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Abstract: In this paper we present a novel unsupervised approach to detecting and segmenting 

objects as well as their constituent symmetric parts in an image. Traditional unsupervised 

image segmentation is limited by two obvious deficiencies: the object detection accuracy 

degrades with the misaligned boundaries between the segmented regions and the target, and 

pre-learned models are required to group regions into meaningful objects. To tackle these 

difficulties, the proposed approach aims at incorporating the pair-wise detection of 

symmetric patches to achieve the goal of segmenting images into symmetric parts. The skeletons 

of these symmetric parts then provide estimates of the bounding boxes to locate the target 

objects. Finally, for each detected object, the graphcut-based segmentation algorithm is applied 

to find its contour. The proposed approach has significant advantages: no a priori object 

models are used, and multiple objects are detected. To verify the effectiveness of the 

approach based on the cues that a face part contains an oval shape and skin colors, human 

objects are extracted from among the detected objects. The detected human objects and their 

parts are finally tracked across video frames to capture the object part movements for 

learning the human activity models from video clips. Experimental results show that the 

proposed method gives good performance on publicly available datasets. 

Keywords: object detection and segmentation; Hough voting; human activity recognition; 

symmetry detection 
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1. Introduction 

Part-based object detection and segmentation is an important problem in computer vision. Classical 

object detection methods often use learned models to detect and recognize the targets [1,2].  

Quality-conscious object segmentation spans a new way to build the most discriminative models, 

compared with classical object modeling schemes, which often delimit the training objects with 

inaccurate bounding boxes. Recently, segmentation-based tracking, incorporating temporal information 

of object movements to improve the detection accuracy, has attracted great attention in the field of video 

object segmentation [3–5] due to its potential for many vision-based applications, such as video 

surveillance, man-machine interfaces, sports analysis, and authoring of video games [6]. To incorporate 

the spatial and temporal information for improving the accuracy of object segmentation is particularly 

important and remains a challenge. 

Object segmentation is generally far more difficult than low-level image segmentation, which groups 

pixels of similar features, i.e., colors, textures, and optical flows, into regions, without inferring the 

complete image understanding models. During the past three decades, intensive research works have 

been carried out in the automatic segmentation domain [7–12]. These techniques achieve efficient 

segmentation by subdividing an image into a number of moving objects and the background according 

to a homogenous low-level feature criterion and object tracking. This homogenous grouping almost 

extracts semantically incomplete objects, each of which perhaps consists of multiple parts with different 

homogeneous features. Moreover, using a tracking or body pose estimation in real world videos is 

generally not reliable due to object occlusion, distortion and changes in lighting. Semi-automatic semantic 

object segmentation algorithms [13–15] are thus proposed to tackle these difficulties. In the common 

first step of these methods, users initially identify a semantic object by using tracing interface and the 

computer automatically tracks the segmented object for the successive frames.  

Recent approaches suggest using pre-learned object models to detect, segment, track, and recognize 

the target objects in images [1,16–18]. For instance, in [1], parts arranged in a deformable configuration 

are modeled to capture the local property of objects. The use of visual patterns of local patches in object 

modeling is related to several ideas, including the approach of local appearance codebooks [19] and the 

generalized Hough transform (GHT) [20] for object detection. At training time, these methods learn a 

model of the spatial occurrence distributions of local patches with respect to object centers. At testing 

time, based on the trained object models, the visual patterns of patches, with points of interest as their 

centers, are matched to visual codebooks to locate the targets using the Hough voting framework. 

However, the effectiveness of visual pattern grouping by Hough voting is heavily dependent on the 

quality of the learned visual model, the ability to precisely locate the target objects, and the features 

extracted from training samples. 

Many object detection approaches are limited by the ill-defined object models, which are trained from 

a set of limited views and deficient in characterizing the texture in local parts and their spatial 

constraints [1,2]. The performance of these methods degrades dramatically when the input image has 

enormous deformation compared with the training images. Symmetry, however, is an essential 

characteristic of man-made or natural objects. Accordingly, the motivation of this paper is to integrate 

symmetry detection into classical object detection and segmentation to construct a model-free approach. 

Instead of learning a complex object model using a large amount of training samples, our approach 
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defines the part-based object detection and segmentation to be the task of decomposing an image into 

constitute salient symmetric parts, each of which is characterized by a common set of local features, i.e., 

symmetric skeletons, dominate colors, and shape descriptors. Thus, our approach first detects salient 

symmetries in the test image with the Hough voting framework. The patches that constitute each of the 

detected symmetries are then determined by the inverse Hough transformation. The clusters of 

symmetries are generated to locate potential objects, each of which is specified with a bounding box. 

Finally, performing classical image segmentation on each bounding box, the target object is segmented.  

Object classifiers can be further used to annotate, check and interpret the detected objects. Traditional 

object classifiers are trained from a set of weakly annotated sample objects, each of which is specified 

by a bounding box with undesirable background information. Instead, the proposed object detection and 

segmentation would introduce less noise from the targets and help avoid performance degradation in 

both the learning and recognition of object classifiers. To verify the effectiveness of the object detection 

and segmentation, we perform the face detection algorithm [21] on all detected parts to locate human 

objects. The detected human objects and their parts are then tracked across video frames to capture the 

object part movements for learning the poselet-like models, which had been verified to be effective in 

human activity recognition [22]. Experimental results show that the proposed method gives good 

performance on publicly available datasets in terms of detection accuracy and recognition rate. 

The remainder of this paper is organized as follows. Section 2 presents the related work for the 

semantic object segmentation and symmetry detection. Section 3 describes the approach to deal with the 

object segmentation based on the detected results of the salient symmetric parts. Section 4 presents the 

application on human activity recognition. Section 5 describes the experimental tests to illustrate the 

effectiveness of the proposed method. Finally, conclusions are drawn in Section 6. 

2. Related Work 

Segmentation-based object recognition has been extensively studied with many algorithms  

available [12,23–25] in computer vision. Among them, the most interesting approach related to object 

recognition is semantic segmentation, which assigns each pixel in an image to one of several pre-defined 

semantic categories [23]. Compared to classical low-level unsupervised segmentation, which groups 

pixels of similar features, such as color, texture, or optical flows into homogeneous regions, semantic 

segmentation uses a supervised learning algorithm to build up semantic object models. 

State-of-the-art semantic segmentation algorithms often use the local appearance model of an object 

to estimate the score of a pixel, a patch, or a region belonging to the target category [12,23,26–28]. To 

address the labeling consistency between neighboring local appearances, the local consistency model is 

then used to further group pixels, patches or regions into parts, though these parts still need merged to 

capture an object as a whole [1,2,29,30]. Therefore, a global consistency model is finally used to enforce 

global consistencies, i.e., at a region or image level [30,31]. Girshick et al. have shown that rich feature 

hierarchies are very useful for accurate object detection and semantic segmentation [32]. 

Recently, object segmentation in videos spans a way to estimate the object boundaries by tracking 

pixels, patches, or regions to obtain their trajectories. Local elements with similar trajectories are then 

grouped into parts and objects [3–5,7,9–15]. However, the accuracy of any boundary estimate is limited 

by a number of systemic factors such as image resolution, noise, motion skew and the object occlusion. 
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For example, formulating object segmentation as motion segmentation using optical flow rests on the 

assumption of brightness constancy, which is violated at moving boundaries, resulting in poor estimates 

of object contours [33]. Object segmentation also tries to detect and segment the observed motions into 

semantic meaningful instances of particular activities from videos [17]. To reach this goal, recent 

approaches consider the detection and recognition of the video object as an extension of 2D object 

detection with higher dimensionality. 

Many human-made objects, human bodies, natural scenes, or animals have symmetric parts. Several 

feature-based approaches have been proposed in the literature to detect symmetries in images for object 

detection and segmentation [34–36]. The common process in these approaches is that they dedicate the 

design of the reliable features for patch correspondences. For instance, Hsieh et al. designed a symmetric 

transformation to provide a framework for finding pairs of symmetric patches in vehicle images [36]. A 

recent survey of the symmetry in 3D geometry can be found in [37]. Although the symmetries provide 

a natural way to group low-level patches into middle-level parts, the combination of symmetric parts 

into high-level objects remains a challenging problem. Some methods depend on a prior global 

consistency model about the target object to perform top-down detection [29]. On the contrary, 

unsupervised object detection and segmentation, which does not rely on either human input, or top-down 

information, is important due to its potential in a variety of applications. 

3. Unsupervised Object Detection and Segmentation 

In this section, we present a probabilistic symmetry-based framework for combined object detection 

and segmentation. First we outline the notations to define the problem, and then emphasize the symmetry 

detection and clustering to estimate object locations. This is followed by image segmentation to obtain 

precise object boundaries. Finally, we describe a generative model that sets the foundation of our 

proposed object detection and segmentation. 

3.1. Notations and System Overview  

Let I and O, respectively, denote the image frame and the object frame (a bounding box in I, shown 
in Figure 1b). Let N

nn 1}x{x   denote the set of centers of the sampled patches N
nnP 1}{P   in O, and 

N
nnf 1}{F   be the set of feature vectors to describe P. The object being segmented is represented by its 

shape C, the bounding box B, and the set S of symmetries determined by the set M of symmetric patch 

pairs. The bounding box B can be used to intersect the segmentation result obtained by performing image 

segmentation on I [24] to obtain the final object segmentation. The feature of an 8 × 8 patch used in this 

study is the well-known histogram of gradients (HOG) [38] though other complex features such as  

scale-invariant feature transform (SIFT) [39] or speeded up robust features (SURF) [36] descriptors can 

also be used as the replacement. A patch pair is in M if their HOG distance is less than a predefined 

threshold. The optical flow of a patch can also be used as the supplementary feature to improve the 

detection accuracy of symmetric parts when it is available. 

The unsupervised approach consists of six pipelining steps, shown in Figure 2, to automatically locate 

multiple objects in an image, I. To perform the well-known Canny edge detection on I, we divide I into 

multiple 8 × 8 patches, each of which is described by the center (an edge point) and the HOG feature 
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vector. Next, based on a distance function in terms of HOG, patches in I are grouped into multiple 

clusters, each of which determines a set of symmetric patch pairs with the symmetry detection by Hough 

voting to follow. These detected symmetries are then used to model the object structures with a graph 

representation, which is optimally partitioned with the domain sets algorithm [39]. Each symmetry  

sub-graph estimates the bounding box B of an object. Finally, to use the graph cut algorithm [24] on B, 

the approach locates an object, which contains as less background as possible. A significant contribution 

of our approach is, at the moment of object detection, no tedious object models need learned in advance. 

 

Figure 1. An example to illustrate the generative model: (a) the original image; (b) two 

bounding boxes to locate the target objects, i.e., a person and a bottle; (c) perform the Graph 

cut segmentation algorithm [24] to obtain the segmentation results; (d) graphical 

representation of the generative model used in our method. 

 

Figure 2. The overall procedure for the object detection and segmentation: (a) the input 

image is first partitioned into multiple patches; (b) the set of candidate symmetric patch pairs 

generated by matching patches in (a) with each other; patch pairs in (b) are used to generate 

the Hough voting image (c) whose peaks locate the salient symmetric axes and parts, shown 

in (d); (e) these detected symmetries are then used to estimate the bounding box of the target 

object; the sub-image constrained by the bounding box is segmented to obtain the 

segmentation mask; and the result, shown in (f) and (g), respectively. 
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3.2. Discovery of Symmetric Patch Pairs  

An image, I, is first partitioned into multiple overlapping 8 × 8 patches Pi, i = 1, …, N with edge 

points as the centers xi. For each patch, an 8-bin HOG descriptor with the quantization angles j × 45°,  

j = 0, …, 7 is used to represent its local appearance [1,38]. However, HOG lacks the capability of defining 

symmetric patch pairs, and thus we should firstly define the symmetric relations between patches in 

terms of HOG descriptors. Figure 3 shows that a small patch sampled from the contour of an object 

could contain a line edge, and the peak bin angle of the corresponding HOG approximates the gradient 

direction of the line in the patch.  

 

Figure 3. Using line edges to approximate the contour of an object. 

Let fi be the HOG of patch Pi. The first step to discover all symmetric patch pairs in I is to cyclically 
right shift fi to obtain the normalized if  with the peak being on the bin 0. We search the symmetric 

patches of Pi in the L × L window surrounding Pi, where L is the maximal distance between two patches 
belonging to the same object. The similarity measurement, based on the normalized HOGs if  and jf , 

measures the similarity between patches Pi and Pj as follows: 

( , ) δ(|| || )( )i j i j i jSim P P x x L f f     (1)

where δ(|| || )i jx x L  is the delta function that returns 1 when the geometric distance between the 

centers of Pi and Pj is less than L, otherwise it returns 0; ( )i jf f is the inner product to measure the 

similarity between if  and jf . Using (1) and the k-means clustering [40], patches in I are grouped into k 

clusters 1{ }k
i iPC  . 

As mentioned above, two patches belonging to the same cluster form a pair of symmetric patches. 

Thus, the set of symmetric patch pairs can be defined as:  

 ( , ) | , 1,..., , , 1,...,i j i n j nP P P PC P PC i N j i n k      M  (2)

Note that the value of k could not be large to preserve most of the potential symmetric patch pairs, 

and this brings fast convergence to the k-means clustering. Thus, the computational complexity to 

execute the patch clustering on-the-fly is not high. 

3.3. Discovery of Symmetric Parts 

Let {Pi, Pj} be a patch pair in M. The pairwise patches of M can determine the skeleton K of the 

corresponding symmetric part shown in Figure 4a. Also let (li, mi) and (lj, mj) be the normal vectors of 

gradient direction of Pi and Pj, respectively. These two normal vectors determine two lines  

Li = xi + ti (li, mi) and Lj = xj + tj (lj, mj). The intersection point (X, Y) of Li and Lj can be obtained by 
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( , ) ( , ) λ( , ),λ [ ( ) ( )] ( )i j i j j j i j j i i j j iX Y x y l m m x x l y y l m l m        (3)

We can also compute the included angle ψ between Li and Lj by 

1ψ tan
1

j i

j i

 
 

 



 (4)

where 1 1( , ) (tan , tan )ji
i j

i j

mm
l l    . Next, as shown in Figure 4b, we compute the skeleton K 

characterized by two parameters (r, θ): 

2 2 1 π ψ
( ,θ) ( cos(θ tan ), )

2 2 jr X Y Y X        (5)

The local similarity measurement for },{ ji PP  then casts a vote on the 2D (r, θ) space V: 

V( ,θ) V( ,θ) ( , )i jr r Sim P P  . (6)

We collect the votes from all symmetric patch pairs in M to generate the Hough voting image V. In 

what follows is the peak detection on V to define the skeletons of salient symmetries with the criterion: 

: cosθ sin θ  if V( ,θ) γ for all ( ,θ)K x y r r r    (7)

where γ is a pre-defined threshold. The member patch pair Pij = (Pi,Pj) to constitute a symmetry S with 

skeleton K characterized by (r, θ) can thus be defined as: 

 | M ( ,θ)ij ij sS P P P INV r     (8) 

where INV(r, θ) is the inverse Hough transform on V(r, θ) that returns the set of patch pairs casting votes 

on (r, θ). Multiple peaks can be detected from V to locate multiple salient symmetric parts for the input 

image I. Note that the patch pairs not in M are supposed to be less similar and are excluded from casting 

a vote on the Hough voting image V. This avoids generating spurious peaks. Figure 5 shows an example 

to illustrate the Hough voting framework for symmetry detection. 

 

Figure 4. Determining the skeleton of a symmetric part using pairwise symmetric patches 
},{ ji PP . (a) The skeleton K of the corresponding symmetric part determined by the pairwise 

patches; (b) The skeleton K characterized by two parameters (r, θ).  
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Figure 5. An example to illustrate the Hough voting framework for symmetry detection: 

(a) the original image; (b) the intersection points of symmetric patch pairs; (c) the Hough 

voting image; and (d) the peak detection and inverse Hough voting to compute the skeletons 

and symmetries. 

3.4. Object Detection with Symmetry Graph Partitioning  

The set of detected symmetries 1{ }s
k kS S  can be used to locate multiple objects in I by merging 

highly correlated symmetries. Let 1{ }s
k kK K the set of skeletons to describe the symmetric axes of S. 

Every skeleton Kk is a line and characterized by two parameters (rk, θk). As mentioned above, using (3), 
the (i,j)-th patch pair Pij in Sk defines an intersection point ( , )ij ij ijx X Y . These intersection points 

defined by patch pairs in Sk can be used to estimate the bounding rectangle that locates the corresponding 
symmetric part. To achieve this goal, we first compute the part center ( ) ( ) ( )( , )k k kx X Y  as the mean 

of kx : 

( ) 1

| | ij k

k
ijP S

k

x x
S 

   (9)

( ) 2 ( ) 2( ) ( )k k
ij ij ijd X X Y Y     (10)

where |Sk| is the cardinality of Sk. We also compute the distances dij to measure the part elongation along 

the skeleton Ki, which is characterized by the line parameters (rk, θk). Using (10), the potential outliers 

in Sk are defined as: 

 ( ) | 2σ ,e
k ij ij k ij kS P d P S    (11)

where 2 21 1
σ ( )

| | | |
ij k ij k

k ij ij
P S P Sk k

d d
S S 

   is the distance variance of Sk. To have a better estimation of the 

symmetry using Sk, we eliminate the outliers from the original Sk, i.e., ( ) ( ) ( )new old e
k k kS S S  . 

We also define the line kK   passing ( )kx and being orthogonal to Kk as: 

: sinθ cosθk k k kK x y r     (12)
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where ( ) 2 ( ) 2( cosθ ) ( sinθ )k k
k k k k kr X r Y r     . The line kK  divides Sk into two parts according to 

the following rule: 

sinθ cosθ 0b
k ij k ij k k

ij u
k

S if X Y r
P

S otherwise

    



 (13)

The patch pairs to define the top and bottom boundaries of the bounding box Bk of Sk can thus be 

defined as: 

( , ) (arg max ,arg max )
b u

ij k ij k
b u ij ij

P S P S
P P d d

 
  (14)

where the distance function d is defined in (10). The lines Lb and Lu that are passing through the centers 
of Pb and Pu and parallel to kK  then define the top and bottom boundaries of Bk, respectively. 

Similarly, the skeleton Kk of Sk divides the patches in Sk into two parts: 

cosθ sinθ 0l
k i k i k k

i r
k

S if x y r
P

S otherwise

   



 (15)

where (xi, yi) is the center of the patch Pi in Sk. The patches to define the left and right boundaries Bk of 

Sk can thus be defined as: 

( , ) (arg max ,arg max )
l r

i k i k
l r i i

P S P S
P P d d

 
  (16)

where | cosθ sinθ |i i k i k kd x y r   is the distance between Pi and Kk. The lines Ll and Lr that are passing 

through the centers of Pl and Pr and parallel to Kk then define the left and right boundaries of Bk, 

respectively. Figure 6c shows the bounding boxes of detected symmetries in Figure 6b.  

 

Figure 6. Object detection with the symmetry graph representation: (a) the original image; 

(b) the detected skeletons and symmetries; (c) the estimated bounding boxes of the 

symmetries in (b); (d) the symmetry graph; (e) graph partitioning by the dominant sets 

algorithm [28]; (f) the merged bounding box for the person object; (g) the contour of the 

object using the graphcut segmentation algorithm [24] on (f); and (h) the segmentation result. 
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The bounding boxes belonging to the same object might heavily overlap with each other. To locate 

objects in the input image based on the symmetry graph representation, this paper uses the well-known 

dominant sets algorithm [39] to merging symmetries into objects. We first construct a weighted 

symmetry graph G = (S, E) where S is the set of detected symmetries (the set of nodes) and E is the set 

of edges. The weight on an edge between nodes i and j is defined as: 

i j
ij

i j

B B
w

B B





 (17)

where Bi and Bj are the bounding boxes of symmetries i and j, respectively. Modeling an object as a 

dominant sets, the graph partitioning algorithm optimally divides the symmetry graph G into multiple 

sub-graphs, each of which merges its member symmetries into an object [39]. Obviously, the bounding 

box of an object might contain background information, which would degrade the performance of the 

resulting object classification. To tackle this difficulty, the graphcut algorithm [24] can be further used 

to eliminate the irrelevant background in the bounding boxes of the detected objects. 

3.5. The Generative Model 

We are now ready to describe the probabilistic generative model, which derives the foundation of 

object detection and segmentation. The underlying concept behind the graphical model is that, given the 
set of symmetric patch pairs M, we can sample an object patch { , }n nx f  where the patch center is xn and 

the patch feature is fn. The graphical model shown in Figure 1d tells us the joint distribution for a patch is 

P( , , , , , ) P( | , ) P( | ) P( ) P( ) P( | ) P( )n n n nx f x fB S M P B P P B|S S|M M P P  (18)

We first condition on xn and fn and assume both P(xn) and P(fn) to be constant. Then we condition on 

P, so the prior term P(P) is removed. Dividing both sides of (18) by P(xn), P(fn) and P(P), we get the 

following expression: 

P( , , | , , ) P( | , )P( | ) P( )P( )P( )n n n nx f x fB S M P B P P B|S S|M M|P  (19)

To take product over the patch-wise posterior, the posterior probability to be maximized is 

 
1

P( , , | , , ) P( | , ) P( | ) P( ) P( ) P( )
N

n n n n
n

x f x f


B S M P B P P B|S S|M M|P
 

(20)

Now we explain each of the distribution terms in (20) in details. P( | , )nx B P  is the probability of the 

pixel location xn given the bounding box B and the set of sampled patches P. The function of this term 
is to select patches belonging to P and constrained by B. Similarly, P( | )nf P  is the probability of the 

patch feature fn belonging to P. P(B|S) represents the probability of the bounding box B given the set of 

detected symmetries S, which is determined by M with the probability P(S|M). Finally, P(M|P) is the 

probability of patch pairs that are symmetrical with each other. The goal of our method is to seek the 
parameters of B, M, and S that maximize the posterior probability P( , , | , , )n nx fB S M P . To achieve the 

goal, a pre-learned object model should be built up using a generic training approach. However, the 

learning approach to build up a high-precision object model is obviously not a trivial work. Instead of 
the usage of the object model, the approach uses a greedy method to optimize P( , , | , , )n nx fB S M P . 

The value of P(M|P) in (20) can thus be estimated by  
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2

2 | |
P̂( | )

N


M
M P  (21)

where |M| is the size of M. Obviously, this value depends on the number of patch clusters. The 

probability P(S|M) can be further decomposed into 

1,...,
P( | ) P( | ) P( )i ii k

S S


 S M M  (22)

since we can detect k peaks in the Hough voting image V to locate the corresponding salient symmetries 

1{ }k
n nS S . To apply the inverse Hough voting, we can estimate the value of P(Si) with the ratio of the 

number of patch pairs to construct Si to the size of M and the value of P(Si|M) by the voting value of the 

i-th peak in V. That is, the estimated value of P(Si|M) can be computed by 

1( , )

1
P̂( | ) | | , )

| | ,

k

i i i
ir

S r
r 

 
 

S M V(
M V( )

 (23)

Finally, the dominant sets algorithm and the graph cut segmentation are used to optimize the terms 

P(B|S) and  
1

P( | , ) P( | )
N

n n
n

x f

 B P P , respectively. 

4. The Application to Human Activity Recognition 

One obvious deficiency of unsupervised object detection and segmentation is that the semantic lack 

of detected objects. To tackle the difficulty, in constructing a real-world application, the object semantics 

could be augmented by a model. We use poselet models [22], shown in Figure 7, to explore the degree 

of the quality-conscious object detection and segmentation in improving the performance of human 

activity recognition. 

To train a human activity classifier using SVMs, a dataset  
1

( , )
T

i i i
V y


D is collected, where Vi is a 

video sample and yi is the label of Vi. To build the multi-class activity model based on the  

symmetries-based object detection, we firstly perform a generic key frame detection [41] on the input 

video to obtain a compact video representation. Next, the proposed object detector divides every frame 

into multiple objects, in which the human objects are identified by a fast facial detection  

algorithm [42]. The detected human objects in key frames are then divided into J poselets, which localize 

discriminative parts of the body and are proven to be effective for human activity recognition [22]. 

Inspired from the work of [22] and based on a few weak annotations on a sparse set of frames, shown in 

Figure 8, two types of poselet features, including the HOG descriptors and the BoW features, are used 

for training the poselet detector. The BoW features, quantized dense descriptors (SIFT [43], histogram 

of optical flow (HOF) [44], and motion boundaries (HoMB) [45]), are used to augment the HOG 

descriptors for capturing the motion information of poselets. In this paper, the background information 

is removed from the poselets by the segmentation scheme, which, in turn, improves both the quality of 

the poselet models in the learning phase and the recognition accuracy in the testing phase. 
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Figure 7. System flowchart of the application to human activity recognition.  

 

Figure 8. Examples of annotated poselets. 

In the training phase, the annotated training samples are trained to learn poselet-specific HOG and 

BoW templates. In the testing phase, these poselet templates are used to locate the poselets in the human 

objects of a frame. For each video frame, we collect the highest scores from both HOG-based and  

BoW-based poselet templates by performing the branch-and-bound techniques [46] on the detected 

human objects to represent the frame as a poselet activation vector [47]. Our feature representation 

represents a video as a HOG-based feature sequence and three BoW-based feature sequences. Finally, 

for each poselet model, a SVM classifier with a multi-channel string kernel [48] is trained to form a  

part-based weak classifier. The multi-channel string kernel is defined as: 

1
( , ) exp( ( , ))P i i

i i

g F F D F F
A

     (24)

where F and F′ are two multi-channel histogram-based feature sequences; ( , )i iF F   are the i-th channel 

feature sequences for ( , )F F  ; ( , )P i iD F F   is the distance between  and i iF F  using dynamic 

programming; Ai is the average of Dp distances using the i-th channel features of training samples. These 

poselet SVMs are then bootstrapped to constitute an ensemble classifier for human activity recognition. 

The rule to classify the input video clip V, which is represented by k key frames, is thus  

1,...,

( ) arg max( ( )), ( ) α δ( ( ) )j j
c C

j J

c V Score c Score c s V c
 

    
(25)
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where A is the set of activity classes and sj is the j-th poselet SVM classifier with the weighting factor 

αj which is proportional to the accuracy of activity recognition using sj. αj was determined in the 

training phase. 

5. Experimental Results 

A series of experiments was conducted on an Intel CORE i7 3.0GHz PC and three datasets, The 

INRIA dataset [49], the PASCAL VOC 2012 dataset [50], and the UT-Interaction dataset [51], are 

constructed to evaluate the performance of the human object detection and activity recognition system. 

The INRIA dataset has been used in many static person detection studies. It annotates a training dataset 

including 614 positive samples and 1218 negative samples. Multiple poses are included in both the training 

and testing datasets. Also many different natural scenes are used to construct the set of negative 

examples. The size of the image in the INRIA dataset is 64 × 128. The PASCAL VOC 2012 dataset 

contains 20 object classes with all images taken from natural scenes. The train and validation dataset has 

11,530 images containing 27,450 region of interest (ROI) annotated objects and 6929 segmentations. Among 

them, the person class has 632 images. The UT-Interaction dataset contains 20 videos of continuous 

executions of six classes of human-human interactions: hands shaking, pointing, hugging, pushing, 

kicking and punching. Ground truth labels for these interactions are provided, including time intervals 

and bounding boxes. Every video sequence taken with the resolution of 720 × 480, 30 fps, and the height 

of a person in the video is about 200 pixels. The lengths of video sequences are around one minute. Each 

video contains at least one execution per interaction, providing us eight executions of human activities 

per video on average. Several participants with more than 15 different clothing conditions appear in the 

videos. Furthermore, the dataset is divided into two sets. Set 1 is composed of 10 video sequences taken 

on a parking lot. The videos of set 1 are taken with slightly different zoom rate, and their backgrounds 

are mostly static with little camera jitter. Set 2 (i.e., the other 10 sequences) are taken on a lawn in a 

windy day. Background is moving slightly (e.g., tree swaying), so they contain more camera jitters. Each 

set has a different background, scale, and illumination. Figure 9 shows several images of these 

three datasets. 

First of all, to clarify the differences between the proposed unsupervised object segmentation method and 

the standard image segmentation method, the graph cut algorithm [24] is implemented, which is used to 

segment images into regions. Notice that the segmentation results of both the proposed and graph cut 

algorithms contain multiple objects in an image. However, the latter does not group regions into objects. On 

the contrary, our method spans a new way to group detected symmetries into objects using a symmetry graph 

partition algorithm. The contour of the target object can also be obtained by intersecting the detected object 

with the segmented regions. Thus, the proposed method solves the problem of image segmentation in object 

segmentation. Incorporating the segmentation results of the graph cut algorithm into the object detection 

approach, Figures 10–12 show examples of the object detection and segmentation using the three 

datasets. To compare the performance between the proposed method and regions with CNN features  

(R-CNN) method [32], the detection quality judged subjectively for both methods is compatible. Note that 

R-CNN trains high-capacity convolutional neural networks (CNNs) in advance to the bottom-up region 

proposals in order to localize and segment objects. Accordingly, the symmetry detection unequivocally 

facilitates effective object detection and segmentation without the object models. 
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Figure 9. Example images of the datasets: (a) the positive and negative training samples of 

the INRIA dataset; (b) examples of the “person” class of the PASCAL VOC 2012 dataset; 

(c) sample interactions in the UT-Interaction dataset. 

 
(a) 

  
(b) 

Figure 10. The object detection and segmentation results of the compared approaches using 

the dataset INRIA: (a) each row from left to right: original image; segmentation result of the 

graph cut algorithm; Hough voting image; major detected symmetric parts; object mask; and 

segmentation result of the proposed method; (b) the detection results [52] of R-CNN [32] on 

images from Flickr. The training data are from PASCAL VOC. 



Symmetry 2015, 7 441 

 

 

 
(a) 

  
(b) 

Figure 11. The object detection and segmentation results of the compared approaches using 

the dataset PASCAL 2012: (a) each row from left to right, original image; segmentation 

result of the graph cut algorithm; Hough voting image; major detected symmetric parts; the 

object mask; and segmentation result of the proposed method; (b) the detection results [52] 

of R-CNN [32] on images from Flickr. The training data are from PASCAL VOC. 

 
(a) 

 
(b) 

Figure 12. The object detection and segmentation results of the compared approaches using the 

dataset UT-Interaction: (a) each row from left to right: original image; segmentation result 

of the graph cut algorithm; Hough voting image; major detected symmetric parts; object 

mask; and segmentation result of the proposed method; (b) the detection results [52] of  

R-CNN [32] on images from Flickr. The training data are from PASCAL VOC. 
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The class labels, as ground truth for images in the test datasets, are used to determine the accuracy of 

human object detection. For the proposed approach, the problem of human object detection is tackled by 

automatically locating objects with facial parts in the detected object set of an image. That is, we do not 

need constructing a person classifier, which is necessary for many existing person detectors. To test the 

effectiveness of the person detector, classification results are shown in Table 1 for the proposed and 

compared state-of-the-art recognition systems [1,53–59]. The proposed approach outperforms the 

compared methods since symmetric properties are salient features in person objects. 

We follow the same localization evaluation rule in [22]: a detection is considered correct if, (1) the 

poselets in a human object are correctly classified, and (2) the intersection-union ratio of the detection 

and ground truth bounding box is not less than a threshold θ. For the UT-Interaction dataset, selected 

frames were hand-annotated with bounding boxes, and the bounding boxes for the frames in between 

were generated by linear interpolation. Table 2 shows the performance comparison in poselet 

localization accuracy using the dataset UT-Interaction. The proposed method has a better result 

compared to [22] because our features in constructing the poselet detectors are from more accurate 

results of human object detection and segmentation. Thus, our final features contain less irrelevant 

background in representing the corresponding poselets. Moreover, we detect poselets from human 

objects detected in the previous step of the approach. Consequently, this increases the robustness in the 

poselet detection. Figure 13 also shows examples of poselet detection using the UT-Interaction dataset. 

Table 1. Performance comparison in person detection using the datasets INRIA and 

PASCAL 2012. 

Dataset Methods 
Detection 

Accuracy 
Dataset Methods 

Detection 

Accuracy 

INRIA 

Proposed 78.1% 

PASCAL 

2012 

Proposed 50.1% 

HOG-LBP [53] 61.5% CVC_CLS [54] 42.3% 

LARSVM-V2 [1] 77.3% NEC [55] 32.8% 

MULTIFER+CSS [56] 75.0% SYSU_DYNAMIC[57] 37.5% 

FEATSNTH [58] 69.0% OXFORD [59] 46.1% 

Table 2. Performance comparison in poselet detection using the dataset UT-Interaction. A 

detection is considered correct if, (1) the poselets in a human object are correctly classified, 

and (2) the intersection-union ratio of the detection and ground truth bounding box is not 

less than a threshold θ. 

Threshold Methods Accuracy 

θ = 0.25 
Proposed 100% 

Raptis et al. [22] 86.7% 

θ = 0.50 
Proposed 100% 

Raptis et al. [22] 86.7% 

θ = 0.75 
Proposed 85.4% 

Raptis et al. [22] 83.3% 

θ = 1 
Proposed 81.3% 

Raptis et al. [22] 80.0% 
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(a) 

 
(b) 

Figure 13. Examples of poselet detection using the UT-Interaction dataset: (a) a “Kick” 

activity; (b) a “Push” activity. The bounding boxes locate the detected poselets in 

individual frames. 

Evaluations of our approach in human activity recognition are carried out with a leave-one-out  

cross-validation method. Classification results are shown in Table 3 and compared with state-of-the-art 

recognition systems [22,60–68]. Accordingly, the proposed method has a great improvement in classification 

accuracy. Note that both the poselet models and the feature setting to describe poselets in the approach of 

Raptis et al. [22] are adopted in our human activity recognition. However, the proposed approach has better 

performance in terms of classification accuracy. This is because the detected poselets are more accurate 

compared to those of [22]. Figure 14 shows the confusion matrices of the UT-Interaction dataset for the 

proposed and the method by Raptis et al. Both matrices show similar confusion patterns. This shows that 

poselet models are effective in human activity recognition. The detection of symmetries is not always 

accurate in the class “Kick” because the symmetries to constitute the poselets in this class are often occluded 

with each other. This degrades the accuracy to recognize “Kick” activities. 

Table 3. Comparison of UT-Interaction classification with other methods. “–” indicates the 

data is not provided in the original papers. 

Method Set 1 Set 2 Total 

Proposed 96.6% 91.6% 94.1% 

Patron-Perez et al. [60] 84% 86% 85% 
Waltisberg et al. [61] 88% 77% 82.5% 

Vahdat et al. [62] 93% 90% 91.5% 
Yu et al. [63] – – 91.7% 

Burghouts et al. [64] – – 88.3% 
Raptis et al. [22] – – 93.3% 

Mukherjee et al. [65] 85% 73.3% 79.17% 
Ryoo [66] – – 85% 

Kong et al. [67] – – 88.3% 
Zhang et al. [68] 95% 90% 92.5% 
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Figure 14. Confusion matrices for UT-Interaction data: (a) proposed method; (b) Raptis et al. [22]. 

6. Conclusions 

In this paper, we have presented an interesting approach for unsupervised object detection and 

segmentation, based on the fusion of symmetries detection, dominate sets clustering, and image 

segmentation. To use the object detection and segmentation as a processing, we also have presented a 

systematic way to construct a bank of poselet SVM classifiers for human activity recognition. The 

proposed activity recognition modeling encodes every video as a sequence of multi-channel  

histogram-based feature sequences. Multi-channel string kernels are thus introduced to improve the 

recognition accuracy of week classifier with individual poselet models. For each class, a set of training 

videos is also used to train an ensemble classifier, which verifies the correctness of the candidate detected 

human activities at testing time.  

Compared with related human object detection and activity recognition methods, the proposed 

method makes a significant contribution: this paper formulates the problem of object detection through 

symmetries detection. Not only can the dynamic programming process model the activities of training 

videos as multi-channel poselet feature sequences, the procedure can also be used to detect and recognize 

human objects from the input video clip automatically. Our system presents an approach to detect 

multiple human objects from a video clip. Experimental results show that the proposed method performs 

well on several publicly available datasets in terms of detection accuracy and recognition rate. 

The proposed method, however, suffers from the following limitations. The computational 

complexity of our approach using class-specific model matching through dynamic programming and 

Hough voting is essentially high. Future work will focus on implementing the system on parallel 

architecture, e.g., a GPU servers and cloud computing platforms.  
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