governed by the modified KdV flow, namely it satisfies

γ̃t = k̃s̃ñ +
1

2
k̃2t̃, (14)

where s̃ is the arclength parameter of γ̃; t̃ and ñ denote the unit tangent and normal vector of γ̃,
respectively. A direct computation shows that t̃ and ñ are related to t and n by

t̃ =
F0t +G0n√
F 2
0 +G2

0

, ñ = −G0t + F0n√
F 2
0 +G2

0

, (15)

where

F0 = 1 + βs − kα, G0 = αs + kβ. (16)

It is inferred from Equation (13) that

γ̃t = [αt + ks + (kss +
1

2
k3)β]n + [βt +

1

2
k2 − (kss +

1

2
k3)α]t. (17)

Differentiating Equation (13) with respect to s, after using the Serret-Frenet formulae (7), yields

γ̃s = ((1 + βs − kα)t + αs + kβ)n := F0t +G0n. (18)

It follows that the arclength s̃ of γ̃ is related to s of γ by

ds̃ =
√
F 2
0 +G2

0ds. (19)

Furthermore, differentiating Equation (18) with respect to s̃, and using Equation (19) yields

k̃ñ = γ̃s̃s̃ = (F 2
0 +G2

0)
−2(F1t +G1n) := F2t +G2n, (20)

where
F2 =

F1

(F 2
0 +G2

0)
2
, G2 =

G1

(F 2
0 +G2

0)
2
.

and

F1 = − k(1 + βs − kα)2(αs + kβ) + (βss − ksα− 2kαs − k2β)(αs + kβ)2

− (1 + βs − kα)(αs + kβ)(αss + ksα + kαs),

G1 = k(1 + βs − kα)3 + k(1 + βs − kα)(αs + kβ)2(αssksα + kαs)

− (1 + βs − kα)(αs + kβ)(βss − ksα− kαs).

From Equation (20), we also have

k̃s̃ =
F0(G2s + kF2)−G0(F2s − kG2)

F 2
0 +G2

0

:= F3,

k̃2 = − G0(G2s + kF2) + F0(F2s − kG2)

F 2
0 +G2

0

:= G3.

(21)
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Substituting Equations (15), (17) and (21) into Equation (14), we see that the modified KdV
flow is invariant with respect to the Bäcklund transformation (13) if and only if α and β satisfy the
following system

αt+ks + β(kss +
1

2
k3) =

1√
F 2
0 +G2

0

(1

2
G0G3 + F0F3

)
,

βt+
1

2
k3 − α(kss +

1

2
k3) =

1√
F 2
0 +G2

0

(1

2
F0G3 −G0F3

)
.

(22)

Theorem 2.1. The modified KdV flow (12) is invariant with respect to the Bäcklund transformation (13)
if α(t, s) and β(t, s) satisfy the system (22), where G0, F0, F3 and G3 are given in Equations (16) and (21).

It is noticed that a class of Bäcklund transformations for smooth and discrete plane curves in Euclidean
space governed by the modified KdV equation were discussed in [12], which are derived by using the
Bäcklund transformations of the potential modified KdV equation.

2.2. The Modified Camassa-Holm Flow

The modified Camassa-Holm equation

mt + ((u2 − u2s)m)s + ausss = 0, m = u− uss (23)

can be derived using the general approach of the tri-Hamiltonian duality from the modified KdV
equation [42]. A direct consequence of such approach shows us that the modified Camassa-Holm
equation is an integrable equation with bi-Hamiltonian structure. Interestingly, it has peaked solutions
and can describe wave breaking phenomena [43]. It was also shown in [43] that the modified
Camassa-Holm equation arises from a non-stretching planar curve flow in R2. Indeed, let f = us,
h = 1

2
(u2 − u2s) in Equation (6), then the corresponding modified Camassa-Holm flow is

γt = usn +
1

2
(u2 − u2s)t, (24)

where u satisfies the modified Camassa-Holm Equation (23) with a = 1, where m = k = u− uss is the
curvature of the curve γ. Denote Λ = 1− ∂2s , then u = Λ−1k. Assume that γ̃ is another curve related to
γ by Equation (13), a direct computation shows

γ̃t = (us + αt + β(fs + kh))n +

(
1

2
(u2 − u2s) + βt − α(fs + kh)

)
t. (25)

Using Equation (19), the corresponding geometric invariants of γ̃ can be expressed in

Λ̃ = 1− ∂2s̃ = 1−
(
ds

ds̃
∂s

)(
ds

ds̃
∂s

)
,

ũ = (1− ∂2s̃ )−1k̃,
ũs̃ = 1− ∂2s̃ )−1k̃s̃,

ũ2 − ũ2s̃ =
[
(1− ∂2s̃ )−1(k̃ + k̃s̃)

][
(1− ∂2s̃ )−1(k̃ − k̃s̃)

]
,

(26)
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where k̃ =
√
F 2
1 +G2

1/(F
2
0 + G2

0)
2. Assume that γ̃ is also governed by the modified Camassa-Holm

flow (24), namely, it satisfies

γ̃t = ũs̃ñ +
1

2
(ũ2 − ũ2s̃)t̃. (27)

Substituting Equations (15), (25) and (26) into Equation (27) and comparing the coefficients of t and
n in the resulting equation, we arrive at the following system for α(t, s) and β(t, s)

αt+us + β
[
uss +

1

2
(u− uss)(u2 − u2s)

]
=

ũs̃F0√
F 2
0 +G2

0

+
1

2

(ũ2 − ũ2s̃)√
F 2
0 +G2

0

,

βt+
1

2
(u2 − u2s)− α

[
uss +

1

2
(u− uss)(u2 − u2s)

]
= − ũs̃G0√

F 2
0 +G2

0

+
1

2

(ũ2 − ũ2s̃)√
F 2
0 + F 2

0

,

(28)

where u satisfies the modified Camassa-Holm Equation (23) with a = 1. Consequently, we have the
following result.

Theorem 2.2. The modified Camassa-Holm flow (24) is invariant with respect to the Bäcklund
transformation (13) if α(t, s) and β(t, s) satisfy the system (28), where G0 and F0 are given in Equation (16).

3. Bäcklund Transformations for Space Curve Flows in R3

In this section, we consider the integrable flows for space curves in R3

γt = Un + V b +W t, (29)

where t, n and b are the tangent, normal and binormal vectors of the space curve γ, respectively. The
velocities U , V and W depend on the curvature and torsion as well as their derivatives with respect to
arclength s. It is well know that the vectors t, n and b satisfy the Serret-Frenet formulae

ts = kn,

ns = − kt + τb,

bs = − τn,

(30)

where k and τ are curvature and torsion of γ. Governed by the flow (29), the time evolutions of these
geometric invariants fulfill [14,15]

tt =
(∂U
∂s
− τV + kW

)
n +

(∂V
∂s

+ τU
)
b,

nt = −
(∂U
∂s
− τV + kW

)
t +

[1

k

∂

∂s
(
∂V

∂s
+ τU) +

τ

k
(
∂U

∂s
− τV + kW )

]
b,

bt = −
(∂V
∂s

+ τU
)
t−

[1

k

∂

∂s
(
∂V

∂s
+ τU) +

τ

k
(
∂U

∂s
− τV + kW )

]
n,

gt = g
(∂W
∂s
− kU

)
,

(31)

where g = |γp| denotes the metric of the curve γ. A direct computation leads to the equations for the
curvature k and torsion τ :

∂τ

∂t
=

∂

∂s

[1

k

∂

∂s
(
∂V

∂s
+ τU) +

τ

k
(
∂U

∂s
− τV ) + τ

∫ s

kUds′
]

+ kτU + k
∂V

∂s
,

∂k

∂t
=
∂2U

∂s2
+ (k2 − τ 2)U +

∂k

∂s

∫ s

kUds′ − 2τ
∂V

∂s
− k∂τ

∂s
V.

(32)
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Assume that the flow is intrinsic, namely the arclength does not depend on time, it implies from
Equation (31) that

∂W

∂s
= kU. (33)

From Equation (32), using the following Hasimoto transformation

φ = kη, η = exp
[
i

∫ s

τ(t, s′)ds′
]
, (34)

we get the equation for φ

∂φ

∂t
=
( ∂2
∂s2

+ |φ|2 + iφ

∫ s

ds′τφ∗ +
∂φ

∂s

∫ s

ds′φ∗
)

(Uη),

+
(
i
∂2

∂s2
+ i|φ|2 + φ

∫ s

ds′τφ∗ − iφ
∫ s

ds′
∂φ∗

∂s′

)
(V η),

(35)

where φ∗ denotes the complex conjugate of φ.
Let U = 0, V = k and W = 0. Then we derive from Equation (32) the Schrödinger equation

iφt + φss +
1

2

∣∣φ∣∣2φ = 0. (36)

Let U = −ks, V = −kτ . Then W = −1
2
k2, and φ satisfies the mKdV system [15]

φt + φsss +
3

2

∣∣φ∣∣2φs = 0.

We now consider the case of U = W = 0. Denote θ(t, s) =
∫ s
τ(s′, t)ds′, G = V η. It follows from

Equation (35) that φ satisfies the equation

iφt +Gss +
∣∣φ∣∣2G− φ ∫ s

G(cos θ − i sin θ)ks′ds
′ = 0. (37)

Let ũ = k cos θ, ṽ = k sin θ and G = G1 + iG2. Then Equation (33) is separated into the two
equations

ũt = −G2,ss − ṽ∂−1s
[
k(G1 cos θ +G2 sin θ)s

]
,

ṽt = G1,ss + ũ∂−1s
[
k(G1 cos θ +G2 sin θ)s

]
.

(38)

Furthermore, letting ũ = u+ vs, ṽ = v − us and choosing V = ∂−1s [(u2 + v2s)/k], we find that u and
v satisfy the following system [41]

(u+ vs)t = −G2,ss − (v − us)(u2 + v2),

(v − us)t = G1,ss + (u+ vs)(u
2 + v2),

(39)

where G1 = 2 cos θ∂−1s (v cos θ−u sin θ), G2 = 2 sin θ∂−1s (v cos θ−u sin θ), which is related to the dual
system of the Schrödinger equation [42].
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3.1. The Schrödinger Flow

Corresponding to the Schrödinger Equation (36), the Schrödinger flow is given by [14]

γt = kb. (40)

In this case, the time evolution of frame vectors is governed by

tt = − τkn + ksb,

nt = −
(kss
k
− τ 2

)
b + τkt,

bt = − kst−
(kss
k
− τ 2

)
n.

(41)

We now construct Bäcklund transformation of the Schrödinger flow (40)

γ̃ = γ + α(t, s)t + β(t, s)n + χ(t, s)b, (42)

where α, β and χ are the functions of t and s, to be determined. Using Equation (30), (40) and (41), a
direct computation leads to

γ̃s = (1 + αs − βk)t + (βs + αk − χτ)n + (χs + βτ)b, (43)

and

γ̃t =
(
αt + βτk − χks

)
t +

[
βt − χ

(kss
k
− τ 2

)
− ατk

]
n

+
[
χt + k + αks + β

(kss
k
− τ 2

)]
b.

(44)

Then the arclength parameter s̃ of curve γ̃ is related to s by

ds̃ =
∣∣γ̃s∣∣ds =

√
(1 + αs − βk)2 + (βs + αk − χτ)2 + (χs + βτ)2ds := Fds.

The tangent vector of the curve γ̃ is determined by

t̃ = γ̃s
ds

ds̃
= A1t + A2n + A3b,

where A1 = F−1(1 + αs − βk), A2 = F−1(βs + αk − χτ), A3 = F−1(χs + βτ). Further computation
from Equation (43) yields

γ̃s̃s̃ = γ̃s̃s
ds

ds̃
=
A1s − kA2

F
t +

A2s + kA1 − τA3

F
n +

A3s + τA2

F
b,

which gives the curvature of γ̃:

k̃ =

√
(A1s − kA2)2 + (A2s + kA1 − τA3)2 + (A3s + τA2)2

F
:=

H

F
. (45)

Using the Serret-Frenet formulae, we obtain the normal and binormal vectors of γ̃ given by

ñ =
A1s − kA2

H
t +

A2s + kA1 − τA3

H
n +

A3s + τA2

H
b := B1t +B2n +B3b,

b̃ =
C1t + C2n + C3b√
C2

1 + C2
2 + C2

3

,
(46)
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where C1 = F−1(B1s − kB2 + HA1), C2 = F−1(kB1 + B2s − τB3 + HA2) and C3 = F−1(τB2 +

B3s +HA3).
Assume that the curve γ̃ also fulfills the Schrödinger flow, that is

γ̃t = k̃b̃. (47)

Plugging Equations (44), (45) and (46) into Equation (47), we arrive at the following result.

Theorem 3.1. The Schrödinger flow (40) is invariant with respect to the Bäcklund transformation (42)
if α, β and χ satisfy the system

αt + βτk − χks =
H

F

C1√
C2

1 + C2
2 + C2

3

,

βt − χ
(kss
k
− τ 2

)
− ατk =

H

F

C2√
C2

1 + C2
2 + C2

3

,

χt + k + αks + β
(kss
k
− τ 2

)
=
H

F

C3√
C2

1 + C2
2 + C2

3

.

3.2. The Extended Harry-Dym Flow

The extended Harry-Dym flow [19]

γt = τ−
1
2b, (48)

is obtained by setting U = M = 0, and V = τ−
1
2 in the space curve flow (29). Here we consider the

curve flow with constant curvature k. Let k = 1, it follows from Equation (32) that the torsion of γ
satisfies the extended Harry-Dym equation [19]

τt =
[
(τ−

1
2 )ss − τ

3
2 + τ−

1
2

]
s
, (49)

which is equivalent to the flow (48). Making use of the transformation v = τ−1/2, we get the equation

(v−1)t =
1

2

(
vvss −

1

2
v2s +

1

2
v2 − 3

2
v−2
)
s
.

In terms of the change of variables dx =
√

2v−1ds+ 1√
2

(
vvss − 1

2
v2s + 1

2
v2 − 3

2
v−2
)
dt, it is deduced that

∂v

∂t
=

∂

∂x

[
v
( ∂
∂x

(
vx
v

)− 1

2
(
vx
v

)2
)

+
1

4
v3 − 3

4
v−1
]
. (50)

Again we set v = eϕ, then it is inferred from Equation (50) that ϕ satisfies the Calogero’s modified
KdV equation

ϕt = ϕxxx −
1

2
ϕ3
x +

3

2
ϕx cosh 2ϕ.

We now construct Bäcklund transformations to the extended Harry-Dym flow (48). In this case, the
corresponding time evolution of frame vectors t, n and b are given by

tt = − τ
1
2n− 1

2
τ−

3
2 τsb,

nt = τ
1
2 t +

(
(τ−

1
2 )ss− τ

3
2

)
b,

bt =
1

2
τ−

3
2 τst−

(
(τ−

1
2 )ss − τ

3
2

)
n.

(51)
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In terms of Equation (51), a direct computation gives

γ̃t =
[
τ−

1
2 + α(τ−

1
2 )s + β

(
(τ−

1
2 )ss − τ

3
2

)
+ χt

]
b,

+
[
βt − ατ

1
2 − χ

(
(τ−

1
2 )ss − τ

3
2

)]
n +

[
αt + βτ

1
2 + χ(τ−

1
2 )s
]
t.

(52)

Assume that a new curve γ̃(t, s) is governed by the extended Harry-Dym flow, that means γ̃ satisfies

γ̃t = τ̃−
1
2 b̃, (53)

where τ̃ and b̃ are the torsion and binormal vector of γ̃, respectively, which is related to the geometric
invariants of γ through

τ̃ =
C1(B1,s − kB2) + C2(B1k +B2,s − τB3 +HA2) + C3(τB2 +B3s +HA3)

F
√
C2

1 + C2
2 + C2

3

,

b̃ =
C1t + C2n + C3b√
C2

1 + C2
2 + C2

3

.

(54)

Plugging Equations (52) and (54) into Equation (53) implies that the extended Harry-Dym equation
is invariant with respect to the Bäcklund transformation (42) if α, β and χ satisfy the following system

αt + βτ
1
2 + χ(τ−

1
2 )s = τ̃−

1
2

C1√
C2

1 + C2
2 + C2

3

,

βt − ατ
1
2 − χ

(
(τ−

1
2 )ss − τ

3
2

)
= τ̃−

1
2

C2√
C2

1 + C2
2 + C2

3

,

χt + τ−
1
2 + α(τ−

1
2 )s + β

(
(τ−

1
2 )ss − τ

3
2

)
= τ̃−

1
2

C3√
C2

1 + C2
2 + C2

3

.

4. Bäcklund Transformations of the KdV and Camassa-Holm Flows

Integrable curve flows in the centro-equiaffine geometry were discussed extensively
in [21,24,33,35,40]. It turns out that the KdV equation arises naturally from a non-stretching
curve flow in centro-equiaffine geometry.

For a planar curve γ(p) in the centro-equiaffine geometry, which satisfies [γ, γp] 6= 0, one can
reparametrize it by the special parameter s satisfying [γ, γs] = 1, where the parameter s is said to
be centro-equiaffine arclength. It follows that in terms of the free parameter p, the centro-equiaffine
arclength is represented by

ds = [γ, γp]dp.

Furthermore, the centro-equiaffine curvature of the curve γ(s) is defined to be

φ = [γs, γss].

Consider the planar curve flow in the centro-equiaffine geometry, specified by

γt = fN + hT, (55)

where N and T are normal and tangent vectors of γ. One can compute the time evolution of N and T

to get (
T

N

)
t

=

(
hs − f fs + φh

−h −f

)(
T

N

)
. (56)
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The Serret-Frenet formulae for curves in centro-equiaffine geometry reads

Ts = φN, Ns = −T. (57)

Assume that the flow is intrinsic, a direct computation shows that the curvature φ satisfies

φt = (D2
s + 4φ+ 2φs∂

−1)f. (58)

Letting f = φs in Equation (58), we get the KdV equation

φt = φsss + 6φφs. (59)

The corresponding KdV flow is

γt = φsN + 2φT, (60)

which was introduced firstly by Pinkall [18]. Now we consider the Bäcklund transformation of the
KdV flow (60)

γ̃(t, s) = γ(t, s) + αN + βT, (61)

where α and β are functions of t and s.
We now construct the Bäcklund transformations of the KdV flow. Differentiating Equation (61) with

respect to t and using Equation (60), we get

γ̃t =
[
αt + (1− α)φs + β(φss + 2φ2)

]
N +

[
2(1− α)φ+ βt + βφs

]
T. (62)

Assume that the curve γ̃ is also governed by the KdV flow, namely it satisfies

γ̃t = φ̃s̃Ñ + 2φ̃T̃, (63)

where s̃ is the arclength of γ̃, which satisfies ds̃ = (1−α+βs)ds. In Equation (63), T̃ and Ñ are tangent
and normal vectors of γ̃, which are related to T and N through

T̃ = γ̃s̃ = γ̃s
ds

ds̃
= T +

αs + βφ

1− α + βs
N,

Ñ = −γ̃ = −βT + (1− α)N. (64)

Further computation using Equation (62) leads to

γ̃s̃s̃ = γ̃s̃s
ds

ds̃
=
φ+

(
αs+βφ
1−α+βs

)
s

1− α + βs
N− αs + βφ

(1− α + βs)2
T. (65)

It follows from Equations (64) and (65) that the centro-equiaffine curvature of γ̃ is given by

φ̃ =
[
γ̃s̃, γ̃s̃s̃

]
=
φ+

(
αs+βφ
1−α+βs

)
s

1− α + βs
+

αs + βφ

(1− α + βs)3
. (66)

Plugging Equations (64) and (66) into the right hand side of Equation (63), and comparing the
coefficients of T and N with Equation (62), we deduce the following result.
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Theorem 4.1. The KdV flow is invariant with respect to the Bäcklund transformation (61) if α and β
satisfy the system

αt + (1− α)φs + β(φss + 2φ2) = (1− α)φ̃s̃ + 2
αs + βφ

1− α + βs
φ̃,

βt − 2(1− α)φ+ βφs = 2φ̃− βφ̃s̃,
(67)

where φ̃ is determined by Equation (66).

Example 4.1. It is easy to see that φ = 0 is a trivial solution of the KdV equation. Let φ = 0, then

φ̃ =

(
αs

1−α+βs

)
s

1− α + βs
+

αs
(1− α + βs)3

,

and system (67) becomes{
αt = (1− α)

(
αs̃s̃ + αs̃

(1−α+βs)2
)
s̃

+ 2αs̃
(
αs̃s̃ + αs̃

(1−α+βs)2
)
,

βt = 2
(
αs̃s̃ + αs̃

(1−α+βs)2
)
− β

(
αs̃s̃ + αs̃

(1−α+βs)2
)
s̃
.

(68)

This is a third-order quasi-linear system, it is difficult to solve it. For simplicity, we seek its
time-independent solutions: α = α(s̃), β = β(s̃). Denote

H = αs̃s̃ +
αs̃

(1− α + βs)2
.

Then system (68) reduces to

(1− α)Hs̃ + 2αs̃H = 0,

βHs̃ − 2H = 0.

Integrating it, we arrive at

H = c0(1− α)2, β =
α− 1

αs̃
, (69)

where c0 6= 0 is an integration constant. Employing the chain rule and ds̃ = (1− α + βs)ds., we have

βs = (1− α + βs)βs̃.

Solving it for βs, we obtain

βs =
(1− α)βs̃

1− βs̃
.

A direct computation using Equation (69) yields

βs̃ = 1 +
(1− α)αs̃s̃

α2
s̃

.

It follows from the above two equations that

1− α + βs =
α2
s̃

αs̃s̃
.
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In terms of αs̃, H can be denoted as

H = αs̃s̃ +
α2
s̃s̃

α3
s̃

.

Hence the first equation in Equation (69) becomes

αs̃s̃ +
α2
s̃s̃

α3
s̃

− c0(1− α)2 = 0. (70)

Using the hodograph transformation

y = 1− α(s̃), s̃ = w(y),

we get the equation for w(y)

w−3y (w2
yy − wyy)− c0y2 = 0.

This equation is reduced to the first-order ordinary differential equation

h−3(h2y − hy)− c0y2 = 0

by setting h = wy. Consequently, we derive a Bäcklund transformation (61) of the KdV flow (60), where
α(s̃) satisfies Equation (70) and β(s̃) = (α(s̃− 1)/αs̃(s̃).

Next we consider the Bäcklund transformation of the Camassa-Holm flow. Let f = vs(t, s) and
g = 2v(t, s), v = (1− ∂2s )−1φ, then flow (55) becomes

γt = vsN + 2vT, (71)

which gives the Camassa-Holm equation [6,44]

vt − vsst + vsss + 6vvs − 4vsvss − 2vvsss = 0. (72)

Therefore, Equation (71) is called the Camassa-Holm flow. Similar to the discussion for the modified
Camassa-Holm equation, we have the following result.

Theorem 4.2. The Camassa-Holm flow (71) admits the the Bäcklund transformation (61) if α(t, s) and
β(t, s) satisfy the system

αt + (1− α)vs + β
(
(1− 2v)vss + 2v2

)
= (1− α)ṽs̃ + 2ṽG1,

βt + 2v(1− α) + βvs = 2ṽF1 − βṽs̃,

where s̃ is the arclength of γ̃, determined by ds̃ = [(1 − α)(1 − α + βs) + β(αs + φβ)]ds,
ṽ = (1− ∂2s̃ )−1(F1G2 −G1F2), with

F1 =
1− α + βs

H
, G1 =

αs + βφ

H
,

F2 =
F1,s −G1

H
, G2 =

G1,s + φF1

H
,

H = (1− α)(1− α + βs) + β(αs + βφ).
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5. Bäcklund Transformations of the Sawada-Kotera Flow

Motions of curves in the affine geometry were discussed in [13,21,23,33,40]. It is well-known that
the Sawada-Kotera equation arises from a non-stretching curve flow in affine geometry.

For a planar curve γ(p) satisfying [γp, γpp] 6= 0 in affine geometry, we can reparametrize it by the
special parameter s satisfying [γs, γss] = 1, where the parameter s is said to be the arclength. So the
affine arclength can be expressed by

ds = [γp, γpp]
1
3dp.

Consider the planar curve flow in affine geometry, governed by

γt = fN + hT, (73)

where N and T are affine normal and tangent vectors of γ. The Serret-Frenet formulae for curves in
affine geometry reads

Ts = N, Ns = −µT, (74)

where µ is the curvature of the curve γ, defined by

µ = [γss, γsss]. (75)

One can compute the time evolution of N and T, to get(
T

N

)
t

=

(
hs − µf fs + µh

H1 H2

)(
T

N

)
, (76)

where H1 = hss − 2µfs − µh, H2 = fss + 2hs − µf . Assume that the flow is intrinsic, that means the
arclength does not depend on time. It is inferred from [ ∂

∂t
, ∂
∂s

] = 0 that

h = −1

3
fs +

2

3
∂−1s (µf).

A direct computation gives the equation for the curvature [21]

µt =
1

3
(D4

s + 5µD2
s + 4µsDs + µss + 4µ2 + 2µs∂

−1µ)f. (77)

Letting f = −3µs in Equation (77), we obtain the Sawada-Kotera equation [45]

µt + µ5 + 5µµ3 + 5µ1µ2 + 5µ2µ1 = 0. (78)

The corresponding Sawada-Kotera flow is [21]

γt = −3µsN + (µss − µ2)T. (79)

We now consider the Bäcklund transformation of the Sawada-Kotera flow (79), determined by
Equation (61), where N and T are respectively the affine normal and tangent of γ, α(t, s) and β(t, s)

depend on t and s.
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Using the Serret-Frenet formulae (74) and the Sawada-Kotera flow (79), we first have

γ̃t =
[
αt − 3µs − (µ3 + µµs)α− (2µss + µ2)β

]
N

+
[
βt + µss − µ2 + (µ4 + 3µµ2 + µ2

s + µ2)α + (µ3 + µµs)β
]
T.

(80)

On the other hand, assume that the new curve γ̃ is also governed by the Sawada-Kotera flow,
which satisfies

γ̃t = −3µ̃s̃Ñ + (µ̃s̃s̃ − µ̃2)T̃, (81)

where s̃ is the arclength of γ̃, defined by ds̃ = [γ̃s, γ̃ss]
1
3ds. In terms of the Sawada-Kotera flow, a direct

computation yields

γ̃s = (1− αµ+ βs)T + (αs + β)N := F1T + F2N,

γ̃ss = (F1,s − µF2)T + (F1 + F2,s)N := F3T + F4N.
(82)

Thus the arclength parameter of γ̃ can be determined by

ds̃ = (F 2
1 + F1F2,s − F2F1,s + µF 2

2 )
1
3ds := H1ds. (83)

Using this and the flow (61), one can determine the tangent and normal vectors of γ̃ by

T̃ =
1

H1

(F1T + F2N),

Ñ =
1

H1

[(
(
F1

H1

)s − µ
F2

H1

)
T +

(
F1

H1

+ (
F2

H1

)s

)
N

]
:= H2T +H3N.

(84)

Thus the affine curvature of γ̃ is

µ̃ = H2(H2 +H3,s)−H3(H2,s − µH3) := H4. (85)

Further computation gives

µ̃s̃ =
H4,s

H1

:= H5, µ̃s̃s̃ =
1

H1

(
H4,s

H1

)
s

:= H6.

It follows that

−3µ̃s̃Ñ + (µ̃s̃s̃ − µ̃2)T̃

=

[
−3H2H5 +

F1

H1

(H6 −H2
4 )

]
T +

[
−3H3H5 +

F2

H1

(H6 −H2
4 )

]
N.

Hence we have proved the following result.

Theorem 5.1. The Sawada-Kotera flow (79) is invariant with respect to the Bäcklund transformation (61)

if α and β satisfy the system

αt − (µ3 + µµs)α− 3µs − (2µss + µ2)β = −3H3H5 +
F2

H1

(H6 −H2
4 ),

βt + (µ3 + µµs)β + (µ4 + 3µµss + µ2
s + µ2)α + µss − µ2 = −3H2H5 +

F1

H1

(H6 −H2
4 ).
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