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Abstract: We discuss a method to obtain closed-form expressions of f(A), where f

is an analytic function and A a square, diagonalizable matrix. The method exploits
the Cayley–Hamilton theorem and has been previously reported using tools that are
perhaps not sufficiently appealing to physicists. Here, we derive the results on which
the method is based by using tools most commonly employed by physicists. We show
the advantages of the method in comparison with standard approaches, especially when
dealing with the exponential of low-dimensional matrices. In contrast to other approaches
that require, e.g., solving differential equations, the present method only requires
the construction of the inverse of the Vandermonde matrix. We show the advantages of the method
by applying it to different cases, mostly restricting the calculational effort to the handling of
two-by-two matrices.
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1. Introduction

Physicists are quite often faced with the task of calculating f(A), whereA is an n×nmatrix and f an
analytic function whose series expansion generally contains infinitely many terms. The most prominent
example corresponds to expA. Usual approaches to calculate f(A) consist in either truncating its series
expansion, or else finding a way to “re-summate” terms so as to get a closed-form expression. There is
yet another option that can be advantageously applied when dealing with an n × n matrix, and which
derives from the Cayley–Hamilton theorem [1]. This theorem states that every square matrix satisfies
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its characteristic equation. As a consequence of this property, any series expansion can be written in
terms of the first n powers of A. While this result is surely very well known among mathematicians,
it appears to be not so widespread within the physicists’ community [2]. Indeed, most textbooks on
quantum mechanics still resort to the Baker–Hausdorff lemma or to special properties of the involved
matrices, in order to obtain closed-form expressions of series expansions [3–5]. This happens even when
dealing with low-dimensional matrices, i.e., in cases in which exploiting the Cayley–Hamilton theorem
would straightforwardly lead to the desired result. Such a state of affairs probably reflects a lack of
literature on the subject that is more palatable to physicists than to mathematicians. The present paper
aims at dealing with the subject matter by using language and tools that are most familiar to physicists.
No claim of priority is made; our purpose is to show how well the derived results fit into the repertoire of
tools that physicists routinely employ. To this end, we start addressing the simple, yet rich enough case
of 2× 2 matrices.

An archetypical example is the Hamiltonian H = kσ · B that rules the dynamics of a spin-1/2
particle subjected to a magnetic field B. Here, σ = (σx, σy, σz) denotes the Pauli spin operator and
k is a parameter that provides the above expression with appropriate units. The upsurge of research
in several areas of physics—most notably in quantum optics—involving two-level systems, has made a
Hamiltonian of the above type quite ubiquitous. Indeed, the dynamics of any two-level system is ruled
by a Hamiltonian that can be written in such a form. Hence, one often requires an explicit, closed-form
expression for quantities such as exp(iαn · σ), where n is a unit vector. This closed-form expression
can be obtained as a generalization of Euler’s formula exp iα = cosα + i sinα. It reads

exp(iαn · σ) = cosαI + i sinαn · σ (1)

with I denoting the identity operator.
Let us recall how most textbooks of quantum mechanics proceed to demonstrate Equation (1) (see,

e.g., [3–5]). The demonstration starts by writing the series expansion expA =
∑

k A
k/k! for the case

A = iαn · σ. Next, one invokes the following relationship:

(a · σ) (b · σ) = (a · b)I + i (a× b) · σ (2)

whose proof rests on σiσj = δijI + iεijkσk (summation over repeated indices being understood).
Equation (2) implies that (n · σ)2n = I , and hence (n · σ)2n+1 = n · σ. This allows one to split
the power series of exp(iαn · σ) in two parts, one constituted by even and the other by odd powers of
iαn · σ:

exp(iαn · σ) =
∞∑
n=0

(iα)2n

2n!
I +

∞∑
n=0

(iα)2n+1

(2n+ 1)!
n · σ (3)

By similarly splitting Euler’s exponential, i.e.,

exp iα = cosα + i sinα =
∞∑
n=0

(iα)2n

2n!
+
∞∑
n=0

(iα)2n+1

(2n+ 1)!
(4)

one sees that Equation (3) is the same as Equation (1).
Although this standard demonstration is a relatively simple one, it seems to be tightly related to the

particular properties of the operator n ·σ, as well as to our ability to “re-summate” the series expansion
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so as to obtain a closed-form expression. There are several other cases [6] in which a relation similar to
Equation (1) follows as a consequence of generalizing some properties of the group SU(2) and its algebra
to the case SU(N), with N > 2. Central to these generalizations and to their associated techniques are
both the Cayley–Hamilton theorem and the closure of the Lie algebra su(N) under commutation and
anti-commutation of its elements [6]. As already recalled, the Cayley–Hamilton theorem states that any
n× n matrix A satisfies its own characteristic equation p(A) = 0, where

p(λ) = Det(λI − A) = λn + cn−1λ
n−1 + . . .+ c1λ+ c0 (5)

is A’s characteristic polynomial. From p(A) = 0 it follows that any power Ak, with k ≥ n, can
be written in terms of the matrices I = A0, A, . . . , An−1. Thus, any infinite series, such as the one
corresponding to expA, may be rewritten in terms of the n powers A0, A, . . . , An−1. By exploiting this
fact one can recover Equation (1). Reciprocally, given A, one can construct a matrix B that satisfies
expB = A, as shown by Dattoli, Mari and Torre [2]. These authors used essentially the same tools as
we do here and presented some of the results that we will show below, but leaving them in an implicit
form. The aforementioned authors belong to a group that has extensively dealt with our subject matter
and beyond it [7], applying the present techniques to cases of current interest [8]. A somewhat different
approach was followed by Leonard [9], who related the Cayley–Hamilton theorem to the solution of
ordinary differential equations, in order to get closed expressions for the matrix exponential. This
technique can be applied to all n × n matrices, including those that are not diagonalizable. Untidt and
Nielsen [10] used this technique when addressing the groups SU(2), SU(3) and SU(4). Now, especially
when addressing SU(2), Leonard’s approach seems to be unnecessarily involved. This is because there
is a trade-off between the wide applicability of the method and its tailoring to a special case. When
dealing with diagonalizable matrices, the present approach may prove more useful. Thus, one exploits
not only the Cayley–Hamilton theorem, but the diagonalizability of the involved matrices as well. As
a result, we are provided with a straightforward way to obtain closed-form expressions for the matrix
exponential. There are certainly many other ways that are either more general [9,11] or else better suited
to specific cases [12–16], but the present method is especially useful for physical applications.

The rest of the paper is organized as follows. First, we present Leonard’s technique in a way that
somewhat differs from the approach used in [9]. Thereafter, we show how to obtain Equation (1)
by using a technique that can be generalized to diagonalizable n × n matrices, thereby introducing
the method that is the main subject of the present work. As an illustration of this technique, we
address some representative cases that were taken from the repertoire of classical mechanics, quantum
electrodynamics, quantum optics and from the realm of Lorentz transformations. While the results
obtained are known, their derivations should serve to demonstrate the versatility of the method. Let us
stress once again that our aim has been to present this method by following an approach that could be
appealing to most physicists, rather than to mathematically oriented readers.

2. Closed Form of the Matrix Exponential via the Solution of Differential Equations

Consider the coupled system of differential equations, given by

Dx ≡ dx

dt
= Ax (6)
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with x = (x1, . . . , xn)T and A a constant, n× n matrix. The matrix exponential appears in the solution
of Equation (6), when we write it as x(t) = eAtx(0). By successive derivation of this exponential we
obtain DkeAt = AkeAt. Hence, p(D)eAt ≡ (Dn + cn−1D

n−1 + . . . + c1D + c0)eAt = p(A)eAt = 0,
on account of p(A) = 0, i.e., the Cayley–Hamilton theorem. Now, as already noted, this implies that
eAt can be expressed in terms of A0, A, . . . , An−1. Let us consider the matrix M(t) :=

∑n−1
k=0 yk(t)A

k,
with the yk(t) being n independent solutions of the differential equation p(D)y(t) = 0. That is, the yk(t)
solve this equation for n different initial conditions that will be conveniently chosen. We have thus that
p(D)M(t) =

∑n−1
k=0 p(D)yk(t)A

k = 0. Our goal is to choose the yk(t) so that eAt = M(t). To this end,
we note that DkeAt |t=0= AkeAt |t=0= Ak. That is, eAt solves p(D)Φ(t) = 0 with the initial conditions
Φ(0) = A0, . . . , Dn−1Φ(0) = An−1. It is then clear that we must take the following initial conditions:
Djyk(0) = δjk, with j, k ∈ {0, . . . , n−1}. In such a case, eAt and M(t) satisfy both the same differential
equation and the same initial conditions. Hence, eAt = M(t).

Summarizing, the method consists in solving the n-th order differential equation p(D)y(t) = 0

for n different initial conditions. These conditions read Djyk(0) = δjk, with j, k ∈ {0, . . . , n − 1}.
The matrix exponential is then given by eAt =

∑n−1
k=0 yk(t)A

k. The standard procedure for solving
p(D)y(t) = 0 requires finding the roots of the characteristic equation p(λ) = 0. Each root λ with
multiplicity m contributes to the general solution with a term (a0 + a1t + . . . + am−1t

m−1)eλt, the ak
being fixed by the initial conditions. As already said, this method applies even when the matrix A is not
diagonalizable. However, when the eigenvalue problem for A is a solvable one, another approach can be
more convenient. We present such an approach in what follows.

3. Closed Form of the Matrix Exponential via the Solution of Algebraic Equations

Let us return to Equation (1). We will derive it anew, this time using standard tools of quantum
mechanics. Consider a Hermitian operator A, whose eigenvectors satisfy A |ak〉 = ak |ak〉 and span the
Hilbert space on which A acts. Thus, the identity operator can be written as I =

∑
k |ak〉 〈ak|. One can

also write A = A · I =
∑

k ak |ak〉 〈ak|. Moreover, Am =
∑

k a
m
k |ak〉 〈ak|, from which it follows that

F (A) =
∑
k

F (ak) |ak〉 〈ak| (7)

for any function F (A) that can be expanded in powers of A.
Let us consider the 2 × 2 case A = n · σ, with n a unit vector. This matrix has the eigenvalues ±1

and the corresponding eigenvectors |n±〉. That is, n · σ |n±〉 = ± |n±〉. We need no more than this
to get Equation (1). Indeed, from n · σ = |n+〉 〈n+| − |n−〉 〈n−| and I = |n+〉 〈n+| + |n−〉 〈n−|, it
follows that |n±〉 〈n±| = (I ± n · σ) /2. Next, we consider F (A) = expA =

∑
k exp ak |ak〉 〈ak|, with

A = iαn · σ. The operator iαn · σ has eigenvectors |n±〉 and eigenvalues ±iα. Thus,

exp(iαn · σ) = eiα |n+〉 〈n+|+ e−iα |n−〉 〈n−| (8)

=
1

2
eiα (I + n · σ) +

1

2
e−iα (I − n · σ) (9)

=

(
eiα + e−iα

2

)
I +

(
eiα − e−iα

2

)
n · σ (10)
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which is Equation (1). Note that it has not been necessary to know the eigenvectors of A = iαn · σ.
It is a matter of convenience whether one chooses to express exp (iαn · σ) in terms of the projectors
|n±〉 〈n±|, or in terms of I and n · σ.

Let us now see how the above method generalizes when dealing with higher-dimensional spaces. To
this end, we keep dealing with rotations. The operator exp (iαn · σ) is a rotation operator acting on
spinor space. It is also an element of the group SU(2), whose generators can be taken as Xi = iσi/2,
i = 1, 2, 3. They satisfy the commutation relations [Xi, Xj] = εijkXk that characterize the rotation
algebra. The rotation operator can also act on three-dimensional vectors r. In this case, one often uses
the following formula, which gives the rotated vector r′ in terms of the rotation angle θ and the unit
vector n that defines the rotation axis:

r′ = r cos θ + n (n · r) [1− cos θ] + (n× r) sin θ (11)

Equation (11) is usually derived from vector algebra plus some geometrical considerations [17]. We
can derive it, alternatively, by the method used above. To this end, we consider the rotation generatorsXi

for three-dimensional space, which can be read off from the next formula, Equation (12). The rotation
matrix is then obtained as exp (θn ·X), with

n ·X =

 0 −n3 n2

n3 0 −n1

−n2 n1 0

 ≡M (12)

It is straightforward to find the eigenvalues of the non-Hermitian, antisymmetric matrix M . They are 0

and ±i. Let us denote the corresponding eigenvectors as |n0〉 and |n±〉, respectively. Similarly to the
spin case, we have now

I = |n+〉 〈n+|+ |n−〉 〈n−|+ |n0〉 〈n0| (13)

M = i |n+〉 〈n+| − i |n−〉 〈n−| (14)

We need a third equation, if we want to express the three projectors |nk〉 〈nk|, k = ±, 0, in terms of I
and M . This equation is obtained by squaring M :

M2 = − |n+〉 〈n+| − |n−〉 〈n−| (15)

From Equations (13)–(15) we immediately obtain |n±〉 〈n±| = (∓iM −M2) /2, and
|n0〉 〈n0| = I +M2. Thus, we have

exp(θM) = eiθ |n+〉 〈n+|+ e−iθ |n−〉 〈n−|+ e0 |n0〉 〈n0| (16)

= I +M sin θ +M2 [1− cos θ] (17)

By letting M , as given in Equation (12), act on r = (x, y, z)T , we easily see that Mr = n × r and
M2r = n × (n× r) = n (n · r) − r. Thus, on account of Equation (17), r′ = exp(θM)r reads the
same as Equation (11).

The general case is now clear. Consider an operator A whose matrix representation is an
N × N matrix. Once the eigenvalues ak of A (which we assume nondegenerate) have been
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determined, we can write the N equations: A0 = I =
∑

k |ak〉 〈ak|, A =
∑

k ak |ak〉 〈ak|,
A2 =

∑N
k=1 a

2
k |ak〉 〈ak| , . . . , AN−1 =

∑N
k=1 a

N−1
k |ak〉 〈ak|, from which it is possible to obtain the

N projectors |ak〉 〈ak| in terms of I, A,A2, . . . , AN−1. To this end, we must solve the system
1 1 . . . 1

a1 a2 . . . aN

a2
1 a2

2 a2
N

...
...

...
aN−1

1 aN−1
2 aN−1

N




|a1〉 〈a1|
|a2〉 〈a2|
|a3〉 〈a3|

...
|aN〉 〈aN |

 =


I

A

A2

...
AN−1

 (18)

The matrix in Equation (18), with components Vk,i = ak−1
i (k, i ∈ {1, . . . , N}), is a Vandermonde

matrix, whose inverse can be explicitly given [18]. Once we have written the |ak〉 〈ak| in terms of
I, A, . . . AN−1, we can express any analytic function of A in terms of these N powers of A, in particular
expA =

∑N
k=1 exp(ak) |ak〉 〈ak|. For the case N = 4, for instance, we have the following result:

|a1〉 〈a1| =
A3 − A2(a2 + a3 + a4) + A(a2a3 + a2a4 + a3a4)− a2a3a4

(a1 − a2)(a1 − a3)(a1 − a4)
(19)

|a2〉 〈a2| =
A3 − A2(a1 + a3 + a4) + A(a1a3 + a1a4 + a3a4)− a1a3a4

(a2 − a1)(a2 − a3)(a2 − a4)
(20)

|a3〉 〈a3| =
A3 − A2(a1 + a2 + a4) + A(a1a2 + a1a4 + a2a4)− a1a2a4

(a3 − a1)(a3 − a2)(a3 − a4)
(21)

|a4〉 〈a4| =
A3 − A2(a1 + a2 + a3) + A(a1a2 + a1a3 + a2a3)− a1a3a4

(a4 − a1)(a4 − a2)(a4 − a3)
(22)

The general solution can be written in terms of the inverse of the Vandermonde matrix V . To this
end, consider a system of equations that reads like (18), but with the operators entering the column
vectors being replaced by numbers, i.e., |aj〉 〈aj| → wj , with j = 1, . . . , N , and Ak → qk+1, with
k = 0, . . . , N − 1. The solution of this system is given by wj =

∑N−1
k=0 Uj,kqk, with U = V −1, the

inverse of the Vandermonde matrix. This matrix inverse can be calculated as follows [18]. Let us define
a polynomial Pj(x) of degree N − 1 as

Pj(x) =
N∏
n=1
n6=j

x− an
aj − an

=
N∑
k=1

Uj,kx
k−1 (23)

The coefficients Uj,k of the last equality follow from expanding the preceding expression and collecting
equal powers of x. These Uj,k are the components of V −1. Indeed, setting x = ai and observing that
Pj(ai) = δji =

∑N
k=1 Uj,ka

k−1
i = (UV )j,i, we see that U is the inverse of the Vandermonde matrix. The

projectors |aj〉 〈aj| in Equation (18) can thus be obtained by replacing x → A in Equation (23). We get
in this way the explicit solution

|aj〉 〈aj| =
N∑
k=1

Uj,kA
k−1 =

N∏
n=1
n6=j

A− an
aj − an

(24)

The above expression can be inserted into Equation (7), if one wants to write F (A) in terms of the first
N powers of A.
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So far, we have assumed that the eigenvalues of A are all nondegenerate. Let us now consider a
matrix M with degenerate eigenvalues. As before, we deal with a special case, from which the general
formalism can be easily inferred. Let M be of dimension four and with eigenvalues λ1 and λ2, which
are two-fold degenerate. We can group the projectors as follows:

I = (|e1〉 〈e1|+ |e2〉 〈e2|) + (|e3〉 〈a3|+ |e4〉 〈e4|) (25)

M = λ1 (|e1〉 〈e1|+ |e2〉 〈e2|) + λ2 (|e3〉 〈a3|+ |e4〉 〈e4|) (26)

It is then easy to solve the above equations for the two projectors associated with the two eigenvalues.
We obtain

|e1〉 〈e1|+ |e2〉 〈e2| =
λ2I −M
λ2 − λ1

(27)

|e3〉 〈a3|+ |e4〉 〈e4| =
λ1I −M
λ1 − λ2

(28)

We can then write
eM =

1

λ1 − λ2

[(
λ1e

λ2 − λ2e
λ1
)
I +

(
eλ1 − eλ2

)
M
]

(29)

We will need this result for the calculation of the unitary operator that defines the Foldy–Wouthuysen
transformation, our next example. It is now clear that in the general case of degenerate eigenvalues, we
can proceed similarly to the nondegenerate case, but solving n < N equations.

4. Examples

Let us now see how the method works when applied to some well-known cases. Henceforth, we refer
to the method as the Cayley–Hamilton (CH)-method, for short. Our aim is to show the simplicity of the
required calculations, as compared with standard techniques.

4.1. The Foldy–Wouthuysen Transformation

The Foldy–Wouthuysen transformation is introduced [19] with the aim of decoupling the upper (ϕ)
and lower (χ) components of a bispinor ψ = (ϕ, χ)T that solves the Dirac equation i~∂ψ/∂t = Hψ,
where H = −i~cα ·∇+ βmc2. Here, β and α = (αx, αy, αz) are the 4× 4 Dirac matrices:

β =

(
1 0

0 −1

)
, α =

(
0 σ

σ 0

)
(30)

The Foldy–Wouthuysen transformation is given by ψ′ = Uψ, with [19]

U = exp

(
θ

2
βα · p

)
(31)

We can calculate U by applying Equation (29) for M = θβα · p/2 = (θ |p| /2)βα · n, where
n = p/ |p|. The eigenvalues of the 4 × 4 matrix βα · n are ±i, each being two-fold degenerate. This
follows from noting that the matrices

βα · n =

(
0 σ · n

−σ · n 0

)
and

(
0 1

−1 0

)
(32)
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have the same eigenvalues. Indeed, because (σ · n)2 = 1, the above matrices share the characteristic
equation λ2 + 1 = 0. Their eigenvalues are thus ±i. The eigenvalues of M = θβα · p/2 are then
λ1,2 = ±iθ |p| /2. Replacing these values in Equation (29) we obtain

exp

(
θ

2
βα · p

)
=

1

iθ |p|

[
iθ |p|

2

(
e−iθ|p|/2 + eiθ|p|/2

)
I +

(
eiθ|p|/2 − e−iθ|p|/2

) θ |p|
2
βα · n

]
(33)

= cos (|p| θ/2) + sin (|p| θ/2) βα · p
|p|

(34)

The standard way to get this result requires developing the exponential in a power series. Thereafter,
one must exploit the commutation properties of α and β in order to group together odd and even powers
of θ. This finally leads to the same closed-form expression that we have arrived at after some few steps.

4.2. Lorentz-Type Equations of Motion

The dynamics of several classical and quantum systems is ruled by equations that can be cast as
differential equations for a three-vector S. These equations often contain terms of the form Ω×. An
example of this is the ubiquitous equation

dS

dt
= Ω× S (35)

Equation (35) and its variants have been recently addressed by Babusci, Dattoli and Sabia [20], who
applied operational methods to deal with them. Instead of writing Equation (35) in matrix form, these
authors chose to exploit the properties of the vector product by defining the operator Ω̂ := Ω×. The
solution for the case ∂Ω/∂t = 0, for instance, was obtained by expanding exp(tΩ̂) as an infinite series
and using the cyclical properties of the vector product in order to get S(t) in closed form. This form is
nothing but Equation (11) with the replacements r′ → S(t), r → S(0) and θ → Ωt, where Ω := |Ω|.
We obtained Equation (11) without expanding the exponential and without using any cyclic properties.
Our solution follows from writing Equation (35) in matrix form, i.e.,

dS

dt
= ΩMS (36)

where M is given by Equation (12) with n = Ω/Ω. The solution S(t) = exp(MΩt)S(0) is then easily
written in closed form by applying the CH-method, as in Equation (11). The advantages of this method
show up even more sharply when dealing with some extensions of Equation (36). Consider, e.g., the
non-homogeneous version of Equation (35):

dS

dt
= Ω× S +N = ΩMS +N (37)

This is the form taken by the Lorentz equation of motion when the electromagnetic field is given by
scalar and vector potentials reading Φ = −E · r and A = B × r/2, respectively [20]. The solution of
Equation (37) is easily obtained by acting on both sides with the “integrating (operator-valued) factor”
exp(−ΩMt). One then readily obtains, for the initial condition S(0) = S0,

S(t) = eΩMtS0 +

ˆ t

0

eΩM(t−s)Nds (38)
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The matrix exponentials in Equation (38) can be expressed in their eigenbasis, as in Equation (16). For
a time-independent N , the integral in Equation (38) is then trivial. An equivalent solution is given
in [20], but written in terms of the evolution operator Û(t) = exp(tΩ̂) and its inverse. Inverse operators
repeatedly appear within such a framework [20] and are often calculated with the help of the Laplace
transform identity: Â−1 =

´∞
0

exp(−sÂ)ds. Depending on Â, this could be not such a straightforward
task as it might appear at first sight. Now, while vector notation gives us additional physical insight,
vector calculus can rapidly turn into a messy business. Our strategy is therefore to avoid vector calculus
and instead rely on the CH-method as much as possible. Only at the end we write down our results, if
we wish, in terms of vector products and the like. That is, we use Equations (13)–(17) systematically,
in particular Equation (16) when we need to handle exp(θM), e.g., within integrals. The simplification
comes about from our working with the eigenbasis of exp(θM), i.e., with the eigenbasis of M . Writing
down the final results in three-vector notation amounts to expressing these results in the basis in which
M was originally defined, cf. Equation (12). Let us denote this basis by {|x〉, |y〉, |z〉}. The eigenvectors
|n±〉 and |n0〉 of M are easily obtained from those of X3, cf. Equation (12). The eigenvectors of X3 are,
in turn, analogous to those of Pauli’s σy, namely |±〉 = (|x〉 ∓ i|y〉)/

√
2, plus a third eigenvector that

is orthogonal to the former ones, that is, |0〉 = |z〉. In order to obtain the eigenvectors of n ·X , with
n = (sin θ cosφ, sin θ sinφ, cos θ), we apply the rotation exp(φX3) exp(θX2) to the eigenvectors |±〉
and |0〉, thereby getting |n±〉 and |n0〉, respectively. All these calculations are easily performed using
the CH-method.

Once we have |n±〉 and |n0〉, we also have the transformation matrix T that brings M into diagonal
form: T−1MT = MD = diag(−i, 0, i). Indeed, T ’s columns are just |n−〉, |n0〉 and |n+〉. After we
have carried out all calculations in the eigenbasis of M , by applying T we can express the final result
in the basis {|x〉, |y〉, |z〉}, thereby obtaining the desired expressions in three-vector notation. Let us
illustrate this procedure by addressing the evolution equation

dS

dt
= Ω× S + λΩ× (Ω× S) (39)

In matrix form, such an equation reads

dS

dt
= ΩMS + λ(ΩM)2S = [ΩM + λ(ΩM)2]S ≡ AS (40)

The solution is given by S(t) = exp(At)S0. The eigenbasis of A is the same as that of M . We have thus

exp(At) = e(iΩ−λΩ2)t|n+〉〈n+|+ e(−iΩ−λΩ2)t|n−〉〈n−|+ |n0〉〈n0| (41)

The projectors |nk〉〈nk| can be written in terms of the powers of A by solving the system

I = |n+〉 〈n+|+ |n−〉 〈n−|+ |n0〉 〈n0| (42)

A = (iΩ− λΩ2) |n+〉 〈n+| − (iΩ + λΩ2) |n−〉 〈n−| (43)

A2 = (iΩ− λΩ2)2 |n+〉 〈n+|+ (iΩ + λΩ2)2 |n−〉 〈n−| (44)

Using A = ΩM + λ(ΩM)2 and A2 = −2λΩ3M + (1− λ2Ω2)(ΩM)2, and replacing the solution of the
system (42)–(44) in Equation (41) we get

exp(At) = I + e−λΩ2t sin(Ωt)M + [1− e−λΩ2t cos(Ωt)]M2 (45)
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Finally, we can write the solution S(t) = exp(At)S0 in the original basis {|x〉, |y〉, |z〉}, something
that in this case amounts to writing MS0 = n × S0 and M2S0 = n (n · S0) − S0. Equation (39) was
also addressed in [20], but making use of the operator method. The solution was given in terms of a
series expansion for the evolution operator. In order to write this solution in closed form, it is necessary
to introduce sin- and cos-like functions [20]. These functions are defined as infinite series involving
two-variable Hermite polynomials. The final expression reads like Equation (11), but with sin and cos

replaced by the aforementioned functions containing two-variable Hermite polynomials. Now, one can
hardly unravel from such an expression the physical features that characterize the system’s dynamics.
On the other hand, a solution given as in Equation (45) clearly shows such dynamics, in particular the
damping effect stemming from the λ-term in Equation (39), for λ > 0. Indeed, Equation (45) clearly
shows that the state vector S(t) = exp(At)S0 asymptotically aligns with Ω while performing a damped
Larmor precession about the latter.

The case ∂Ω/∂t 6= 0 is more involved and generally requires resorting to Dyson-like series
expansions, e.g., time-ordered exponential integrations. While this subject lies beyond the scope of
the present work, it should be mentioned that the CH-method can be advantageously applied also in this
context. For instance, time-ordered exponential integrations involving operators of the form A + B(t)

do require the evaluation of expA. Likewise, disentangling techniques make repeated use of matrix
exponentials of single operators [21]. In all these cases, the CH-method offers a possible shortcut.

4.3. The Jaynes–Cummings Hamiltonian

We address now a system composed by a two-level atom and a quantized (monochromatic)
electromagnetic field. Under the dipole and the rotating-wave approximations, the Hamiltonian of this
system reads (in standard notation)

H =
~
2
ω0σz + ~ωa†a+ ~g

(
a†σ− + aσ+

)
(46)

Let us denote the upper and lower states of the two-level atom by |a〉 and |b〉, respectively, and the
Fock states of the photon-field by |n〉. The Hilbert space of the atom-field system is spanned by the
basis B = {|a, n〉 , |b, n〉 , n = 0, 1, . . .}. The states |a, n〉 and |b, n〉 are eigenstates of the unperturbed
Hamiltonian H0 = ~ω0σz/2 + ~ωa†a. The interaction Hamiltonian V = ~g

(
a†σ− + aσ+

)
couples the

states |a, n〉 and |b, n+ 1〉 alone. Hence, H can be split into a sum: H =
∑

nHn, with each Hn acting
on the subspace Span{|a, n〉 , |b, n+ 1〉}. Within such a subspace, Hn is represented by the 2× 2 matrix

Hn = ~ω
(
n+

1

2

)
I + ~

(
δ/2 g

√
n+ 1

g
√
n+ 1 −δ/2

)
(47)

where δ = ω0 − ω.
A standard way [22] to calculate the evolution operator U = exp(−iHt/~) goes as follows. One first

writes the Hamiltonian in the form H = H1 + H2, with H1 = ~ω
(
a†a+ σz/2

)
and H2 = ~δσz/2 +

~g
(
a†σ− + aσ+

)
. Because [H1, H2] = 0, the evolution operator can be factored as U = U1U2 =

exp(−iH1t/~) exp(−iH2t/~). The first factor is diagonal in SpanB. The second factor can be expanded
in a Taylor series. As it turns out, one can obtain closed-form expressions for the even and the odd
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powers of the expansion. Thus, a closed-form for U2 can be obtained as well. As can be seen, this
method depends on the realization that Equation (46) can be written in a special form, which renders it
possible to factorize U .

Let us now calculate U by the CH-method. We can exploit the fact that H splits as H =
∑

nHn,
with [Hn, Hm] = 0, and write U =

∏
n Un =

∏
n exp(−iHnt/~). Generally, a 2× 2 Hamiltonian H has

eigenvalues of the form E± = ~(λ0 ± λ). We have thus

I = |+〉 〈+|+ |−〉 〈−| (48)

H/~ = (λ0 + λ) |+〉 〈+|+ (λ0 − λ) |−〉 〈−| (49)

so that

exp(−iHt/~) = exp(−iλ+t) |+〉 〈+|+ exp(−iλ−t) |−〉 〈−| (50)

=
e−iλ0t

λ

[
(iλ0 sinλt+ λ cosλt) I − i(sinλt)H

~

]
(51)

In our case, Hn has eigenvalues E±n = ~ω(n+ 1/2)± ~
√
δ2/4 + g2(n+ 1) ≡ ~ω(n+ 1/2)± ~Rn.

Whence,

exp(−iHnt/~) =
e−iω(n+1/2)t

Rn

[(
iω(n+

1

2
) sin (Rnt) +Rn cos (Rnt)

)
I − i sin(Rnt)

Hn

~

]
(52)

Replacing Hn from Equation (47) in the above expression we get

exp(−iHnt/~) = e−iω(n+1/2)t

[
cos (Rnt) I −

i sin (Rnt)

2Rn

(
δ 2g

√
n+ 1

2g
√
n+ 1 −δ

)]
(53)

This result enables a straightforward calculation of the evolved state |ψ(t)〉 out of a general initial state

|ψ(0)〉 =
∑
n

Ca,n |a, n〉+ Cb,n+1 |b, n+ 1〉 (54)

Equation (53) refers to a matrix representation in the two-dimensional subspace
Span{|a, n〉 , |b, n+ 1〉}. Let us focus on

cos (Rnt) I =

(
cos (Rnt) 0

0 cos (Rnt)

)
(55)

This matrix is a representation in subspace Span{|a, n〉 , |b, n+ 1〉} of the operator

cos
(
t
√
ϕ̂+ g2

)
|a〉〈a|+ cos

(
t
√
ϕ̂
)
|b〉〈b| (56)

where ϕ̂ := g2a†a + δ2/4. Proceeding similarly with the other operators that enter
Equation (53) and observing that sin (Rnt)R

−1
n

√
n+ 1 = 〈n| i sin(t

√
ϕ̂+ g2)(

√
ϕ̂+ g2)−1a |n+ 1〉,

etc., we readily obtain

exp(−iHt/~) = e−iω(a†a+ 1
2

)t

 cos
(
t
√
ϕ̂+ g2

)
−

iδ sin
(
t
√
ϕ̂+g2

)
2
√
ϕ̂+g2

− ig sin(t
√
ϕ̂+g2)√

ϕ̂+g2
a

−
ig sin

(
t
√
ϕ̂
)

√
ϕ̂

a† cos
(
t
√
ϕ̂
)

+
iδ sin

(
t
√
ϕ̂
)

2
√
ϕ̂

 (57)

where the 2×2 matrix refers now to the atomic subspace Span{|a〉, |b〉}. One can see that the CH-method
reduces the amount of calculational effort invested to get Equation (53), as compared with other
approaches [22].
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4.4. Bispinors and Lorentz Transformations

As a further application, let us consider the representation of Lorentz transformations in the space
of bispinors. In coordinate space, Lorentz transformations are given by x̃µ = Λµ

νx
ν (Greek indices

run from 0 to 3), with the Λµ
ν satisfying Λµ

νΛτ
ση

νσ = ηµτ . Here, ηµν represents the metric tensor of
Minkowsky space (η00 = −η11 = −η22 = η33 = 1, ηµν = 0 for µ 6= ν). A bispinor ψ(x) transforms
according to [19]

ψ̃(x̃) = ψ̃(Λx) = S(Λ)ψ(x) (58)

with

S(Λ) = expB (59)

B = −1

4
V µνγµγν (60)

The V µν = −V νµ are the components of an antisymmetric tensor, which has thus six independent
components, corresponding to the six parameters defining a Lorentz transformation. The quantities
γµ = ηµνγ

ν satisfy γµγν + γµγν = 2ηµν . The quantities γµγν are the generators of the Lorentz group.
S(Λ) is not a unitary transformation, but satisfies

S−1 = γ0S
†γ0 (61)

For the following, it will be advantageous to define

pi = γ0γi, i = 1, 2, 3 (62)

q1 = γ2γ3, q2 = γ3γ1, q3 = γ1γ2 (63)

We call the pi Pauli generators and the qi quaternion generators. The pseudoscalar γ5 := γ0γ1γ2γ3

satisfies γ2
5 = −1, γ5γµ = − γµγ5, so that it commutes with each generator of the Lorentz group:

γ5 (γµγν) = (γµγν) γ5 (64)

This means that quantities of the form α + βγ5 (α, β ∈ R) behave like complex numbers upon
multiplication with pi and qi . We denote the subspace spanned by such quantities as the complex-like
subspace Ci and set i ≡ γ5. Noting that i pi = qi and i qi = −pi, the following multiplication rules are
easily derived:

qiqj = εijkqk − δij (65)

pipj = −εijkqk + δij = −qiqj = −iεijkpk + δij (66)

piqj = εijkpk + iδij = i(−εijkqk + δij) (67)

The following commutators can then be straightforwardly obtained:

[qi, qj] = 2εijkqk (68)

[pi, pj] = −2εijkqk = −2iεijkpk (69)

[pi, qj] = 2εijkpk (70)
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They make clear why we dubbed the pi as Pauli generators. Noting that they furthermore satisfy

pipj + pjpi = 2δij (71)

we see the correspondence i → i, pk → −σk, with i being the imaginary unit and σk the Pauli
matrices. These matrices, as is well-known, satisfy [σi, σj] = 2iεijkσk and the anticommutation relations
σiσj + σjσi = 2δij , which follow from σiσj = iεijkσk + δij .

We can write now S(Λ) = exp(−1
4
V µνγµγν) in terms of pi and qi:

B =
3∑
i=1

(αipi + βiqi) (72)

Here, we have set αi = −V 0i/4 and βkεijk = −V ij/4. We can write B in terms of the
Pauli-generators alone:

B =
3∑
i=1

(αi + iβi )pi ≡
3∑
i=1

zipi (73)

Considering the isomorphism pk ↔ −σk, we could derive the expression for S(Λ) = expB by
splitting the series expansion into even and odd powers of B, and noting that

B2 = (α2 − β2) + (2α · β) i ≡ z2 ∈ Ci (74)

where α2 ≡ α · α, β2 ≡ β · β, and α · β ≡
∑3

i=1 α
iβi. We have then that B3 = z2B, B4 = z4,

B5 = z4B, . . . This allows us to write

exp(B) = 1 +B +
z2

2!
+
z2

3!
B +

z4

4!
+
z4

5!
B + ... =(

1 +
∞∑
n=1

z2n

(2n)!

)
+B

(
1 +

z2

3!
+
z4

5!
+ ...

)
= cosh z +

sinh z

z
B (75)

As in the previous examples, also in this case the above result can be obtained more directly by noting
that B =

∑3
i=1(αi + iβi )pi ↔ −

∑3
i=1(αi + iβi )σi. This suggests that we consider exp(−f ·σ), with

f = α+ iβ ∈ C. The matrix f · σ has the (complex) eigenvalues

λ± = ±
√
α2 − β2 + 2iα · β ≡ ±z (76)

Writing |f±〉 for the corresponding eigenvectors, i.e., f · σ |f±〉 = λ± |f±〉, we have that

I = |f+〉 〈f+|+ |f−〉 〈f−| (77)

f · σ = λ+ |f+〉 〈f+|+ λ− |f−〉 〈f−| (78)

Solving for |f±〉 〈f±|, we get

|f±〉 〈f±| =
zI ± f · σ

2z
(79)
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We apply now the general decomposition expA =
∑

n exp an |an〉 〈an| to the case A = −f · σ. The
operator exp (−f · σ) has eigenvectors |f±〉 and eigenvalues exp (∓z). Thus,

exp(−f · σ) = e−z |f+〉 〈f+|+ ez |f−〉 〈f−| (80)

=
e−z

2z
(zI + f · σ) +

ez

2z
(zI − f · σ) (81)

=

(
ez + e−z

2

)
I −

(
ez − e−z

2z

)
f · σ (82)

= cosh z − sinh z

z
f · σ (83)

which is equivalent to Equation (75) via the correspondence cosh(z) + sinh(z)B/z ↔ cosh(z) −
sinh(z)f ·σ/z. We have thus obtained closed-form expressions for exp(−f ·σ), with f = α+iβ ∈ C3,
i.e., for the elements of SL(2,C), the universal covering group of the Lorentz group. It is interesting to
note that the elements of SL(2,C) are related to those of SU(2) by extending the parameters α entering
exp(iα ·n) ∈ SU(2) from the real to the complex domain: iα→ α+ iβ. Standard calculations that are
carried out with SU(2) elements can be carried out similarly with SL(2,C) elements [15]. A possible
realization of SU(2) transformations occurs in optics, by acting on the polarization of light with the help
of birefringent elements (waveplates). If we also employ dichroic elements like polarizers, which absorb
part of the light, then it is possible to implement SL(2,C) transformations as well. In this way, one can
simulate Lorentz transformations in the optical laboratory [23]. The above formalism is of great help for
designing the corresponding experimental setup.

5. Conclusions

The method presented in this paper—referred to as the Cayley–Hamilton method—proves
advantageous for calculating closed-form expressions of analytic functions f(A) of an n×nmatrixA, in
particular matrix exponentials. The matrix A is assumed to be a diagonalizable one, even though only its
eigenvalues are needed, not its eigenvectors. We have recovered some known results from classical and
quantum mechanics, including Lorentz transformations, by performing the straightforward calculations
that the method prescribes. In most cases, the problem at hand was reshaped so as to solve it by dealing
with two-by-two matrices only.
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