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Abstract: The Fermi surface calculated within the rotating antiferromagnetism theory
undergoes a topological change when doping changes from p-type to n-type, in
qualitative agreement with experimental data for n-type cuprate Nd2−xCexCuO4 and p-type
La2−xSrxCuO4. Also, the reconstruction of the Fermi surface, observed experimentally
close to optimal doping in p-type cuprates, and slightly higher than optimal doping in the
overdoped regime for this n-type high-TC cuprate, is well accounted for in this theory. This
reconstruction is a consequence of the quantum criticality caused by the disappearance of
rotating antiferromagnetism. The present results are in qualitative agreement with recently
observed quantum oscillations in some high-TC cuprates. This paper presents new results
about the application of the rotating antiferromagnetism theory to the study of the electronic
structure for n-type materials.
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1. Introduction

The topology and doping dependence of the Fermi surface (FS) of high-temperature superconductors
(HTSC) are currently highly debated. Some observations from angle-resolved-photoemission
spectroscopy (ARPES) experiments do not seem to see any FS reconstruction, but data collected from
magnetoresistance measurements characterized by Shubnikov-de Haas (SdH) oscillations indicate that
the FS undergoes a topology change due to some sort of symmetry breaking. Since no long range order
has been observed so far in underdoped high-temperature superconductors (HTSCs), we proposed earlier
that the FS reconstruction is caused by the hidden rotating antiferromagnetic order.
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In the present work, we support this proposal by new results for n-type cuprates and argue in favor
of the FS of HTSCs undergoing topology reconstruction at specific doping levels in the framework of
rotating antiferromagnetism theory (RAFT) [1]. We compare the evolution of the FS with doping in
p-type and n-type HTSCs obtained in this theory and discuss it in connection mainly with available
experimental data for n-type material Nd2−xCexCuO4 and p-type one La2−xSrxCuO4. It is found that the
change in the topology of the FS as one goes from the p-type cuprate to n-type material is well accounted
for in RAFT. In the low-doping limit (underdoped regime), RAFT yields a small almost square FS
centered around (π, 0) points for n-type Nd2−xCexCuO4 in qualitative agreement with SdH oscillations,
which indicate the existence of a FS in the form of small pockets [2]. A careful look at the data of
Armitage et al. [3] in Figure 3 of their work reveals a trend qualitatively consistent with our findings
for n-type material Nd2−xCexCuO4 regarding the evolution of spectral weight away from (π, 0) and the
formation of a larger FS as doping increases. A FS in the form of stretched elliptic pockets nearby the
(π/2, π/2) points is, however, likely for p-type La2−xSrxCuO4. Indeed, Figure 5 of the ARPES work by
Yoshida et al. [4] shows nicely the evolution of the FS with doping from what we interpret as stretched
small pockets in the underdoped regime to large contours in the overdoped regime. RAFT reproduces
the FS evolution qualitatively well with doping for this p-type material. Note that p-type cuprates were
examined using RAFT in [5]. However, this is the first work based on RAFT, which deals with the
electronic structure in an n-type cuprate. In RAFT, for both p-type and n-type materials, the critical
value of doping where FS reconstruction occurs is given by the value where rotating antiferromagnetism
vanishes. In p-type materials, this value coincides practically with optimal doping, but in n-type case, it
occurs in the overdoped regime beyond optimal doping for superconductivity (SC).

This paper is organized as follows. In Section 2, RAFT is extensively reviewed. In Section 3, the
rotating antiferromagnetic and superconducting parameters are calculated as a function of doping and
temperature. In Section 4, the doping dependence of the electronic structure is calculated and compared
to experimental data. Energy spectra versus the wavevector are calculated for several doping levels,
and the FS is calculated using the occupation probability for doping levels in n-type and p-type cases.
Conclusions and a discussion of existing experimental data are given in Section 5.

2. Review of Rotating Antiferromagnetism Theory

2.1. Normal State

We first focus on the normal (non-superconducting) state where we review the derivation of rotating
antiferromagnetism (RAF). In Section 2.4, we will review the interplay between SC and RAF. Consider
here the t-t′ Hubbard model in two dimensions:

H = −t
∑
⟨i,j⟩σ

c†i,σcj,σ − t′
∑

⟨⟨i,j⟩⟩σ
c†i,σcj,σ + h.c.

−µ
∑
i,σ

ni,σ + U
∑
i

ni↑ni↓ (1)

where ⟨i, j⟩ and ⟨⟨i, j⟩⟩ designate nearest and second-nearest neighboring sites, respectively, and t and
t′ are electron hopping energies to the nearest and second-nearest neighbors, respectively. Note that
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hopping to further neighbors was also considered [5] for more accurate comparison with the experiment.
The interacting term in Hamiltonian (1) has been decoupled using:

Qi = ⟨ci,↑c†i,↓⟩ = −⟨S−
i ⟩ ≡ |Q|eiϕi (2)

and mean-field theory [1,5–9] was recently combined with the Heisenberg equation [10] in order
to calculate the phase of this order parameter. To use the Heisenberg equation, the interacting
term, Uni↑ni↓, was rewritten in terms of the spin ladder operators in the following way. In second
quantization, where: S+

i = c†i,↑ci,↓, the onsite Coulomb repulsion, Uni↑ni↓, was, on one hand, written
as: Uni↑ni↓ = Uni↑ − US+

i S
−
i and on the other hand as: Uni↑ni↓ = Uni↓ − US−

i S
+
i . Summing then

dividing by 2 gave the symmetric expression: Uni↑ni↓ =
U
2
(ni↑ + ni↓) − U

2
(S+

i S
−
i + S−

i S
+
i ) [10]. The

terms, S+
i S

−
i and S−

i S
+
i , which are responsible for onsite spin-flip excitations, contribute by lowering

energy for the sites that are partially occupied by the same density of spin up and down electrons. We
decoupled this term in the mean-field theory using ⟨S−

i ⟩ ≡ ⟨c†i,↓ci,↑⟩, which leads to a collective behavior
for the spin-flips, and recovered the results obtained earlier in RAFT [1,5–9]. In this state, a spin flip
process at site i is simultaneously accompanied by another one at another site, j; the occurrence of spin
flips becomes synchronized below a transition temperature, which was identified with the pseudogap
(PG) temperature. In Section 2.3 below, an interpretation of RAF from a classical point of view will
be given.

The parameter,Qi, in Equation (2) is thus used to carry on a mean-field decoupling of the t-t′ Hubbard
model (1). Consideration of the ansatz, where ϕi−ϕj = π, with i and j labeling any two adjacent lattice
sites, and letting the phase, ϕi ≡ ϕ, be site-independent, but assuming any value in [0, 2π], led to the
following normal state Hamiltonian in RAFT [1,6,7]:

H ≈
∑

k∈RBZ

Ψ†
kHΨk +NUQ2 −NUn2 (3)

where N is the number of sites and n = ⟨ni,σ⟩ is the expectation value of the number operator. Because
of antiferromagnetic correlations, a bipartite lattice with sublattices A and B is considered, even though
no long-range static antiferromagnetic order is taken into account. Note that RAFT is only valid away
from half-filling, where this long-range order occurs. The summation runs over the reduced (magnetic)
Brillouin zone (RBZ). The Nambu spinor is: Ψ†

k = (cA†
k↑ c

B†
k↑ c

A†
k↓ c

B†
k↓ ) and the Hamiltonian matrix is:

H =


−µ′ ϵ UQeiϕ 0

ϵ −µ′ 0 −UQeiϕ

UQe−iϕ 0 −µ′ ϵ

0 −UQe−iϕ ϵ −µ′


yielding the energy spectra:

E±(k) = −µ′(k)± Eq(k) (4)

where: µ′(k) = µ−Un+4t′ cos kx cos ky, Eq(k) =
√
ϵ2(k) + (UQ)2, and ϵ(k) = −2t(cos kx+cos ky).

Using the fact that the energy spectra, E±(k), do not depend on phase ϕ, the matrix, H, is transformed
to one that does not depend on ϕ using the spin-dependent gauge transformation: ci,↑ → eiϕ/2ci,↑ and:
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ci,↓ → e−iϕ/2ci,↓. This transformation is equivalent to performing a rotation by angle, −ϕ, about the z
axis for the x and y components of the spin operator according to: Sx

i

Sy
i

 →

 cosϕ sinϕ

− sinϕ cosϕ

 Sx
i

Sy
i


Note that the thermal averages of Sx

i and Sy
i are given by:

⟨Sx
i ⟩
h̄

= Q cosϕ,
⟨Sy

i ⟩
h̄

= −Q sinϕ, i ∈ A, or

⟨Sx
i ⟩
h̄

= −Q cosϕ,
⟨Sy

i ⟩
h̄

= Q sinϕ, i ∈ B (5)

and ⟨Sz
i ⟩ = 0 for i in both sublattices. Because the phase, ϕ, assumes any value between 0 and 2π,

rotational symmetry will not look broken for times greater than the period of rotation, as we will explain
below, when we review the calculation of the time dependence of the phase. However, if the typical time
scale of a probe is much smaller than this period, then symmetry may appear broken.

The magnitude, Q, and the electron occupation thermal average, n, are calculated by minimizing
the phase-independent mean-field free energy. The following mean-field equations were obtained in the
normal state [1,6,7]:

n =
1

2N

∑
k

{nF [E+(k)] + nF [E−(k)]}

Q =
U

2N

∑
k

nF [E−(k)]− nF [E+(k)]

Eq(k)
(6)

where nF is the Fermi-Dirac factor.

2.2. Calculation of the Time Dependence of the Phase

The nature of RAF has recently been completely understood after the phase, ϕ, of its order parameter
was calculated as a function of time [10]. Here, we summarize how this was done. The Heisenberg

equation,
dS+

j

dτ
= 1

ih̄
[S+

j , H], was calculated in the limit where electron hopping is neglected in
comparison to U

2
(S+

j S
−
j + S−

j S
+
j ). The values considered in RAFT for onsite Coulomb repulsion are

in the range U ∼ 3 t–5 t; this is an intermediate coupling regime where U > t, but smaller than the
bandwidth, ∼ 8 t when t′ ≪ t. Neglecting the effect of electron hopping energies in the Heisenberg
equation can be justified on the grounds that spin dynamics are faster than charge dynamics. An onsite
spin flip fluctuation needs a time, τ ∼ h̄/U , to be realized, while a fluctuation caused by a charge
hopping between adjacent sites takes a longer time, τ ∼ h̄/t, (U > t). In the Heisenberg equation,
the bare original interaction was used instead of RAFT’s Hamiltonian (3) in order to treat quantum
fluctuations as best as possible. In this approximation, the following time equation was obtained [10]:

dS+
j

dτ
≈ i

U

h̄
S+
j , (τ is time) (7)

in the intermediate regime where spin dynamics is not governed by the Heisenberg exchange coupling,
4t2/U . Note that the latter is suitable in the strong coupling limit (U/t ≫ 1) for the Hubbard model,



Symmetry 2013, 5 219

whereas RAFT is valid in the intermediate coupling regime. Integration over time, τ , in Equation (7)
gives the thermal average:

⟨S+
j (τ)⟩ ≈ ⟨S+

j (0)⟩eiUτ/h̄ (8)

The phase can thus be written as ϕ = Uτ/h̄ modulo 2π, when ⟨S+
j (0)⟩ is identified with |⟨S+

j (τ)⟩|,
(−|⟨S+

j (τ)⟩|), for sublattice A, (B), and eiϕ with eiUτ/h̄. Using this result, the magnetic configuration
(5) is rewritten as follows: ⟨Sx

i ⟩/h̄ = Q cos(ωsfτ), ⟨Sy
i ⟩/h̄ = −Q sin(ωsfτ) for i in sublattice A or

⟨Sx
i ⟩/h̄ = −Q cos(ωsfτ), ⟨Sy

i ⟩/h̄ = Q sin(ωsfτ) for i in sublattice B, and ⟨Sz
i ⟩ = 0 for i in sublattice

A or B. These thermal averages describe a rotational motion for the spin components with angular
frequency, ωsf = U/h̄. The period, Tsf = 2πh̄/U , is thus the time required to perform a spin-flip
process or the time needed for the rotating order parameter, ⟨Sx(y)

i ⟩, to complete a 2π-revolution in a
classical picture.

2.3. Interpretation of Rotating Antiferromagnetism

The above derivation of RAF was supported by the following argument, which shows that rotating
magnetism (ferro or antiferro) is physically sound and can therefore be realized in a real system
independently of a model. Consider the much simpler case of a single spin precessing in a magnetic
field, B, along the z-axis, with the initial spin state given by: |Sx,+⟩ = 1√

2
(| ↑⟩ + | ↓⟩). Initially, this

spin points in the positive x-direction. The time-dependent expectation values of this spin’s components
are ⟨Sx⟩ = h̄

2
cos(ωt), ⟨Sy⟩ = h̄

2
sin(ωt), and ⟨Sz⟩ = 0, with ω = |e|B

mec
. e and me are the charge and

mass of the electron, and c is the speed of light. The x and y components are therefore confined to rotate
about the z-axis in the xy plane with Larmor angular frequency ω. A rotating ferromagnetic state can be
realized by placing N such states with the same frequency on a lattice made of N sites. For a rotating
antiferromagnetic state, opposite initial states (±|Sx,+⟩) where spins point in opposite directions on the
x-axis are placed on any two adjacent sites of a lattice. To relate RAF to spin flip processes, it is noted
that ⟨S±⟩ = ⟨Sx⟩ ± i⟨Sy⟩ = h̄

2
e±iωt in this example. In a given model, a coupling is necessary for

providing the building blocks for RAF, which is a spin precessing about an effective magnetic field (with
no local magnetization) for each lattice site and the anti-alignment of the adjacent rotating moments. The
RAF state constructed in this way shows a hidden order that can be realized even at finite temperature
without violating the Mermin-Wagner theorem [11].

The above simple case allowed us to interpret RAF as a state where spins precess collectively in a
synchronized way in the spins’ xy plane around a staggered effective magnetic field, B = mecU/h̄|e|,
generated by onsite Coulomb repulsion. h̄/2 in ⟨S±⟩ = h̄

2
e±iωt is replaced by the magnitude of the RAF

order parameter, Qh̄, which assumes values smaller than h̄/2, due to thermal fluctuations. In comparison
to ordinary spin waves in an antiferromagnet, RAF’s state was interpreted as a single q = (π, π) spin
wave occurring as a consequence of zero staggered static magnetization. The spin-wave theory does
not, however, apply for our system (where ⟨Sz

i ⟩ = 0), since this theory has to be built on top of a Néel
background with finite ⟨Sz

i ⟩. Also, in comparison to the ordinary antiferromagnetic spin-density order,
RAF is characterized by a local magnetization that is not static, because of the time dependence of the
phase of the magnetization. It is thus clear that RAF will have all the typical effects of spin-density
order on the evolution of the electronic structure with doping, but is expected to go undetected for
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experimental probes, like neutrons, due to the time dependence of the phase. We predicted [10] that
rotational symmetry will not look broken for experimental probes that are characterized by a time scale
greater than the period of rotation Tsf = 2πh̄/U of the rotating order parameter of RAF. For such probes,
averaging over times longer than the period will not allow for the observation of RAF. In RAFT, electron
hopping energy, t, is taken to be 0.1 eV when fitting data. Taking U = 3t = 0.3 eV gives Tsf ≈ 10−14 s.
For neutrons, for example, the typical time would be the time spent by a given neutron in the immediate
vicinity of a given spin during the scattering process. If this time is greater than the period, Tsf , then
neutrons will not detect RAF. If the time spent by the neutron in the vicinity of the spin is smaller, then
there is a chance RAF will be detected. Note that smaller times mean higher energies for neutrons. This
is an issue that is still under investigation and will be reported on in the future.

2.4. Interplay between RAF and SC

In RAFT, d-wave SC was introduced phenomenologically using an attractive coupling between
electrons on adjacent sites. The term, −V ∑

⟨i,j⟩ ni,↑nj,↓, is now added to Hamiltonian (1) and is
decoupled using D⟨i,j⟩ = ⟨ci,↓cj,↑⟩. To get a d-wave gap, we set D⟨i,j⟩ = D0 along the x-direction
and D⟨i,j⟩ = −D0 along the y-direction [1,6].

When both SC and RAF orders are taken into account, the mean-field Hamiltonian is written in terms
of an eight-component spinor, given by:

Ψ†
k = (cA†

−k↑c
B†
−k↑c

A
k↓c

B
k↓c

A
k↑c

B
k↑c

A†
−k↓c

B†
−k↓) (9)

and assumes the expression [1,6]:

H =
∑
k<

Ψ†
kHΨk + UNQ2 + UNm2

+4V ND2
0 − UNn2 − µN (10)

where H is an 8× 8 matrix:

H =

 H′ UQ

−UQ −H′


with H′ and UQ, two 4× 4 matrices, given by:

H′ =


−µ′(k) ϵ(k) 0 D(k)

ϵ(k) −µ′(k) D(k) 0

0 D(k) µ′(k) −ϵ(k)
D(k) 0 −ϵ(k) µ′(k)


and:

UQ =


0 0 QU 0

0 0 0 −QU
−QU 0 0 0

0 QU 0 0


The k-dependent superconducting gap is D(k) = 2V D0(cos kx− cos ky), where D0 = ⟨cA2i,j,↓cB2i±1,j↑⟩ =
−⟨cAi,2j,↓cBi,2j±1,↑⟩ involves two adjacent sites on different sublattices. Triplet SC [12] is ruled out by
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choosing ⟨cA2i,j,↓cB2i±1,j↑⟩ = −⟨cA2i,j↑cB2i±1,j,↓⟩; so, only spin-singlet SC, which is relevant to HTSCs, is
considered in RAFT. The way decoupling is done using creation and annihilation operators rather than
the spin-singlet and triplet superconducting operators, which are a combination of products of the c’s
and c†’s, allowed us to avoid the generation of triplet SC if it is not present initially [12].

In Hamiltonian (10), ϵ(k) = −2t(cos kx + cos ky), and µ′(k) = µ − Un + 4t′ cos kx cos ky have
the same expressions as in the absence of SC. In Equation (10), the summation over k takes into
account the doubling of the Brillouin zone and the fact that summation is now over k and −k. The
size of the mean-field Hamiltonian matrix, H, is twice as large as that in the density d-wave (DDW)
approach [13], proposed for the PG behavior, or in other approaches that deal with the interplay between
antiferromagnetism and SC [12].

The energy spectra obtained by diagonalizing the matrix H are ±E1(k) and ±E2(k) with:

Eν(k) =
√
[µ′(k) + (−1)νEq(k)]2 +D2(k), ν = 1, 2 (11)

where: Eq(k) =
√
ϵ2(k) +Q2U2.

Minimizing the free energy function with respect toQ andD0, and calculating the density of electrons,
n, led to the following mean-field equations that describe the interplay between RAF and SC for HTSCs
with tetragonal symmetry:

1 =
V

4N

∑
k,ν=1,2

(cos kx − cos ky)
2

Eν

tanh(
βEν

2
)

1 =
U

4N

∑
k,ν=1,2

(−1)ν+1Aν

Eq

tanh(
βEν

2
)

n = − 1

4N

∑
k,ν=1,2

Aν tanh(
βEν

2
) +

1

2
(12)

where:

Aν(k) = [−µ′(k)− (−1)νEq(k)]/Eν(k) (13)

In the case of crystals with orthorhombic symmetry, it is possible that D⟨i,j⟩x ̸= −D⟨i,j⟩y , because the
superconducting coupling constants, Vx, along the x axis and, Vy, along the y axis, may differ. Then,
the superconducting gap takes on the form: D(k) = ψs(cos kx + cos ky) + ψd(cos kx − cos ky) with
ψs = VxDx − VyDy and ψd = VxDx + VyDy, which implies that it shows d+s-pairing symmetry. This
is a consequence of the absence of invariance under rotations by π/2 of the CuO2 plane and is therefore
consistent with arguments based on group theory [14].

3. RAF and SC Parameters versus Temperature and Doping

The mean-field Equations (12) were solved numerically in order to get the parameters, Q, D0, and
the average number of electrons per site and per spin, n. In hole-doped (p-type) systems, the density
of holes given by p = 1 − 2n is equivalent to the density of electrons missing below half-filling. For
electron-doped (n-type) systems, the density of electrons ne = 2n − 1 is the density of electrons above
half-filling. Note that at half-filling, n = 1/2, so that ne = p = 0 in this case.
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Figure 1 shows RAF and SC parameters, Q and D0, versus doping for the Hamiltonian parameters,
U = 2.8 t, V = 0.85 t and t′ = −0.16 t. If RAF were not taken into account, SC would be optimum
at half-filling. When RAF is allowed in, SC is destroyed near half-filling, but coexists with RAF in
the underdoped regime for p-type doping and for all doping values where D0 ̸= 0 in n-type case. The
doping values where Q vanishes in both p- and n-type systems are identified as quantum critical points
(QCP) [1]. In Figure 1, the QCP occurs within the superconducting dome in the p-type system, but
outside of the dome and deep in the overdoped regime for the n-type system. RAF’s parameter, Q, has
been proposed to model the PG in HTSCs [1,6], and the PG temperature T ∗ has been identified with the
temperature below which Q becomes nonzero.

Figure 1. The typical behavior of the rotating order parameter, Q, and superconducting
parameter, D0, with doping is illustrated here for U = 2.8 t, V = 0.85 t and t′ = −0.16 t.
Temperature is T = 0.05 t. The behavior shown is practically the same at zero temperature.
The doping values where Q vanishes in both p- and n-type cases are interpreted as quantum
critical points (QCP).

0

0.1

0.2 Q
D

0

n type p type

00.10.2 0.1 0.2 0.3 0.4
doping

Figures 2 and 3 display the temperature dependence for Q and D0 for some given doping levels.
Using these kind of figures, the PG (T ∗) and SC (TC) temperatures were calculated in [6] for p-type
cuprates. Again, the competition is apparent between SC and RAF in the p-type case, because as soon
as D0 becomes nonzero, RAF’s order parameter, Q, decreases monotonically, as seen in Figure 2 for
p = 0.1 in the underdoped regime. Note that the optimal doping for the Hamiltonian parameters used
here is p ≈ 0.20 in the p-type case and ne ≈ 0.075 in the n-type case; see Figure 1. For p = 0.195

(close to optimal doping), it is interesting to note that Q decreases significantly below TC when D0

becomes nonzero. The behavior for n-type case is totally different. For ne = 0.075 (optimal doping), Q
barely decreases when D0 becomes nonzero below TC , then even increases slightly and saturates at low
temperature, as the inset of Figure 3 shows.
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Figure 2. The temperature dependence of Q and D0 is displayed for two values of doping in
the p-type case. The Hamiltonian parameters are U = 2.8 t, V = 0.85 t and t′ = −0.16 t.

0 0.1 0.2
T/t

0

0.05

0.1

0.15

0.2

p=0.1
p=0.195

Q

D
0

The phase diagram obtained by letting in a Bardeen-Cooper-Schrieffer [15] picture T ∗ ∼ Q(T = 0)

and TC ∼ D0(T = 0) in Figure 1 is in qualitative agreement with experiments for p-type La2−xSrxCuO4

and n-type Nd2−xCexCuO4 cuprates. For the latter, the PG is reported to vanish almost when SC does in
the overdoped regime [2]. For the former, significant experimental evidence suggests the disappearance
of the PG rather closer to the optimal doping [16].

Figure 3. The temperature dependence of Q and D0 is displayed for an n-type case with
ne = 0.075. The Hamiltonian parameters used are U = 2.8 t, V = 0.85 t and t′ = −0.16 t.

0 0.1 0.2 0.3
T/t

0

0.05

0.1
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D

0
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0.19

Q
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e
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In RAFT, the thermal average of the spin operators, Sx
i and Sy

i , in a frame rotating with angular
frequency, ωsf , with the rotating local magnetization are ⟨Sx

i ⟩ = (⟨S+
i ⟩ + ⟨S−

i ⟩)/2 = (−1)xi+yi|Q|,
and ⟨Sy

i ⟩ = 0, respectively, and by construction, the static magnetization along the quantization axis,
z, is zero in order to satisfy the Mermin-Wagner theorem at finite temperature. Here, xi and yi are the
x and y coordinates of site, i. RAF is predicted to exist in a purely two-dimensional electronic system
or in a three-dimensional system of electrons, where either thermal fluctuations at high temperature or
doping even at lower temperature prevents three-dimensional long-range Néel order from occurring.
Néel order, which has not been taken into account so far in RAFT, occurs below TN < T ∗ in the vicinity
of half-filling. As is well known, this antiferromagnetic phase consists of a static magnetization plus
quantum spin waves, which exist for all allowed wavevectors. How then does RAF evolve into static



Symmetry 2013, 5 224

antiferromagnetism when temperature is lowered below TN for a given doping density, and how does
static antiferromagnetism give way to the pseudogap phase when doping increases away from half-filling
at a given temperature? The key point in answering these questions may perhaps reside in the fact that
RAF has been interpreted as a single q = (π, π) wave [10]. We conjecture that when temperature is
lowered across TN , the static magnetization sets in, due to the three-dimensional coupling between the
copper-oxygen layers. The establishment of three-dimensional long-range order naturally allows other
spin waves with q ̸= (π, π) to settle in along with the q = (π, π) spin wave present in RAF, a mechanism
that causes the loss of RAF. In this conjecture, the PG is a consequence of purely two-dimensional
physics, but the Néel order is, as is well known due to three-dimensional physics. In future investigations,
we plan to seek the mechanism for the phase change from the Néel order to RAF and vice versa.

4. Doping Dependence of Electronic Structure

4.1. Analysis of Energy Spectra

As mentioned in the previous section, the appearance of RAF below a critical value of doping as
the latter is reduced from the overdoped to underdoped regime for p-type or n-type systems at zero
temperature has been interpreted as a QCP. The case of p-type has been discussed before [1,6,8]. This
QCP induces a reconstruction of the FS practically in the same way an ordinary spin-density order
does [17]. However, RAF is not an ordinary spin density order, as explained in Section 2. Figure 4
shows energy spectra along symmetry lines of the Brillouin zone for T = 0.1 t. For p = 0.075, one
clearly sees a gap at (π, 0), in agreement with experimental data for La2−xSrxCuO4 [18]. Also a small
hole-like band is seen along the diagonal around (π/2, π/2). The presence of the gap at (π, 0) for this
doping and the small hole-like band in the vicinity of (π/2, π/2) are due to the nonzero value of RAF’s
order parameter, Q. This gap is responsible for the PG behavior in the underdoped regime. The hole-like
band is also seen along the RBZ boundary [(π, 0) → (0, π)], as shown in Figure 5 for p = 0.1. For
p = 0.24 in the overdoped regime, the PG has closed, and the hole-like pocket has reached the (π, 0) and
(0, π) points, as can be seen along the RBZ boundary in Figure 5. Along this boundary,E+(k) = E−(k),
when Q = 0 at T = 0.1 t, is above the chemical potential all the way between (π, 0) and (0, π).

For the n-type case, Figure 6 displays the spectra for doping ne = 0.06 in the underdoped regime and
for ne = 0.2 well in the overdoped regime for T = 0.1 t. The PG behavior is now a consequence of a gap
at (π/2, π/2), and a small electron pocket forms near (π, 0). For ne = 0.2, the PG is zero, because Q has
vanished, and the electron pocket at (π, 0) joined that at (0, π). This can be understood by examining
the spectrum along the RBZ boundary, which gives a completely full band along this direction. For
example, for ne = 0.21 in Figure 5, E+(k) = E−(k) < 0, which means that these bands are full. The
above analysis can be made even more transparent by calculating the FS, a task undertaken below.
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Figure 4. The energies E−(k) and E+(k) are plotted versus k along symmetry lines of the
Brillouin zone. The Hamiltonian parameters are U = 2.8 t, V = 0.85 t and t′ = −0.16 t,
and hole doping is p = 0.075 in the underdoped phase for the figure on the left and p = 0.24

in the overdoped regime for the figure on the right. The dotted horizontal line indicates the
position of the Fermi energy. Temperature is T = 0.1 t and D0 = 0.
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Figure 6. The energies E−(k) and E+(k) are plotted versus k along symmetry lines of the
Brillouin zone. The Hamiltonian parameters are U = 2.8 t, V = 0.85 t and t′ = −0.16 t, and
electron doping is ne = 0.06 in the underdoped phase for the figure on the left and ne = 0.2

in the overdoped regime for the figure on the right. Temperature is T = 0.1 t and D0 = 0.
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4.2. Evolution of the Fermi Surface with Doping

In RAFT, the occupation probability, n(k), was defined by writing the average number of electron
per spin and site n in Equation (12) as: n ≡ 1

N

∑
k n(k), which yields [1]:

n(k) = −1

4

∑
ν=1,2

Aν(k) tanh[
βEν(k)

2
] +

1

2
(14)

Aν(k) is given in Equation (13). n(k) was then interpreted as the probability that the state with wave

vector, k, is occupied by an electron with spin up or down.
Ronning et al. [19] extracted n(k) by integrating ARPES energy distribution curves over energy for

the material, Ca2CuO2Cl2, then deduced the FS by locating the steepest drops in n(k) in analogy with
a Fermi gas. Also, using the same method, the Fermi surface for Bi2Sr2CaCu2O8+δ in the overdoped
regime was obtained. Here, we implement the same argument in RAFT, namely the FS is determined
by the sharp drops in the occupation probability. This method was also used in [5] and gave results in
agreement with the determination of the FS using the spectral function.

Figure 7 shows two-dimensional plots of n(k) for three doping levels in the p-type case for
Hamiltonian parameters U = 2.8 t, V = 0.85 t and t′ = −0.16 t at temperature T = 0.1 t. This
temperature is above any transition temperature for SC. The FS is made of hole pockets around
(±π/2,±π/2) in the underdoped regime, as shown for p = 0.06. The energy spectra in Figures 4 and 5
show well that in the presence of the PG, the upper E+ and lower E− bands are separated by gaps along
all the symmetry lines in the underdoped regime. Hole-like pockets can clearly be seen for p = 0.075 in
Figure 4 around (π/2, π/2). Around optimal doping, p = 0.2, the hole pockets reach the points, (±π, 0)
and (0,±π). In the overdoped regime, where the PG is zero, the FS is made of large contours around
(0, 0) and (π, π), as can be seen in Figure 4 for p = 0.24. For the latter, because the PG is zero, the upper
bandE+ and lower bandE− touch at (±π, 0), (0,±π) and (±π/2, π/2) to form a tight-binding spectrum
given byE±(k) = ±|2t(cos kx+cos ky)|−4t′ cos kx cos ky−µ+Un. The presence of the absolute value
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in this tight-binding energy is a consequence of the limit, Q → 0, in
√
ϵ2(k) + U2Q2 for the overdoped

regime. In the p-type case, the FS in RAFT thus evolves strongly with doping. It reconstructs at the
QCP doping, where Q vanishes. Its topology changes from small hole-like pockets in the underdoped
regime below this QCP to large contours in the overdoped regime. This is qualitatively consistent
with the quantum oscillations observed in resistivity by Doiron-Leyraud et al. [20] for YBa2Cu3O6.5,
which indicated that a well-defined small FS characterizes this underdoped cuprate. Subsequent work by
Sebastian et al. [21] for YBa2Cu3O6+x supported the existence of small closed pockets in the underdoped
regime, as well.

The calculated FS undergoes also a significant reconstruction when doping changes from p-type
to n-type across half-filling, (note that RAFT is only valid outside of the HTSCs’ AF phase around
half-filling). In RAFT, for the Hamiltonian parameters considered here, the FS in the underdoped regime
for n-type cuprates consists of electron pockets around points (±π, 0) and (0,±π), rather than pockets
around (±π/2,±π/2) in the underdoped regime of p-type cuprates. This is clearly seen in Figure 8 for
ne = 0.06 and ne = 0.1 and is consistent with the energy spectra in Figure 6, which show the existence of
a small electron pocket at (π, 0) for ne = 0.06 as well. When the PG vanishes in the overdoped regime,
the electron pockets join to form large contours, as seen for ne = 0.2. Armitage et al. [3] reported
ARPES data for n-type material Nd2−xCexCuO4, which can be interpreted as revealing the existence of
pockets around (π, 0) and symmetric points in the underdoped regime. Also, Matsui et al. [22] measured
the evolution of the FS with doping for this material using ARPES. A close look at Figure 1 of their work
reveals a FS mainly near k-points (π, 0) and (0, π) for doping x = 0.13, but the FS evolves into larger
contours joining these two points for the larger doping levels, x = 0.16 and x = 0.17. Note that if
one symmetrizes Matsui et al.’s FSs about the line joining (π, 0) and (0, π), one will get FSs that look
similar to those calculated here and shown in Figure 8. Their measurements were done only along the
FS in the tight-binding limit. We predict that if measurements were performed along the image of this
tight-binding FS with respect to line (π, 0)-(0, π), then one would obtain a FS that looks like ours. Also,
the reconstruction of the FS, as illustrated in Figure 8, at the QCP doping, where Q vanishes (so, where
the PG vanishes), is in agreement with the SdH oscillation results of Helm et al. [2] for the above
material. SdH oscillations revealed a FS evolving from small pockets to large contours as doping goes
from the underdoped regime to overdoped regime.

5. Conclusions and Discussion

We studied the reconstruction of the Fermi surface under the effect of the hidden rotating
antiferromagnetic order in both p-type and n-type high-TC cuprates. For the Hamiltonian parameters
used here, the Fermi surface in p-type cuprates reconstructs, due to rotating antiferromagnetism at the
quantum critical point near optimal doping, where the pseudogap vanishes. This Fermi surface consists
of hole pockets around (±π/2,±π/2) in the underdoped regime, but changes to large closed contours
in the overdoped regime. For n-type cuprates, the location and topology of the Fermi surface is different
than in p-type materials. The hole pockets are of a form resembling squares around (±π, 0) and (0,±π)
in deep underdoped n-type systems. When the pseudogap becomes zero beyond the quantum critical
point in the overdoped regime, the Fermi surface changes to large closed contours. These results are in
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good qualitative agreement with experimental data for La2−xSrxCuO4 and Nd2−xCexCuO4 for the set of
Hamiltonian parameters used in the present calculations.

Figure 7. The occupation probability, n(k), is shown in the Brillouin zone. The hole
densities are shown on the graphs. The Hamiltonian parameters are U = 2.8 t, V = 0.85 t,
and t′ = −0.16 t and T = 0.1 t.
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Figure 8. The occupation probability, n(k), is shown in the Brillouin zone. The electron
densities above half-filling, ne, are shown on the graphs. The Hamiltonian parameters are
U = 2.8 t, V = 0.85 t and t′ = −0.16 t, and temperature is T = 0.1 t.
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The issue of the applicability of the rotating antiferromagnetism theory for the high-TC materials
ought to be discussed in the context of other experimental results. For example, one needs to
analyze in this theory the unusual antiferromagnetic order observed using polarized neutron scattering
by Fauqué et al. [23] in YBa2C3O6+δ, and by Li et al. [24] in HgBa2CuO4+δ. These polarized
neutron measurements probed the spin-flip response. While it is not yet clear how to interpret these
measurements in the framework of RAFT, it is interesting to note that rotating antiferromagnetism is
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also based on the spin-flip processes in the Hubbard model [1,6]. So, could the occurrence of long-range
coherence for these spin flip processes, as discussed in [10], yield a magnetic signal identical to that
observed using polarized neutrons? This question needs to be addressed both experimentally and
theoretically. One also needs to reconcile the rotating antiferromagnetism theory with other observed
types of orders, like the charge-density wave order observed by Chang et al. [25], found using x-ray
diffraction, and with the observation by Shekhter et al. [26] of a second-order phase transition in resonant
ultrasound spectroscopy. The charge-density wave order has been observed well below the pseudogap
temperature, T ∗; it can thus not be claimed to be responsible for the pseudogap state in any way, and such
an order is not included in RAFT. Regarding the observation at T ∗ of a second-order phase transition in
resonant ultrasound spectroscopy, we stress that even though RAF is a dynamic order, the rotating order
parameter has a magnitude that behaves as in a second-order phase transition [1,6], thus in qualitative
agreement with this experimental finding. Finally, Dean et al. [27] reported spin-wave(magnon)-like
excitations in a single layer La2CuO4 that resemble the magnon excitations observed in the bulk material,
La2CuO4. As the long-range antiferromagnetic order is ruled out in a single layer at finite temperature,
due to thermal spin fluctuations, one needs to find an explanation for this result outside of the linear
spin-wave theory. Also, Dean et al. ruled out the possibility of interpreting their finding within
the resonating-valence bond theory. The question that naturally arises is whether fluctuations beyond
the mean-field point in the rotating antiferromagnetism theory can mimic this observed magnon-like
dispersion. The calculation of the dispersion due to such fluctuations in underway and will be reported
on in the future.
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