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Abstract:



In this paper, we develop a general framework for studying Dirichlet Boundary Value Problems (BVP) for second order symmetric implicit differential systems satisfying the Hartman-Nagumo conditions, as well as a certain non-expandability condition. The main result, obtained by means of the equivariant degree theory, establishes the existence of multiple solutions together with a complete description of their symmetric properties. The abstract result is supported by a concrete example of an implicit system respecting [image: there is no content]-symmetries.
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1. Introduction


1.1. Subject and Goal


Boundary value/periodic problems for second order nonlinear Ordinary Differential Equations (ODEs) have been within the focus of the nonlinear analysis community for a long time (see, for example [1,2,3]). In [2,4], P. Hartman established the existence result for the boundary value problem:


[image: there is no content]



(1)




where the function, [image: there is no content], satisfies the so-called Hartman-Nagumo conditions, which, informally, means that f is a reasonable function having a sub-quadratic growth on [image: there is no content]. Later on, H.W. Knobloch [5,6] observed that a similar result is true for the corresponding periodic problem:


[image: there is no content]=f(t,y,[image: there is no content])y(0)=y(1),[image: there is no content](0)=[image: there is no content](1)



(2)







Several extensions of Hartman-Knobloch results of perturbations of the ordinary vector p-Laplacian operator were suggested by J. Mawhin et al. (see, for example, [7,8,9] and the references therein).



Although Hartman’s existence result was extended to more general settings by many authors, to the best of our knowledge, the problems of estimating a minimal number of solutions to (1), as well as classifying their symmetric properties have not been carefully studied. To some extent, our recent paper [10] opened a door to a systematic usage of the equivariant degree theory for analysis of multiple solutions to symmetric (1) and its generalizations. The starting point for our discussion was Example 6.1 from [11] in which a particular case of BVP (1) in the presence of [image: there is no content]-symmetries was considered (see also [12] in which a “multivalued perturbation of this example” was discussed).



The goal of this paper is to study multiple solutions to boundary value problems for implicit symmetric second order differential systems using the equivariant degree-based method. To simplify our exposition, we will restrict ourselves to the Dirichlet boundary conditions. More specifically, we are interested in the BVPs of the form:


[image: there is no content]=h(t,y,[image: there is no content],[image: there is no content]),a.e.t∈[image: there is no content]y(0)=y(1)=0



(3)




where [image: there is no content] is an orthogonal G-representation and [image: there is no content] is a G-equivariant map satisfying the so-called Carathéodory condition. For some motivating examples from mechanics (including, in particular, the ones modeled by the so-called generalized Liénard equation), we refer the reader to [13] and the references therein.




1.2. Method


The main idea behind the method allowing us to study (3) can be traced back to [14,15]. Namely, assume that h satisfies the Hartman-Nagumo conditions with respect to (y,[image: there is no content]), and, in addition, it is non-expansive with respect to [image: there is no content]. Since the set of fixed points of a non-expansive map of an Euclidean space is convex, one can canonically associate with problem (3) the “explicit” differential inclusion of the form:


[image: there is no content]∈[image: there is no content](t,y,[image: there is no content]),a.e.t∈[image: there is no content]y(0)=y(1)=0



(4)




with [image: there is no content] (here, [image: there is no content] stands for the set of all non-empty convex and compact subsets of V). By the (equivariant) homotopy argument, the later problem can be reduced to the “explicit” single-valued symmetric BVP of the form of Equation (1), and the equivariant degree-based method developed in [10] can be applied.



Recall that the equivariant degree is a topological tool allowing “counting” orbits of solutions to (symmetric) equations in the same way as the usual Brouwer degree does, but according to their symmetric properties. This method is an alternative and/or complement to the equivariant singularity theory developed by M. Golubitsky et al. (see, for example, [16]), as well as to a variety of methods rooted in Morse Theory, Lusternik-Schnirelmann Theory and Morse-Floer complex techniques (see, for example, [17,18,19,20]) used for the treatment of variational problems with symmetries. These standard methods, although being quite effective in the settings in which they are usually applied, encounter technical difficulties when: (i) the group of symmetries is large; (ii) multiplicities of eigenvalues of linearizations are large; (iii) phase spaces are of a high dimension; and (iv) the operators involved exhibit a lack of smoothness. Furthermore, one would expect to use computer routines for complex computations, while it is not clear if these approaches are “open enough” to be computerized. On the other hand, the equivariant degree theory has all the attributes allowing its application in settings related to (i)–(iv), and in many cases, it allows computerization. For instance, in the case of the dihedral group, the tools required for the symbolic computations of the equivariant degree can be found at [21]. For a detailed exposition of the equivariant degree theory, we refer the reader to [11,22,23,24,25].




1.3. Overview


After the Introduction, the paper is organized as follows. In Section 2, we collect the standard equivariant background together with basic properties of the equivariant degree (without free parameters) for compact equivariant multivalued fields. This theory is applied in Section 3 for studying “explicit” second order equivariant inclusions (see (11)). We reformulate (11) as a fixed-point problem with a compact equivariant multivalued vector field defined on the Sobolev space, [image: there is no content], and associate to this field an invariant, [image: there is no content], expressed in terms of the equivariant degree (see (22)). Using [image: there is no content], we formulate our result for (11) (see Theorem 3.6). In Section 4, we combine Theorem 3.6 with the equivariant version of the well-known result from [15] (cf. Lemma 4.1) to obtain our main abstract result for the “explicit” BVP (3) (in fact, this result (see Theorem 4.4) is expressed in terms of [image: there is no content] provided by Lemma 4.1). In Section 5, we describe a wide class of BVPs (3) symmetric with respect to the dihedral group representations for which Theorem 4.4 can be applied to obtain a complete symmetric classification of solutions (see Proposition 5.1). We also give a concrete [image: there is no content]-symmetric example supporting Proposition 5.1 (see Theorem 5.2). To make our exposition self-contained, we conclude with two Appendices (Appendix 1 is related to the equivariant degree theory for single-valued maps (in particular, the concept of a Burnside ring, and a computational formula for the equivariant degree of a linear equivariant isomorphism is given); in Appendix 2, we collected all the facts frequently used in this paper that are related to [image: there is no content]-representations and [image: there is no content]-equivariant degree).





2. G-Actions and Equivariant Degree without Parameters for Multivalued Fields


In this section, we briefly recall the standard “equivariant jargon” and present basic facts related to the equivariant degree without free parameters for equivariant multivalued fields. In what follows, G stands for a finite group and V for an orthogonal G-representation.



2.1. G-Actions


For a subgroup, [image: there is no content], denote by [image: there is no content] the normalizer of H in G, by [image: there is no content], the Weyl group of H in G, and by [image: there is no content], the conjugacy class of H in G. The set, [image: there is no content], of all conjugacy classes in G admits a partial order defined as follows: [image: there is no content] if and only if [image: there is no content] for some [image: there is no content].



For a G-space, X and [image: there is no content], denote by [image: there is no content]:={g∈G:gx=x} the isotropy of x and by G(x):={gx:g∈G}≃G/[image: there is no content] the orbit of x. Given an isotropy, [image: there is no content], call ([image: there is no content]) the orbit type in X and put Φ(G;X):={[image: there is no content]∈Φ[image: there is no content]:H=[image: there is no content]forsomex∈X}. Furthermore, for a subgroup, [image: there is no content], put [image: there is no content]:={x∈X:[image: there is no content]⊃H}. As is well known (see, for instance, [26]), the G-action on X induces a natural [image: there is no content]-action on [image: there is no content].



Consider two subgroups, [image: there is no content], of G and put [image: there is no content]. Clearly, [image: there is no content] is an [image: there is no content]-space. Define the number [image: there is no content] having very transparent geometric meaning; it is equal to the cardinality of the set {H′:H′∈[image: there is no content]andL⊂H′}.



Let X and Y be two G-spaces. A continuous map, [image: there is no content], is said to be G-equivariant (or, simply, a G-map) if [image: there is no content] for all [image: there is no content] and [image: there is no content].




Convention: For a (finite) group, G, we denote by [image: there is no content], [image: there is no content], [image: there is no content], ..., [image: there is no content] the complete list of all irreducible orthogonal (real) G-representations.





Suppose that V is an orthogonal G-representation (in general, reducible). Then, it is possible to represent V as the following direct sum:


[image: there is no content]



(5)




called the G-isotypical decomposition of V, where the isotypical components [image: there is no content] are modeled on the irreducible G-representations, [image: there is no content]. In other words, the component, [image: there is no content], is the minimal subrepresentation of V containing all the irreducible subrepresentations of V that are equivalent to [image: there is no content]. Notice that if [image: there is no content] is a G-equivariant linear operator, then T([image: there is no content])⊂[image: there is no content] for all k. Furthermore, denote by [image: there is no content] the set of all linear G-equivariant isomorphisms, [image: there is no content].



Let [image: there is no content] be a Banach space of reasonable (e.g., continuous, differentiable, Sobolev differentiable, etc.) functions, [image: there is no content], where V is an orthogonal G-representation. Then, [image: there is no content] can be equipped with the structure of a Banach G-representation by letting:


(g,u)(t):=g(u(t)),g∈G,u∈S([a,b];V)



(6)




Combining Equations (5) and (6) yields the isotypical decomposition:


[image: there is no content]



(7)








2.2. Equivariant Degree for Multivalued Vector Fields


In order to treat implicit symmetric BVPs, we will use an extension of the equivariant degree without free parameters to multivalued compact equivariant vector fields with compact convex images. Up to several standard steps, such an extension is very simple (see, for example, [12]). Therefore, below, we will only outline the key steps of the construction (we refer the reader to Appendix 1 of the present paper, where the axiomatic definition for single-valued fields is presented).



Let [image: there is no content] be a Banach space. Denote by C([image: there is no content]) (respectively 𝒦c([image: there is no content])) the family of all non-empty convex subsets of [image: there is no content] (respectively all non-empty convex and compact subsets of [image: there is no content]). Let X be a subset of a Banach space, [image: there is no content]. A map, F:X→C([image: there is no content]) (respectively F:X→𝒦c([image: there is no content])), is called a multivalued map with convex values from X to [image: there is no content] (respectively multivalued map with convex and compact values from X to [image: there is no content]).



A multivalued map, F:X→Kc([image: there is no content]), is said to be upper semi-continuous (in short, u.s.c.) if for every open set, U⊂[image: there is no content], the set, [image: there is no content], is open in X. A u.s.c multivalued map, F:X→Kc([image: there is no content]), is called compact if, for any bounded set, [image: there is no content], the closure of [image: there is no content] is compact in [image: there is no content]. In what follows, we will write [image: there is no content] to indicate that F is a u.s.c. compact multivalued map with non-empty compact convex values.



Assume now that [image: there is no content] and [image: there is no content] are isometric Banach G-representations, X⊂[image: there is no content] is a G-invariant set and [image: there is no content] is a multivalued map from X to [image: there is no content]. Then, F is called G-equivariant if [image: there is no content] for all [image: there is no content] and [image: there is no content], and we write [image: there is no content]. Observe that if f:X→[image: there is no content] is a single-valued compact G-equivariant map, then it can also be considered as the multivalued map [image: there is no content], [image: there is no content]. Clearly, [image: there is no content] is u.s.c. (as a multivalued map) and, therefore, [image: there is no content]∈MKG.



Let Ω⊂[image: there is no content] be an open bounded G-invariant subset. Similarly to the single-valued case, a multivalued map, [image: there is no content]:Ω¯→Kc([image: there is no content]), is called an Ω-admissible compact G-equivariant field if the following two conditions are satisfied:

	(i)

	
there exists F:Ω¯→Kc([image: there is no content]), such that [image: there is no content] and [image: there is no content] for all [image: there is no content];




	(ii)

	
for all [image: there is no content], [image: there is no content], i.e., [image: there is no content] (by the same token, F has no fixed-points in [image: there is no content]).









In such a case, [image: there is no content] is called an admissible G-pair in [image: there is no content]. Denote by [image: there is no content]([image: there is no content]) the set of all such admissible G-pairs in [image: there is no content] and put:


[image: there is no content]:=⋃[image: there is no content][image: there is no content]([image: there is no content])



(8)




(here, the union is taken over all isometric Banach G-representations).



Take [image: there is no content]. Then, [image: there is no content] are said to be equivariantly Ω-admissibly homotopic if there exists a multivalued map, H:[image: there is no content]×Ω¯→Kc([image: there is no content]), [image: there is no content], such that:

	(a)

	
[image: there is no content], [image: there is no content], for all [image: there is no content];




	(b)

	
[image: there is no content] for all [image: there is no content].









Lemma 2.1.

(cf. [12,27]).



(i) For any [image: there is no content]∈[image: there is no content]([image: there is no content]), there exists an equivariant Ω-admissible homotopy, H:[image: there is no content]×Ω¯→Kc([image: there is no content]), [image: there is no content], such that [image: there is no content]and H(1,·)=[image: there is no content], where f:Ω¯→[image: there is no content]is a single-valued field.



(ii) Let H:[image: there is no content]×Ω¯→Kc([image: there is no content]), [image: there is no content]be an equivariant Ω-admissible homotopy, such that [image: there is no content]and [image: there is no content], where [image: there is no content],[image: there is no content]:Ω¯→[image: there is no content]are (compact) single-valued fields. Then, there exists a single-valued equivariant Ω-admissible homotopy joining [image: there is no content]and [image: there is no content].





Lemma 2.1 allows us to extend the G-equivariant degree defined for single-valued admissible G-pairs to the fields from [image: there is no content]. Namely, take [image: there is no content]∈[image: there is no content]([image: there is no content]). Find an admissible G-pair [image: there is no content] with single-valued f:Ω¯→[image: there is no content], such that [image: there is no content] is equivariantly Ω-admissibly homotopic to [image: there is no content] (cf. Lemma 2.1(i)), and put:


G-Deg[image: there is no content]=defG-deg[image: there is no content]



(9)







Using Lemma 2.1(ii), one can easily verify that G-Deg([image: there is no content],Ω), defined by (9), is independent of a choice of a single-valued representative, f. Moreover, by applying the standard argument, one can show that [image: there is no content] satisfies the standard properties. More precisely:

Theorem 2.2.

(cf. [12]).



There exists a unique map, G-Deg:[image: there is no content]→A[image: there is no content], which assigns to every admissible G-pair [image: there is no content]an element, G-Deg([image: there is no content],Ω)∈A(G), called the G-equivariant degree (or, simply, G-degree) of [image: there is no content]on Ω:


G-Deg[image: there is no content]=∑(Hi)∈Φ[image: there is no content][image: there is no content](Hi)=nH1(H1)+⋯+nHm(Hm)



(10)




satisfying (among others) the following properties:

	(MG1)

	
(Existence) If G-Deg([image: there is no content],Ω)≠0, i.e., there is in Equation (10) a non-zero coefficient, [image: there is no content], then [image: there is no content], such that 0∈[image: there is no content](x)and ([image: there is no content])≥(Hi).




	(MG2)

	
(Additivity) Let [image: there is no content]and [image: there is no content]be two disjoint open G-invariant subsets of Ω, such that, for any x∈Ω¯∖([image: there is no content]∪[image: there is no content]), one has 0∉[image: there is no content](x). Then:


G-Deg[image: there is no content]=G-Deg([image: there is no content],[image: there is no content])+G-Deg([image: there is no content],[image: there is no content])












	(MG3)

	
(Homotopy) If H:[image: there is no content]×Ω¯→Kc([image: there is no content])is an Ω-admissible G-homotopy of multivalued G-equivariant compact fields, then:


G-Deg(Ht,Ω)=constant,t∈[image: there is no content]












	(MG4)

	
(Normalization) Let Ω be a G-invariant open bounded neighborhood of zero in [image: there is no content]. Then:


G-Deg(Id,Ω)=1·(G)












	(MG5)

	
(Multiplicativity) For any ([image: there is no content]1,[image: there is no content]),([image: there is no content]2,[image: there is no content])∈AMKG


G-Deg([image: there is no content]1×[image: there is no content]2,[image: there is no content]×[image: there is no content])=G-Deg([image: there is no content]1,[image: there is no content])·G-deg([image: there is no content]2,[image: there is no content])


















where the multiplication “·” is taken in the Burnside ring, [image: there is no content] (see Appendix 1, Subsection A1.1.).



For the equivariant topology/representation theory background, we refer the reader to [26,28,29,30]. For all the “multivalued” backgrounds frequently used here, we refer the reader to [27,31]. The detailed exposition of the equivariant degree theory can be found in [22,25].





3. Symmetric Differential Inclusions


3.1. Basic Definitions and Facts


To formulate a result on (symmetric) multivalued BVPs, recall some standard notions and facts.



For any Banach space, [image: there is no content], the set, Kc([image: there is no content]), of all nonempty compact convex sets in [image: there is no content] can be equipped with the so-called Hausdorff metric, [image: there is no content]. To be more specific, if A, B∈Kc([image: there is no content]), put:


d(A,B):=inf{r>0:A⊂Br(0)+B};D(A,B):=max{d(A,B),d(B,A)}








(here, [image: there is no content] stands for the ball of radius r centered at the origin). One can easily verify that the function D is indeed a metric on Kc([image: there is no content]).



Definition 3.1.

Let Ω⊂Rn⊕[image: there is no content] be an open set. A multivalued map, F:Ω¯→Kc([image: there is no content]), is said to be measurable if, for every open set, U⊂Kc([image: there is no content]) (in the topology induced by the Hausdorff metric), the inverse image:


[image: there is no content]








is Lebesgue measurable.





Definition 3.2.

A multivalued map, [image: there is no content], is called a Carathéodory if it satisfies the following two conditions:

	(i)

	
for every [image: there is no content], the multivalued map [image: there is no content] is measurable;




	(ii)

	
for every [image: there is no content], the multivalued map [image: there is no content] is upper semicontinuous.











The following result is well-known (see [32,33]) and plays an important role in our considerations.



Proposition 3.3.

Let [image: there is no content]be a Carathéodory multivalued map satisfying the following condition:

	(A) 

	
For any bounded set, [image: there is no content], there exists [image: there is no content], such that:


∥F(t,v)∥:=sup{∥u∥:u∈F(t,v),t∈[image: there is no content],v∈B}≤φB(t)}














Then, the formula:


NF(v)(t):={u∈L2([image: there is no content],Rn):u(t)∈F(t,v(t))a.e.t∈[image: there is no content]}








defines a continuous map from [image: there is no content]to [image: there is no content].






3.2. Hypotheses


Put [image: there is no content]. We are interested in studying the BVP for second order differential inclusion of the type:


[image: there is no content]∈Cy(t)+F(t,y(t),[image: there is no content](t))fora.e.t∈[0,1]y(0)=0=y(1)



(11)




where [image: there is no content] and [image: there is no content] is a linear operator. As usual, the differentiation is understood in the sense of Sobolev derivatives. We need the following adaptation of the Hartman-Nagumo conditions (cf. [2,4]) for the multivalued map, [image: there is no content].

	(H0)

	
F is a Carathéodory map satisfying condition (A), and there exists a constant [image: there is no content], such that:




	(H1)

	
for any [image: there is no content] satisfying [image: there is no content], there is [image: there is no content], such that


∥v0∥>R⟹essinf[image: there is no content]v•u+∥w∥2:u∈Cv+F(t,v,w),(v,w)∈Dδ>0








where Dδ:={(v,w)∈V×V:∥v-vo∥+∥w-wo∥<δ};




	(H2)

	
there exist α, [image: there is no content], such that, for all [image: there is no content]:


∥v∥≤R⟹∥Cv+F(t,v,w)∥≤α(v•u+∥w∥2)+κ








for a.e. [image: there is no content] and all [image: there is no content];




	(H3)

	
there is a function, [image: there is no content], such that the function, [image: there is no content], [image: there is no content], belongs to [image: there is no content], [image: there is no content], and for all [image: there is no content] with [image: there is no content],


∥Cv+F(t,v,w)∥≤β(∥w∥)fora.e.t∈[0,1]

















In addition, we will assume that problem (11) is asymptotically linear at the origin and the linearization at the origin is non-degenerate, i.e.:

	(H4)

	
lim(v,w)→(0,0)∥F(t,v,w)∥∥(v,w)∥=0uniformlywithrespecttot∈[image: there is no content];




	(H5)

	
the linear system:


[image: there is no content]=Cyy(0)=0=y(1)








has only the trivial solution, [image: there is no content], i.e., [image: there is no content], where [image: there is no content] stands for the spectrum of C.









Finally, we assume that V is a coordinate permutation G-representation, i.e., there is a homomorphism, σ : [image: there is no content], such that:


[image: there is no content]



(12)




(here, [image: there is no content] stands for the symmetric group of n elements). Moreover, we will always assume that dimVG=1, i.e.:


[image: there is no content]



(13)







We make the following assumptions with respect to F:

	(H6)

	
the multivalued map, [image: there is no content], is G-equivariant, i.e.:


∀[image: there is no content]∀[image: there is no content]∀[image: there is no content]F(t,gv,gw)=gF(t,v,w)








(as usual, G is supposed to act trivially on [image: there is no content]), and the linear map, [image: there is no content], is G-equivariant, as well.









It follows immediately from condition (H6) that the multivalued map, FG:[image: there is no content]×VG×VG→Kc(VG), given by:


FG(t,v,w):=F(t,v,w)∩VG,t∈[image: there is no content],v,w∈VG








is well-defined and u.s.c. We assume additionally:

	(H7)

	
for every non-zero, [image: there is no content], there is [image: there is no content], such that:


essinf[image: there is no content]vu+w2:u∈Cv+FG(t,v,w),(v,w)∈Dδ>0








where [image: there is no content]









The simple observation, following below, will be essentially used in the sequel.



Lemma 3.4.

Under assumptions (H0)–(H7), the differential inclusion:


x¨∈CGx+FG(t,x,x˙)a.e.t∈[0,1]x(0)=0=x(1)



(14)




where [image: there is no content], has only the trivial solution, [image: there is no content].





Proof: 

Assume for contradiction that x:[image: there is no content]→R=:VG is a solution to (14), such that [image: there is no content] has a positive maximum, i.e., (see the boundary conditions) there is [image: there is no content], such that:


r(to)=max{r(t):t∈[image: there is no content]}>0











Then, [image: there is no content], which implies:


[image: there is no content]



(15)







Since x is a solution to (14), r¨(·)=x(·)x¨(·)+x˙2(·)∈L2([image: there is no content];R) and [image: there is no content] for a.e. [image: there is no content]. In particular, x is a [image: there is no content]-smooth function; therefore (see (15)), [image: there is no content] implies [image: there is no content]. Hence, there exist [image: there is no content] and [image: there is no content], such that:


essinf[image: there is no content]x(t)u+x˙2(t):u∈Cx(t)+F(t,x(t),x˙(t))>α>0








where Aη:={t∈[image: there is no content]:|to-t|<η} (cf. condition (H7)). Thus, for almost every [image: there is no content]:


[image: there is no content]








which implies that [image: there is no content] is increasing for [image: there is no content], [image: there is no content] and decreasing for [image: there is no content], [image: there is no content]. However, this is a contradiction with the assumption that [image: there is no content] is a maximal value of r. ☐






3.3. Operator Reformulation in Functional Spaces and the Existence of Multiple Symmetric Solutions: Abstract Result


Take the Sobolev space, [image: there is no content]:=H2([image: there is no content];V), equipped with the norm:


∥u∥[image: there is no content]:=∥u∥2,2=∫01u(t)•u(t)+u˙(t)•u(t)+u¨(t)•u¨(t)dt12



(16)




the space: [image: there is no content]:=L2([image: there is no content];V)×[image: there is no content]=L2([image: there is no content];V)×V×V equipped with the usual product norm:


∥(f,p,q)∥[image: there is no content]:=max{∥f∥L2([image: there is no content];V),∥p∥V,∥q∥V}



(17)




and the space, C([image: there is no content];[image: there is no content]), of continuous functions from [image: there is no content] to [image: there is no content] equipped with the norm:


[image: there is no content]



(18)




where [image: there is no content]. Define the operators:


j:[image: there is no content]→C([image: there is no content];[image: there is no content]),j(u)=(j1(u),j2(u)):=(u,u˙),u∈[image: there is no content]



(19)






L:[image: there is no content]→[image: there is no content],Lu:=(u¨,u(a0),u(a1)),u∈[image: there is no content]



(20)







Observe that both jk:[image: there is no content]→C([image: there is no content];V), [image: there is no content] are compact; therefore, j is compact, as well.



Furthermore, define the multivalued map, NF:C([image: there is no content];[image: there is no content])→Kc([image: there is no content]), by


NF(v,w)(t):={u∈[image: there is no content]:u(t)∈F(t,v(t),w(t))a.e.t∈[image: there is no content]}×{(0,0)}








and the operator, C:C([image: there is no content];[image: there is no content])→[image: there is no content], by:


[image: there is no content]



(21)







Since the operator L is an isomorphism, the differential inclusion (11) can be reformulated as the following fixed-point problem:


u∈L-1(C+NF)(j(u)),u∈[image: there is no content]



(22)







Remark 3.5.

(i) The G-action on V induces in a natural way the G-actions on [image: there is no content], C([image: there is no content];[image: there is no content]) and [image: there is no content]. For example, the G-action on C([image: there is no content];[image: there is no content]) is given by the formula:


∀[image: there is no content]∀u=(u1,u2)∈C([image: there is no content];[image: there is no content])g(u):=(g(u1(t)),g(u2(t)))








where [image: there is no content].



(ii) The multivalued map, [image: there is no content]:[image: there is no content]→Kc([image: there is no content]), given by


[image: there is no content](u):=u-L-1(C+NF)(j(u)),u∈[image: there is no content]








is a compact G-equivariant multivalued field (cf. condition (H6) and compactness of the operator, j).



(iii) The map, A:[image: there is no content]→[image: there is no content], given by:


A(u):=u-L-1∘C(j(u)),u∈[image: there is no content]



(23)




is a G-equivariant compact linear field on [image: there is no content], and moreover, by assumption (H5), it is an isomorphism. In particular, [image: there is no content], where Ωδ:={u∈[image: there is no content]:∥u∥2,2<δ} is an admissible G-pair for any [image: there is no content]; therefore, the G-equivariant degree, G-Deg[image: there is no content]∈A[image: there is no content], is correctly defined for any [image: there is no content].



(iv) By conditions (H4) and (H5), there exists [image: there is no content] and a G-equivariant [image: there is no content]-admissible homotopy joining [image: there is no content] and 𝒜. Therefore, G-Deg(A,[image: there is no content])=G-Deg(F,[image: there is no content]) (cf. property (MG3)).



Put:


ω(C,F):=[image: there is no content]-G-Deg(A,[image: there is no content])



(24)









Theorem 3.6.

Let V be an orthogonal G-representation satisfying (12) and (13). Assume F satisfies (H0)–(H7) and let (cf. (24))) [image: there is no content], i.e.,


ω(C,F)=n1(H1)+n2(H2)+⋯+nm(Hm),nj≠0,j=1,2,⋯,m



(25)




Then:

	
(a) for every [image: there is no content], there exists a non-zero solution, u∈[image: there is no content], to (11), such that [image: there is no content].



	
(b) If, in addition, [image: there is no content]is a maximal orbit type in [image: there is no content], then (Gu)=[image: there is no content].










Proof: 

Using conditions (H0)–(H3) and following the standard argument (see, for example, [2,4,23]), one can provide a priori estimates for solutions to (22). More precisely, there exists [image: there is no content] large enough, such that the multivalued field, [image: there is no content], is G-equivariantly admissibly homotopic to Id on the ball ΩR:={u∈[image: there is no content]:∥u∥2,2<R}. In particular (see properties (MG3) and (MG4) of the equivariant degree for multivalued fields):


G-Deg([image: there is no content],ΩR)=[image: there is no content]



(26)




Take [image: there is no content] provided by Remark 3.5(iv). By (MG2), (24) and (26):


G-Deg([image: there is no content],ΩR∖[image: there is no content])=G-Deg([image: there is no content],ΩR)-G-Deg([image: there is no content],[image: there is no content])=ω(C,F)



(27)




Combining (25) and (27) with the existence property (MG4) yields Statement (a).



To establish Statement (b), it is enough to combine Statement (a) with assumption (H7) and Lemma 3.4. ☐







4. Symmetric Implicit Boundary Value Problems


4.1. General Result


In this section, we will apply Theorem 3.6 to study problem (3) in the symmetric setting. Below, we formulate assumptions on h. The following condition essentially allows a passage from the “implicit” problem to the single-valued “explicit” one via multivalued equivariant homotopy techniques.

	(A0)

	
[image: there is no content] is a Carathéodory function and there exist a Carathéodory function,



[image: there is no content], and a constant, [image: there is no content], such that:


∥h(t,u,v,w)∥≤α(t,u,v)+c∥w∥fora.e.t∈[0,1],andforallu,v,w∈V



(28)






lim(u,v)→(0,0)α(t,u,v)=0uniformlywithrespecttot∈[image: there is no content]



(29)




and:


∥h(t,u,v,[image: there is no content])-h(t,v,u,w2)∥≤∥[image: there is no content]-w2∥fora.e.t∈[image: there is no content]



(30)




and for all [image: there is no content], [image: there is no content], [image: there is no content], where [image: there is no content]









As is very well-known, the set of fixed points of a non-expansive map is convex. The following statement was proven in [15]:



Lemma 4.1.

Suppose that a Carathéodory function, [image: there is no content], satisfies condition (A0). Then, the multivalued map, [image: there is no content]:[image: there is no content]×V×V→Kc(V), given by:


[image: there is no content]



(31)




where [image: there is no content]is given in condition (A0), is well-defined and satisfies the Carathéodory condition.





Next, three conditions present the adaptation of the Hartman-Nagumo conditions for the implicit BVP. Namely, we assume that there exists [image: there is no content], such that:

	(A1)

	
for any [image: there is no content] satisfying [image: there is no content], there exists [image: there is no content], such that if [image: there is no content], then:


0<essinf[image: there is no content]{u•h(t,u,v,w):∥(u,v)-(uo,vo)∥≤δand∥w∥≤r}



(32)




where [image: there is no content] is given in (A0);




	(A2)

	
There exist constants, κ, [image: there is no content], such that:


∥h(t,u,v,w)∥≤2α(u•h(t,u,v,w)+∥v∥2)+κa.e.t∈[image: there is no content]



(33)




and for all u, v, [image: there is no content] with [image: there is no content] and [image: there is no content] (where [image: there is no content] is given in the condition (A0));




	(A3)

	
There is a function, [image: there is no content], such that [image: there is no content], [image: there is no content], belongs to [image: there is no content], [image: there is no content], and:


∥h(t,u,v,w)∥≤φ(∥v∥)fora.e.t∈[0,1]



(34)




and u, v, [image: there is no content], with [image: there is no content] and [image: there is no content] (where [image: there is no content] is given in the condition (A0)).









In addition, we will assume that problem (3) is asymptotically linear at the origin and that the linearization at the origin is non-degenerate. More precisely:

	(A4)

	
For any [image: there is no content], the function, [image: there is no content], is differentiable at [image: there is no content]; also, Dth[image: there is no content]≡0≡Dvh[image: there is no content], and Duh[image: there is no content]=:A, Dwh[image: there is no content]=:B, with [image: there is no content] and [image: there is no content];




	(A5)

	
the characteristic equation, [image: there is no content], [image: there is no content], where [image: there is no content], associated with the system linearized at [image: there is no content], has no characteristic roots of the form [image: there is no content] ([image: there is no content]).









Finally, as in SubSection 3.2, we assume that V is a coordinate permutation G-representation given by (12), and condition (13) is satisfied. Furthermore, assume that:

	(A6)

	
the function, [image: there is no content], is G-equivariant, i.e.:


h(t,gu,gv,gw)=gh(t,u,v,w),forallt∈[0,1]andu,v,w∈V












	(A7)

	
the function ho=h|[image: there is no content]×VG×VG×VG satisfies the condition: for any [image: there is no content], there is [image: there is no content], such that:


0<essinf[image: there is no content]{u•ho(t,u,v,w):∥(u,v)-(uo,0)∥≤δand∥w∥≤r}



(35)




where [image: there is no content] is given in (A0).









Remark 4.2.

A careful analysis of the proof of Lemma 4.1 shows that under the assumption that h is G-equivariant, one can construct [image: there is no content] to be G-equivariant, as well.





The Lemma, following below, plays an important role in our considerations.



Lemma 4.3.

Suppose that [image: there is no content]satisfies conditions (A0)–(A7). Let [image: there is no content]be given by:


[image: there is no content]



(36)




and let [image: there is no content]be a map provided by Lemma 4.1. Define the multivalued map, F:[image: there is no content]×V×V→Kc(V), by:


F(t,u,v):=[image: there is no content](t,u,v)-Cu,u,v∈V



(37)




Then:

	
(a) F:[image: there is no content]×V×V→Kc(V)satisfies conditions (H0)–(H7);



	
(b) any solution, u∈[image: there is no content], to (11) is also a solution to (3).










Proof: 

In light of [15] (see also (12) and (13), conditions (A6) and (A7)), we need to check only condition (H4), i.e.:


[image: there is no content]



(38)




uniformly with respect to [image: there is no content].



Suppose for contradiction that (38) is not true. Then, there exists [image: there is no content] and a sequence, [image: there is no content], such that [image: there is no content] and [image: there is no content], where [image: there is no content] and:


∥wn∥≥ε∥(un,vn)∥foralln∈N



(39)




Therefore, by the definition of F:


wn+Cun=g(tn,un,vn,wn+Cun),n∈N








Therefore:


[image: there is no content]








where [image: there is no content] as [image: there is no content] (uniformly with respect to t), which leads to:


[image: there is no content]



(40)







Then, since, by (29), [image: there is no content] as [image: there is no content], it follows that:


lim[image: there is no content](Id-B)wn∥(un,vn)∥=lim[image: there is no content]r(tn,un,vn;un+Cwn)∥(un,vn)∥=lim[image: there is no content]r(tn,un,vn;un+Cwn)∥(un,vn,un+Cwn)∥·lim[image: there is no content]∥un+Cwn∥=0·0=0








and we obtain a contradiction with (39). ☐





Combining Lemma 4.3 with Theorem 3.6, one obtains the following:



Theorem 4.4.

Let [image: there is no content]satisfy conditions (A0)–(A7). Assume [image: there is no content]is given by (36) and [image: there is no content]is given by (37). Take [image: there is no content]defined by (19)–(24) and assume:


ω(C,F)=n1(H1)+n2(H2)+⋯+nm(Hm),nj≠0,j=1,2,⋯,m











Then, for every [image: there is no content], there exists a non-zero solution u∈H2([image: there is no content];V) to (3), such that [image: there is no content]. In addition, if [image: there is no content] is a maximal orbit type in [image: there is no content], then [image: there is no content].






4.2. General Formula for [image: there is no content]


Theorem 4.4 reduces studying symmetric multiple solutions of (3) to the computation of [image: there is no content] (or that is the same (cf. Remark 3.5, (23) and (24)) as the computation of the equivariant degree, G-Deg(A,[image: there is no content])∈A[image: there is no content]). Below, we give a general formula for it.



Assume V admits the isotypical decomposition (5). Then, [image: there is no content]:=H2([image: there is no content];V) has the following G-isotypical decomposition:


[image: there is no content]:=[image: there is no content]0⊕[image: there is no content]1⊕⋯⊕[image: there is no content]r



(41)




where:


[image: there is no content]k:={u∈[image: there is no content]:∀t∈[a0,a1]u(t)∈[image: there is no content]}











Since A:[image: there is no content]→[image: there is no content] is G-equivariant, it preserves the G-isotypical decomposition of [image: there is no content], i.e.:


A([image: there is no content]k)=[image: there is no content]k,k=0,1,2,⋯,r



(42)







Since 𝒜 is a compact linear field, all points of the spectrum of 𝒜 are of finite multiplicity, and one can be the only accumulation point of the spectrum of 𝒜. Hence, the negative spectrum, [image: there is no content], is composed of a finite number of eigenvalues (of finite multiplicity). For each [image: there is no content], denote by [image: there is no content] the generalized eigenspace of λ and put (cf. (64))


mk(λ):=dim(E(λ)∩[image: there is no content]k)/dim([image: there is no content]),k=0,1,2,⋯,r








to denote the [image: there is no content]-multiplicity of the eigenvalue, λ. Consequently, one has (see Theorem 5.5) the following formula:


G-Deg(A,[image: there is no content]):=G-Deg(D[image: there is no content](0),[image: there is no content])=∏[image: there is no content]∏k=0r(deg[image: there is no content])[image: there is no content]



(43)







Formula (43) requires effective computations of the negative spectrum of 𝒜. In the next section, we will show that very often, it is a feasible task.





5. Examples of Implicit [image: there is no content]-Symmetric BVPs with Multiple Solutions


In this section, we describe a class of examples illustrating Theorem 4.4. Throughout this section, V stands for a [image: there is no content]-representation given by (72) and (73) and admitting the isotypical decomposition (76).



5.1. A Class of Maps Satisfying (A0)–(A7)


We start with describing a class of functions, [image: there is no content], satisfying (A0)–(A7).



Let [image: there is no content] be a [image: there is no content]-equivariant linear operator and let σ(A):={μj:0≤j≤m} denote the spectrum of A (cf. Theorem 5.6). Assume that [image: there is no content], i.e.:


[image: there is no content]



(44)







Let [image: there is no content] be a [image: there is no content]-invariant [image: there is no content]-differentiable function, such that:


[image: there is no content]



(45)







For two vectors, u, [image: there is no content], define:


u·v:=(u1v1,u2v2,⋯,unvn)T,u=(u1,u2,⋯,un)T,v=(v1,v2,⋯,vn)T



(46)




and put:


ul+1:=u·ul,forl≥1



(47)







Let [image: there is no content] be a [image: there is no content]-equivariant [image: there is no content]-differentiable function, such that:


ψ(t,u)=(ψ1(t,u),ψ2(t,u),⋯,ψn(t,u))Twithψi(t,u)≥0,i=1,2,⋯,n,andψ(t,0)≡0



(48)




Define [image: there is no content] by:


[image: there is no content]



(49)




where [image: there is no content] and [image: there is no content].



Let [image: there is no content] be a function satisfying the following conditions:

	(g1)

	
g is [image: there is no content]-equivariant (in particular, continuous);




	(g2)

	
there exist real constants, [image: there is no content] and [image: there is no content], such that [image: there is no content] for all [image: there is no content];




	(g3)

	
∥g(v,[image: there is no content])-g(v,w2)∥≤∥[image: there is no content]-w2∥ for all v,[image: there is no content],w2∈V;




	(g4)

	
[image: there is no content];




	(g5)

	
[image: there is no content].









The proof of the statement following below is straightforward.



Proposition 5.1.

Let V be a [image: there is no content]-representation given by (72) and (73), and let [image: there is no content]be given by (49) (cf. (44)–(48)). Let [image: there is no content]be a function satisfying (g1)–(g5).



Then, the function, [image: there is no content], defined by [image: there is no content]satisfies conditions (A0)—(A7).






5.2. Example


One can easily construct a wide class of illustrative examples of implicit BVPs for differential systems symmetric with respect to various classical finite groups (including, in particular, arbitrary dihedral groups [image: there is no content], a tetrahedral group [image: there is no content], an octahedral group [image: there is no content], an icosahedral group [image: there is no content], etc. (see [25])). However, being motivated by simplicity and the transparency of our exposition, we restrict ourselves to one of the simplest non-abelian symmetry groups, namely [image: there is no content].



Let [image: there is no content] be a [image: there is no content]-representation given by (72) and (73). Put [image: there is no content] and consider the (autonomous) four-dimensional system of second order ODEs:


[image: there is no content]1=-2ay1+ay2+ay4+[image: there is no content]1ey1y2y3y4∥[image: there is no content]∥β+y13+y1y22y42+k[image: there is no content]1∥[image: there is no content]∥βsin([image: there is no content]1)(1+∥[image: there is no content]∥2)-1[image: there is no content]2=-2ay2+ay1+ay3+[image: there is no content]2ey1y2y3y4∥[image: there is no content]∥β+y23+y2y12y32+k[image: there is no content]2∥[image: there is no content]∥βsin([image: there is no content]2)(1+∥[image: there is no content]∥2)-1[image: there is no content]3=-2ay3+ay2+ay4+[image: there is no content]3ey1y2y3y4∥[image: there is no content]∥β+y33+y3y22y42+k[image: there is no content]3∥[image: there is no content]∥βsin([image: there is no content]3)(1+∥[image: there is no content]∥2)-1[image: there is no content]4=-2ay4+ay1+ay3+[image: there is no content]4ey1y2y3y4∥[image: there is no content]∥β+y43+y4y12y32+k[image: there is no content]4∥[image: there is no content]∥βsin([image: there is no content]4)(1+∥[image: there is no content]∥2)-1



(50)




with the boundary conditions y(0) = 0 = y(1) (here, [image: there is no content] and will be specified later (cf. conditions (a1) and (a2) below), [image: there is no content] and [image: there is no content]).



Define:


[image: there is no content]



(51)






f(y,[image: there is no content]):=-2ay1+ay2+ay4+[image: there is no content]1ey1y2y3y4∥[image: there is no content]∥β+y13+y1y22y42-2ay2+ay1+ay3+[image: there is no content]2ey1y2y3y4∥[image: there is no content]∥β+y23+y2y12y32-2ay3+ay2+ay4+[image: there is no content]3ey1y2y3y4∥[image: there is no content]∥β+y33+y3y22y42-2ay4+ay1+ay3+[image: there is no content]4ey1y2y3y4∥[image: there is no content]∥β+y43+y4y12y32



(52)






g([image: there is no content],[image: there is no content]):=k[image: there is no content]1∥[image: there is no content]∥βsin([image: there is no content]1)(1+∥[image: there is no content]∥2)-1k[image: there is no content]2|[image: there is no content]∥βsin([image: there is no content]2)(1+∥[image: there is no content]∥2)-1k[image: there is no content]3∥[image: there is no content]∥βsin([image: there is no content]3)(1+∥[image: there is no content]∥2)-1k[image: there is no content]4∥[image: there is no content]∥βsin([image: there is no content]4)(1+∥[image: there is no content]∥2)-1



(53)







Clearly, f (respectively g) is of the form of (49) (respectively it satisfies conditions (g1)–(g5)). Therefore, by Proposition 5.1, [image: there is no content] satisfies conditions (A0)–(A7). Therefore, in order to apply Theorem 4.4 to find non-zero solutions to (50) and to describe their symmetries, one needs to effectively use formula (43).



Observe that the (symmetric) spectral properties of the linearization A:=D[image: there is no content](0) are completely determined by [image: there is no content] and [image: there is no content] (cf. (23)). One has the following [image: there is no content]-isotypical decomposition of V:


V:=[image: there is no content]⊕[image: there is no content]⊕[image: there is no content]



(54)




(see Appendix 2 for the used notations), which implies:


[image: there is no content]=[image: there is no content]0⊕[image: there is no content]1⊕[image: there is no content]3,[image: there is no content]j:=H2([image: there is no content];[image: there is no content]),j=0,1,3











In Figure 1, we show the hierarchy of the orbit types in [image: there is no content].


Figure 1. Orbit types in [image: there is no content].



[image: Symmetry 05 00287 g001]








The matrix, A, has the eigenvalues, [image: there is no content], [image: there is no content] and [image: there is no content] (see Appendix 2 for more details), with the eigenspaces, [image: there is no content], [image: there is no content] and [image: there is no content], respectively. The spectrum of the ([image: there is no content]-equivariant) operator, 𝒜, is:


[image: there is no content]



(55)







We make the following assumptions regarding [image: there is no content] (take, for example, [image: there is no content]):

	
(a1) [image: there is no content]



	
(a2) [image: there is no content] (for simplicity).








Then, formula (43) reads as follows:


[image: there is no content]-Deg(A,Bδo)=deg[image: there is no content]·deg[image: there is no content]



(56)




(cf. Appendix 2). Combining (56) with (70), (71) and the multiplication table for the Burnside ring, A([image: there is no content]) (see, for example, Table 1 in [11]), one obtains:


[image: there is no content]-Deg(A,Bδo)=deg[image: there is no content]·deg[image: there is no content]=([image: there is no content])-(D1)-[image: there is no content]+(Z1)·([image: there is no content])-[image: there is no content]=([image: there is no content])-[image: there is no content]+(D1)-[image: there is no content]








hence (see (24)) [image: there is no content]. We established the following:



Theorem 5.2.

Given system (50), assume the set (55) satisfies hypotheses (a1) and (a2). Then, (50) admits at least two (classical) non-zero solutions with symmetry [image: there is no content]and at least four (classical) solutions with symmetry [image: there is no content].



We refer to [10] as an appropriate source of examples of explicit [image: there is no content]-symmetric BVPs that can be converted to implicit [image: there is no content]-symmetric BVPs admitting an arbitrary large number of symmetric solutions.
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Appendix 1: Equivariant Degree without Parameters: Single-Valued Maps


A1.1. G-Equivariant Degree: Domain and Range of Values


Let V be an orthogonal G-representation, [image: there is no content], a bounded G-invariant set, and [image: there is no content], a G-equivariant map, such that [image: there is no content] for all [image: there is no content]. Then, f is said to be Ω-admissible, and the pair [image: there is no content] is called a G-admissible pair in V. Denote by [image: there is no content] the set of all G-admissible pairs in V, and put:


[image: there is no content]



(57)




where V is an orthogonal G-representation.



The collection determined by (57) is served as a domain of the G-equivariant degree (without free parameters).



Denote by [image: there is no content] the free abelian group generated by [image: there is no content], i.e., an element, [image: there is no content], is a finite sum:


a=n1(H1)+⋯+nm(Hm),withni∈Zand(Hi)∈Φ[image: there is no content]











One can define an operation of multiplication in [image: there is no content] by:


[image: there is no content]·(K)=∑(L)∈Φ(G)[image: there is no content][image: there is no content]



(58)




where the integer, [image: there is no content], represents the number of orbits of type [image: there is no content] contained in the space, [image: there is no content]. In this way, [image: there is no content] becomes a ring with the unity, [image: there is no content]. The ring [image: there is no content] (serving as the range of values of the equivariant degree) is called the Burnside ring of G.



By using the partial order on [image: there is no content], the multiplication table for [image: there is no content] can be effectively computed using a simple recurrence formula:


[image: there is no content]=n(L,H)|W[image: there is no content]|n(L,K)|W(K)|-∑(L˜)>[image: there is no content]n(L,L˜)nL˜|W(L˜)||W(L)|



(59)








A1.2. G-Equivariant Degree: Basic Properties and Recurrence Formula


In this subsection, we will present a practical “definition” of the G-equivariant degree, which is based on its properties that can be used as a set of axioms and determines this G-degree uniquely. These properties (or axioms) can be effectively applied to compute the values of the G-equivariant degree, needed to study symmetric boundary value problems.



Theorem 5.3.

There exists a unique map, G-deg:MG→A[image: there is no content], which assigns to every admissible G-pair [image: there is no content]an element, G-[image: there is no content], called the G-equivariant degree (or simply G-degree) of f on Ω:


G-deg[image: there is no content]=∑(Hi)∈Φ[image: there is no content][image: there is no content](Hi)=nH1(H1)+⋯+nHm(Hm)



(60)




satisfying the following properties:

	(G1) 

	
(Existence) If G-deg(f,Ω)≠0, i.e., there is in (60) a non-zero coefficient, [image: there is no content], then [image: there is no content], such that [image: there is no content]and ([image: there is no content])≥(Hi).




	(G2) 

	
(Additivity) Let [image: there is no content]and [image: there is no content]be two disjoint open G-invariant subsets of Ω, such that f-1(0)∩Ω⊂[image: there is no content]∪[image: there is no content].Then:


G-deg[image: there is no content]=G-deg(f,[image: there is no content])+G-deg(f,[image: there is no content])












	(G3) 

	
(Homotopy) If [image: there is no content]is an Ω-admissible G homotopy, then:


G-deg(ht,Ω)=constant












	(G4) 

	
(Normalization) Let Ω be a G-invariant open bounded neighborhood of zero in V. Then:


G-deg(Id,Ω)=1·(G)












	(G5) 

	
(Multiplicativity) For any ([image: there is no content],[image: there is no content]),(f2,[image: there is no content])∈MG:


G-deg([image: there is no content]×f2,[image: there is no content]×[image: there is no content])=G-deg([image: there is no content],[image: there is no content])·G-deg(f2,[image: there is no content])








where the multiplication “·” is taken in the Burnside ring, [image: there is no content].




	(G6) 

	
(Suspension) If Wis an orthogonal G-representation and [image: there is no content] is an open bounded invariant neighborhood of [image: there is no content], then:


G-deg(f×IdW,Ω×B)=G-deg[image: there is no content]












	(G7) 

	
(Recurrence Formula) For an admissible G-pair [image: there is no content], the G-degree (10) can be computed using the following recurrence formula:


nH=deg(fH,ΩH)-∑(K)>(H)nKn(H,K)|W(K)||W(H)|



(61)




where [image: there is no content]stands for the number of elements in the set, X, and [image: there is no content]is the Brouwer degree of the map [image: there is no content]on the set, [image: there is no content].











Remark 5.4.

Combining the standard (equivariant) finite-dimensional approximations with the suspension property (G6), the G-equivariant degree can be extended to the Leray-Schauder G-equivariant degree for G-admissible pairs [image: there is no content] in an isometric Banach G-representation, [image: there is no content], where Ω⊂[image: there is no content] is a bounded G-invariant set and [image: there is no content]=Id-F:[image: there is no content]→[image: there is no content] is a completely continuous G-equivariant field on [image: there is no content], i.e., F:[image: there is no content]→[image: there is no content] is a completely continuous G-map (taking bounded sets onto pre-compact sets). For a detailed construction of this extension, we refer the reader to [23].






A1.3. G-Equivariant Degree of Linear G-Isomorphisms


Any degree (including the equivariant one) applied to a concrete (nonlinear) problem can be often computed using the so-called linearization techniques based on local or global linear approximations.



Let [image: there is no content] and consider the isotypical decomposition (5). By the multiplicativity property (G5):


G-deg(T,B(V))=∏k=1rG-deg(Tk,B([image: there is no content]))



(62)




where B([image: there is no content]) is the unit ball in [image: there is no content] and Tk:=T|[image: there is no content]:[image: there is no content]→[image: there is no content]. Denote by [image: there is no content] the set of all negative real eigenvalues of the operator, T. Choose [image: there is no content], and let:


E(λ):=⋃j=1∞ker(T-λId)j



(63)




denote the generalized eigenspace of T corresponding to λ. Then, define:

	(i)

	
for each [image: there is no content], put:


mk(λ):=dimE(λ)∩[image: there is no content]/dim[image: there is no content]



(64)




and call the number, [image: there is no content], the [image: there is no content]-multiplicity of the eigenvalue, λ, of T;




	(ii)

	
for any irreducible representation, [image: there is no content], put:


deg[image: there is no content]:=G-deg(-Id,B([image: there is no content]))



(65)




and call deg[image: there is no content] the basic G-degree corresponding to the representation, [image: there is no content].









We have the following effective computational formula for [image: there is no content] (see, for example, [11,25]).



Theorem 5.5.

Let V be an orthogonal G-representation with isotypical decomposition (5) and [image: there is no content]. Then:


G-deg(T,B(V))=∏[image: there is no content]∏k=0rdeg[image: there is no content][image: there is no content]



(66)




where [image: there is no content]stands for the unit ball in V, [image: there is no content]denotes the set of negative real eigenvalues of T and the product is taken in the Burnside ring, [image: there is no content].





For the detailed exposition of the equivariant degree theory, one can use [11,22,23,24,25]).





Appendix 2: Dihedral Group and Its Representations


A2.1. Dihedral Group


Represent the dihedral group, [image: there is no content], of order [image: there is no content] as the group of rotations, one, γ, [image: there is no content], ..., [image: there is no content], of the complex plane (where [image: there is no content] is the multiplication by [image: there is no content]) plus the reflections, κ, [image: there is no content], κ[image: there is no content], ..., κ[image: there is no content], with κ being the operator of complex conjugation described by the matrix, [image: there is no content].



To describe (up to conjugacy) subgroups of [image: there is no content], take a positive integer, k, with [image: there is no content], and [image: there is no content]. The list of subgroups of [image: there is no content] includes:



(i) the subgroups [image: there is no content] and their isomorphic copies:


Dk,j=1,ξ,ξ2,⋯,ξk-1,κγj,κγjξ,⋯,κγjξk-1⊂[image: there is no content]








[image: there is no content], which are all conjugate, if [image: there is no content] is odd, but split into two conjugacy classes, [image: there is no content] and [image: there is no content], where [image: there is no content], if [image: there is no content] is even;



(ii) the cyclic subgroups, [image: there is no content], generated by ξ.




A2.2. Irreducible [image: there is no content]-Representations and Basic Degrees


For the complete list of irreducible [image: there is no content]-representations and the corresponding basic degrees, we refer the reader, for instance, to [25], p. 174. Here, we restrict ourselves with the data important for the present paper.



(a) Clearly, there is the one-dimensional trivial representation, [image: there is no content]. In this case:


deg[image: there is no content]=-([image: there is no content])











(b) For every integer number, [image: there is no content], there is a [image: there is no content]-representation, [image: there is no content], on [image: there is no content] given by:


γz:=γj·z,forγ∈Znandz∈[image: there is no content]κz:=z¯



(67)




where [image: there is no content] denotes the usual complex multiplication. Put:


h:=gcd(j,n)andq:=n/h



(68)




For the lattices of orbit types related to this case, we refer to Figure 2i (the case, q, is odd) and Figure 2ii (the case, q, is even). Furthermore, we have the following degrees of the basic maps:


deg[image: there is no content]=([image: there is no content])-2(Dh)+(Zh)ifqisodd



(69)






deg[image: there is no content]=([image: there is no content])-(Dh)-(D˜h)+(Zh)ifqiseven



(70)






Figure 2. Lattices of orbit types for irreducible [image: there is no content]-representations.



[image: Symmetry 05 00287 g002]






(c) For n being even, there is an irreducible representation, [image: there is no content], given by d:[image: there is no content]→Z2=O(1), such that [image: there is no content]. In this case, the lattice of orbit types is given in Figure 2iii and the degree of the corresponding basic map is:


deg[image: there is no content]=([image: there is no content])-(Dn2)



(71)










A2.3. [image: there is no content]-Representations Induced by Coordinate Permutations


Assume that [image: there is no content] is the natural [image: there is no content]-representation with the [image: there is no content]-action defined on the generators as follows:


[image: there is no content]



(72)






[image: there is no content]



(73)




where [image: there is no content]. Clearly, the matrices of transformation (72) and (73) are:


[image: there is no content]



(74)




and:


[image: there is no content]



(75)




respectively.



Proposition 5.6. Let V be a [image: there is no content]-representation given by (72) and (73) (see also (74) and (75)), and let [image: there is no content]. Then:



(i) V admits the isotypical decomposition:


[image: there is no content]



(76)







where Vj≃[image: there is no content], [image: there is no content](see Appendix 1);



(ii) for any collection of real numbers, [image: there is no content], here exists a unique [image: there is no content]-equivariant linear operator, [image: there is no content], such that σ(A):={μj:0≤j≤m}andE(μj)=Vj.



(iii) Let C be a matrix of the operator, [image: there is no content], provided by (ii). Then:



(a) if n is odd, then:


C=c0Id+∑k=1mckPk+P-kandμj=c0+∑k=1m2ckcos2πkjn



(77)







(b) if n is even, then:


C=c0Id+∑k=1m-1ckPk+P-k+cmPmandμj=c0+∑k=1m-12ckcos2πkjn-cm



(78)
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