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Abstract: We introduce a model of a passive optical cavity based on a novel variety of the two-
dimensional Lugiato–Lefever equation, with a localized pump carrying intrinsic vorticity S, and the
cubic or cubic–quintic nonlinearity. Up to S = 5, stable confined vortex ring states (vortex pixels)
are produced by means of a variational approximation and in a numerical form. Surprisingly, vast
stability areas of the vortex states are found, for both the self-focusing and defocusing signs of the
nonlinearity, in the plane of the pump and loss parameters. When the vortex rings are unstable, they
are destroyed by azimuthal perturbations, which break the axial symmetry. The results suggest new
possibilities for mode manipulations in passive nonlinear photonic media by means of appropriately
designed pump beams.

Keywords: nonlinear optical cavity; cubic-quintic nonlinearity; localized pump; vortex ring states;
vortex pixels

1. Introduction and the Model

Optical solitons are a broad class of self-trapped states maintained by the interplay of
nonlinearity and dispersion or diffraction in diverse photonic media [1,2]. In addition to
that, dissipative optical solitons are supported by the equilibrium of loss and gain or pump,
which is concomitant to the nonlinearity–dispersion/diffraction balance [3,4]. Dissipative
solitons have been studied in detail, theoretically and experimentally, in active setups,
with the loss compensated by local gain (essentially provided by lasing) being modeled by
one- and two-dimensional (1D and 2D) equations of the complex Ginzburg–Landau (CGL)
type [5,6].

In passive nonlinear optical cavities, the losses are balanced by the pump field supplied
by external laser beams, with the appropriate models provided by the Lugiato–Lefever (LL)
equations [7]. This setting was also studied in the 1D and 2D forms [8–11]. Widely applied
in nonlinear optics, equations of the LL type play a crucial role in understanding fundamen-
tal phenomena such as the modulation instability (MI) and pattern formation in dissipative
environments [8–24]. The relevance of these models extends to the exploration of complex
dynamics of various nonlinear photonic modes, with tremendously important applications
being the generation of Kerr solitons and frequency combs in passive cavities [12–24], as
well as the generation of terahertz radiation [25]. In addition to rectilinear cavity resonators,
circular ones can be used too [26]. In many cases, they operate in the whispering gallery
regime [27–32].

In most cases, solutions of the one- and two-dimensional LL equations are looked
for under the action of a spatially uniform pump, which approximately corresponds to
the usual experimental setup. However, the use of localized (focused) pump beams is
possible too, which makes it relevant to consider LL equations with the respective shape
of the pump terms. In fact, truly localized optical modes in the cavities can be created
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only in this case; otherwise, the uniform pump supports the nonzero background of the
optical field. In particular, exact analytical solutions of the LL equations with the 1D pump
represented by the delta function and approximate solutions maintained by the 2D pump
in the form of a Gaussian were reported in Ref. [33]. In Ref. [26], the LL equation for the
ring resonator with localized pump and loss terms produced nonlinear resonances leading
to the multistability of nonlinear modes and coexisting solitons that are associated with
spectrally distinct frequency combs.

Furthermore, solutions for fully localized robust pixels with zero background were
produced by the 2D LL equation, thereby incorporating the spatially uniform pump,
self-focusing or defocusing cubic nonlinearity, and a tight confining harmonic oscillator
potential [34]. Additionally, this model with a vorticity-carrying pump gives rise to stable
vortex pixels. In particular, in the case of the self-defocusing sign of the nonlinear term,
the pixels with zero vorticity and ones with vorticity S = 1 were predicted analytically by
means of the Thomas–Fermi (TF) approximation.

In this work, we introduce the 2D LL equation for a complex amplitude field u(x, y, t)
of the light field with cubic or cubic–quintic nonlinearity:

∂u
∂t

= −αu +
i
2
∇2u + iσ

(
|u|2 − η2

)
u − ig

(
|u|4 − η4

)
u + f (r)eiSθ , (1)

and a confined pump beam represented by factor f (r). Here, i is the imaginary unit, α > 0
is the loss parameter, σ = +1 and −1 correspond, respectively, to the self-focusing and
defocusing Kerr (cubic) nonlinearity, g > 0 or g < 0 represent the self-defocusing or
focusing quintic nonlinearity (which often occurs in optical media [35–37] in addition to the
cubic term), parameter η defines the cavity mismatch—which is ση2 − gη4 (the coefficient
multiplying the linear term ∼ −iu) in terms of the linearized LL equation—and

f (r) = f0rS exp
(
−r2/W2

)
(2)

written in terms of polar coordinates (r, θ), which corresponds to the confined pump beam
with real amplitude f0, radial width W, and integer vorticity S ≥ 1. Vortex beams, shaped
by the passage of the usual laser beam through an appropriate phase mask, are available in
the experiment [37].

Equation (1) is written in the scaled form. All figures (Figures 1–13) are plotted below
in the same notation. In physical units, r = 1 and t = 1 normally correspond to ∼50 m and
∼50 ps, respectively. Then, the typical width W = 2, considered below, corresponds to the
pump beam with diameter ∼100 m, which is an experimentally relevant value. Accordingly,
the characteristic evolution time in simulations presented below, t̀ ∼100, corresponds to
the time ∼5 ns.

Stationary solutions of Equation (1) are characterized by values of the total power
(alias norm):

P =
∫ +∞

−∞
dx

∫ +∞

−∞
dy |u(x, y)|2 ≡ 2π

∫ ∞

0
|u(r, t)|2rdr, (3)

and the angular momentum is characterized as

M = i
∫ +∞

−∞
dx

∫ +∞

−∞
dyu∗(y∂xu − x∂yu

)
dxdy (4)

(with ∗ standing for the complex conjugate), even if the power and angular momentum are
not dynamical invariants of the dissipative Equation (1). In the case of the axisymmetric
solutions with vorticity S, i.e., u(x, y) = u(r)eiSθ [38–40], the expressions for the power and
angular momentum are simplified:

P = 2π
∫ ∞

0
|u(r)|2rdr, M = SP. (5)



Symmetry 2024, 16, 470 3 of 16

Our objective is to construct stable ring-shaped vortex solitons (representing vortex
pixels in terms of plausible applications) as localized solutions of Equation (1) with the
same S as in the pump term (2). The stability is a challenging problem, as it is well known
from the work with models based on the nonlinear Schrödinger and CGL equations that
(in the absence of a tight confining potential) vortex ring solitons are normally vulnerable
to splitting instability. In the case of a narrow ring shape, the splitting instability may
be considered as quasi-one-dimensional MI of the ring against azimuthal perturbations,
which break its axial symmetry [2,40]. The azimuthal MI is driven by the self-focusing
nonlinearity and inhibited by the self-defocusing.

To produce stationary solutions for the vortex solitons in an approximate analytical
form (parallel to the numerical solution), we employ a variational approximation (VA). Our
results identify regions of the existence and stability of the vortex solitons with 1 ≤ S ≤ 4
in the space of parameters of Equations (1) and (2) (in particular, in the plane of ( f0, α)) for
both signs of the cubic nonlinearity, σ = ±1, while the mismatch parameter is fixed to be
η = 1 by the dint of scaling. The stability areas are vast, provided that the loss coefficient
α is, roughly speaking, not too small. A majority of the results are produced for the pure
cubic model, with g = 0, but the effect of the quintic term, with g ̸= 0, is considered too.
Quite surprisingly, a stability area for the vortices with S ≤ 3 was found even in the case of
σ = +1, g < 0, when both the cubic and quintic terms were self-focusing, which usually
implies a strong propensity to the azimuthal instability of the vortex rings [40].

The rest of the paper is structured as follows. The analytical approach, based on the
appropriate VA, is presented in Section 2. An asymptotic expression for the tail of the vortex
solitons, decaying at r → ∞, is found too in that section. Systematically produced numerical
results for the shape and stability of the vortex solitons are collected (and compared to the
VA predictions) in Section 3. The paper is concluded by Section 4.

2. Analytical Considerations

This section summarizes the analytical part of the work and results produced by this
part. Two directions of the analytical considerations for the present model are possible: the
investigation of the decaying “tails" of the localized stationary states, in the framework of
the linearized model, and the detailed development of the VA for the full model, including
the nonlinear terms.

2.1. Asymptotic Forms of the Vortex Solitons

Direct consideration of the linearized version of Equations (1) and (2) readily produces
an explicit result for the soliton’s tail decaying at r → ∞:

u(r, θ) ≈ (i/2)W4rS−2 exp
(
−r2/W2 + iSθ

)
, (6)

with the power of the pre-Gaussian factor, rS−2, which is lower than that in the pump term,
rS. Due to this feature, the asymptotic expression (6) formally predicts a maximum of local
power |u(r)|2 at S > 2, where

r2 = r2
max ≡

√
(S/2 − 1)W. (7)

A local maximum was indeed observed in numerically found radial profiles of all the vortex
solitons.In fact, for these cases Equation (7) predicted values of rmax which were smaller
by a factor ≃ 0.6 than the actually observed positions of the maxima. The discrepancy is
explained by the fact that the asymptotic expression (6) is valid at values of r which are
essentially larger than rmax.

In a looser form, one can try to construct an asymptotic approximation for the solution
at moderately large r by adopting the ansatz, which follows the functional form of the pump
term (2), viz.,

u(r, θ) ≈ u(r)rS exp
(
−r2/W2 + iSθ

)
, (8)
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where u(r) is a complex slowly varying function in comparison with those which are
explicitly present in the ansatz (8). By substituting the ansatz in Equation (1) and omitting
derivatives of the slowly varying function, one can develop an approach that is akin to the
TF approximation applied to the model with the tight trapping potential in Ref. [33]. The
result for the linearized version of Equation (1), which implies a small amplitude of the
mode pinned to the pump beam, is

u(r) = f0

[
α − i

(
2r2

W4 − 2(S + 1)
W2 − σ + g

)]−1

, (9)

where, as said above, η = 1 is substituted. In the limit of r → ∞, Equations (8) and (9)
carry over into the asymptotically rigorous expression (6). On the other hand, Equation (9)
predicts a maximum of the local power at

r2 =
(

r2
max

)
TF

= (S + 1)W2 +
σ − g

2
W4, (10)

cf. Equation (7). One may expect that the prediction of the local maximum of the vortex
soliton at point (10) is valid when it yields values of

(
r2

max
)

TF which are large enough, i.e.,
if S and W are relatively large. Indeed, the comparison with the numerically produced
profiles of the vortex solitons, displayed below in Figures 6 and 10, demonstrates that
Equation (10) predicts, relatively accurately, (rmax)TF = 4 for S = 5, W = 2, σ = −1, and
g = 0. However, the prediction given by Equation (10) is not accurate for S = 1 and 2.

Finally, in the limit of r → 0, the asymptotic form of the solution is simple, u(r, θ) ≈
u0rS, but constant u0 cannot be found explicitly, as it depends on the global structure of the
vortex soliton solution. In particular, the crude TF approximation given by Equation (9)

yields u0 = f0

[
α + i

(
2(S+1)

W2 + σ − g
)]−1

.

2.2. The Variational Approximation (VA)

A consistent global analytical fit for the vortex solitons may be provided by VA based
on the Lagrangian of the underlying equation [2]. While Equation (1), which includes
the linear dissipative term, does not have a Lagrangian structure, it can be converted into
an appropriate form by the substitution, as suggested by Ref. [41], which absorbs the
dissipative term:

u(r, θ, t) = U(r, t)eiSθ−αt, (11)

thereby producing the following time-dependent equation for complex function U(r, t),
where, as said above, we set η = 1 by means of scaling:

∂U
∂t

=
i
2

(
∂2

∂r2 +
1
r

∂

∂r
− S2

r2

)
U + iσ

(
|U|2e−2αt − 1

)
U − ig

(
|U|4e−4αt − 1

)
U + f (r)eαt. (12)

The real Lagrangian, which precisely produces the time-dependent Equation (12), is

L =
∫ ∞

0

[
i
2

(
∂U∗

∂t
U − U∗ ∂U

∂t

)
+

1
2

∣∣∣∣∂U
∂r

∣∣∣∣2 +(
S2

2r2 + σ − g
)
|U|2

− σ

2
e−2αt|U|4 + g

3
e−4αt|U|6 + i f (r)eαt(U∗ − U)

]
rdr. (13)

The simplest ansatz that may be used as the basis for VA follows the form of the pump
term (2):

U(r, t) = U0eiϕrS exp
(
− r2

W2 + αt
)

, (14)
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where variational parameters U0 and ϕ are the real amplitude and phase shift of the solution
with respect to the pump. Power (3) for this ansatz is

PS = πΓ(S + 1)
(

W2

2

)S+1

U2
0 , (15)

where Γ(S + 1) ≡ S! is the gamma function, and the time-dependent factors, exp(±αt),
mutually cancel when relations (11) and (14) are substituted in expression (3). Note that the
local power |U(r)|2, corresponding to ansatz (14), attains it maximum at r2 = SW2/2.

The substitution of ansatz (14) in Lagrangian (13) and straightforward integration
yields the respective VA Lagrangian:

LVA = U0e2αt
{[

6−(3S+2)Γ(3S + 1)gW2(3S+1)
]
U5

0 −
[
2−4(S+1)Γ(2S + 1)σW2(2S+1)

]
U3

0

+ 2−(S+2)Γ(S + 1)W2S
[(

dϕ

dt
+ (σ − g)

)
W2 + (S + 1)

]
U0

+ 2−(S+1)Γ(S + 1)W2(S+1) f0 sin ϕ
}

. (16)

Then, the Euler–Lagrange equations for U0 and ϕ are obtained as

∂LVA/∂U0 = δLVA/δϕ = 0, (17)

where δ/δϕ stands for the variational derivative. Taking into regard that Lagrangian (16)
must be substituted in the respective action,

∫
LVAdt, and then the action must be actually

subjected to the variation, one should apply the time differentiation to factor e2αt in La-
grangian (16) while deducing the appropriate form of δLVA/δϕ in Equation (17). Once the
Euler–Lagrange Equation (17) has been derived, we consider their stationary (fixed-point)
solutions by setting dU0/dt = dϕ/dt = 0, which yields

U0α − f0 cos(ϕ) = 0, (18)

6−(3S+1)Γ(3S + 1)gW2(2S+1)U5
0 − 2−2(2S+1)Γ(2S + 1)σW2S+2U3

0

+2−(S+1)Γ(S + 1)
{

f0W2 sin ϕ +
[
(σ − g)W2 + (S + 1)

]
U0

}
= 0. (19)

It is relevant to mention that the evolution equation for the power (3), which follows
from Equation (12), is

dP
dt

= −2αP + 4π
∫ ∞

0
f (r)Re{U(r, t)}e−αtrdr. (20)

The stationary states must satisfy the balance condition, dP/dt = 0. Then, the substitu-
tion of ansatz (14) and expression (2) for the pump in this condition yields a simple relation,

cos ϕ =
αU0

f0
, (21)

which is identical to Equation (18). In particular, Equation (21) implies that, for the fixed
pump’s amplitude f0, the amplitude of the established localized pattern cannot exceed the
maximum value, which corresponds to ϕ = 0 in Equation (21):

U0 ≤ (U0)max = f0/α. (22)

2.3. VA for the Cubic (g = 0) and Quintic (g → ∞) Models

First, we aim to predict stationary states, as solutions of Equations (18) and (19), for
the model with cubic-only nonlinearity, i.e., g = 0, under the assumption that the loss
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and pump terms in Equation (1) may be considered as small perturbations. In the lowest
approximation, i.e., dropping the small term ∼ f0 in Equation (19), one obtains a relatively
simple expression that predicts the squared amplitude of the vortex soliton,

(
U2

0

)(g=0)

VA
=

22S+1

(2S − 1)!!
W−2S

[
1 + σ(S + 1)W−2

]
, (23)

with the respective power (15) of the underlying ansatz (14) being

P(g=0)
VA =

2SS!π
(2S − 1)!!

[
W2 + σ(S + 1)

]
. (24)

Note that expressions (23) and (24) are always meaningful for the self-focusing sign of
the cubic nonlinearity, σ = +1, while in the case of defocusing, σ = −1, the expressions are
meaningful if they are positive, which imposes a restriction on the width of the Gaussian
pump: it must be broad enough, viz.,

W2 > S + 1. (25)

The dependence of the power given by Equation (24) on the pump’s squared width
W2 for three different values of the vorticity, S = 1, 2, 3, is plotted in Figure 1a,b for the
self-focusing and defocusing signs of the cubic term, i.e., σ = +1 and −1, respectively.
Note that in Figure 1b for σ = −1, there is no solution in the region in which condition (25)
does not hold, hence, the VA solution does not exist.

Figure 1. The power of the VA solution, in the case of g = 0 (no quintic nonlinearity), vs. the pump’s
squared width, as given by Equation (24), which neglects weak effects of the pump and loss (small f0

and α) for the self-focusing (σ = +1) in (a) and defocusing (σ = −1) in (b) signs of the cubic term.
The black curve with circles, the red one with squares, and the blue one with triangles pertain to
vorticities S = 1, 2, and 3, respectively.

In the limit of the dominant quintic nonlinearity, i.e., g → ±∞, opposite to the pure
cubic model considered above, the asymptotic solution of Equation (19) is

(
U2

0

)(g→±∞)

VA
≈ 2S

√
33S+1 S!

(3S)!
W−2S (26)

(in which the large coefficient g cancels out), with the respective expression for power (15)
being

P(g→±∞)
VA =

3(3S+1)/2π(S!)3/2

2
√
(3S)!

W2, (27)

cf. Equations (23) and (24).
In the following section, we report results of the numerical solution of Equation (1)

and compare them to solutions of the full system of the VA Equations (18) and (19), which
include effects of the pump and loss terms.
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3. Numerical Results

Simulations of Equation (1) were conducted by means of the split-step pseudospectral
algorithm. The solution procedure started from the zero input and was running until
convergence to an apparently stable stationary profile (if this outcome of the evolution
was possible). This profile was then compared to its VA counterpart, which was produced
by a numerical solution of Equations (18) and (19) with the same values of parameters α,
σ = ±1, g, f0, W, and S (see Equation (2)). The results are presented below by varying,
severally, loss α, vorticity S, the pump’s width W, strength f0, and, eventually, the quintic
coefficient g. The findings were eventually summarized in the form of stability charts
plotted in Figure 12.

3.1. Variation in the Loss Parameter α

In Figure 2a, we display the cross-section (drawn through y = 0) of the variational
and numerical solutions for the stable vortex solitons obtained with α = 0.5, 1.0, and 2.0,
while the other parameters were fixed as σ = +1 (the self-focusing cubic nonlinearity),
g = 0, f0 = 1, W = 2, and S = 1. The accuracy of the VA-predicted solutions presented in
Figure 2a are characterized by the relative power differences from their numerically found
counterparts, which resulted in 5.1%, 3.1%, and 0.5% for

α = 0.5, 1.0, 2.0, (28)

respectively. Thus, the VA accuracy improves with the increase in α.
Similar results for the self-defocusing nonlinearity, σ = −1, are presented in Figure 2b,

which shows an essentially larger discrepancy between the VA and numerical solutions,
viz., 18.9%, 17.4%, and 3.4% for the same set (28) of values of the loss parameter, with
the other coefficients being the same as in Figure 2a. The larger discrepancy is explained
by the fact that localized (bright soliton) modes are not naturally maintained by the self-
defocusing; hence, the ansatz (14), which is natural for the self-trapped solitons in the case
of self-focusing, is not accurate enough for σ = −1. In the same vein, it is natural that,
in the latter case, the discrepancy is more salient for stronger nonlinearity, i.e., smaller α,
which makes the respective amplitude higher.

Figure 2. The comparison between cross-sections (drawn through y = 0) of the VA solutions and their
numerically found counterparts (dashed black and solid blue lines, respectively) for different values
of the loss parameter α in Equation (1) taken from set (28). Panels (a,b) pertain to the self-focusing
(σ = +1) and defocusing (σ = −1) signs of cubic nonlinearity, respectively. The other parameters in
Equations (1) and (2) are fixed as g = 0, η = 1, f0 = 1, W = 2, and S = 1.

There is a critical value of α below which the vortex solitons are unstable. As an
example, Figure 3 shows the VA-predicted and numerically produced solutions for α = 0.2
and σ = +1 (self-focusing nonlinearity). The observed picture may be understood as a
result of the above-mentioned azimuthal MI, which breaks the axial symmetry of the vortex
soliton. More examples of the instability of this type are displayed below. For the values of
the other parameters fixed as in Figure 3, the instability boundary was αcrit ≈ 0.35. The
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stabilizing effect of the loss at α > αcrit is a natural feature. On the other hand, the increase
in α led to a decrease in the soliton’s amplitude, as seen in Figure 2.

Figure 3. Profiles of |u|2 produced by VA (a) and numerical solution at t = 100 (b) in the case of
self-focusing (σ = +1) for α = 0.2. Other parameter are the same as in Figure 2a.

In the case of self-defocusing (σ = −1), all the numerically found vortex modes were
stable, at least, at α ≥ 0.1, although the discrepancy in the values of the power between
these solutions and their VA counterparts was very large at small α, thereby exceeding 75%
at α = 0.1. As mentioned above, the growing discrepancy is explained by the increase in
the soliton’s amplitude with the decrease in α. At still smaller values of α, the relaxation of
the evolving numerical solution toward the stationary state is very slow, which makes it
difficult to identify the stability.

3.2. Variation in the Pump’s Vorticity S

To analyze the effects of the winding number (vorticity) S, we fixed g = 0 (the pure
cubic nonlinearity) and set α = 1, f0 = 1, W = 2 in Equations (1) and (2). In the self-
focusing case (σ = +1), the numerically produced solutions were stable for S = 1 and 2
and unstable for S ≥ 3. In the former case, the power differences between the VA and
numerical solutions were 3.1% and 4.9% for S = 1 and 2, respectively, i.e., the VA remains a
relatively accurate approximation in this case.

In the self-defocusing case (σ = −1), considering the same values of the other pa-
rameters as used above, the numerical solution produced stable vortex solitons at least
until S = 5. For the same reason as mentioned above, the accuracy of the VA was much
lower for σ = −1 than for the self-focusing case (σ = +1), with the respective discrep-
ancies in the power values being 17.4%, 6.7%, 24.1%, 29.0%, and 29.6% for S = 1, 2, 3,
4, and 5, respectively.

For the cogent verification of the stability of the localized vortices in the case of self-
defocusing, we also checked it for smallest value of the loss parameter considered in this
work, viz., α = 0.1, again for S = 1, 2, 3, 4, and 5, and the above-mentioned values of
the other coefficients, i.e., f0 = 1 and W = 2. Naturally, the discrepancy between the
VA and numerical findings was still higher in this case, being 75%, 72.5%, 65.7%, 55.2%,
and 41.1% for S = 1, 2, 3, 4, and 5, respectively. The result is illustrated in Figure 4 for a
relatively large vorticity, S = 4. In particular, the pattern of |u(x, y)|2 and the corresponding
cross-section, displayed in Figure 4b,c, respectively, exhibit the established vortex structure
and background “garbage” produced by the evolution.
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Figure 4. (a) The VA-predicted pattern and (b) the corresponding result of the direct simulation of
Equation (1) with σ = −1 and g = 0 (cubic self-defocusing) at t = 100, initiated by the zero input
at t = 0 for α = 0.1, f0 = 1, W = 2, and vorticity S = 4 in the pump term (2). (c) The respective
cross-sections drawn through y = 0. (d) The evolution of the total power P (see Equation (3) of the
numerical solution in the course of the simulation.

3.3. Variation in the Pump’s Width W

To address the effects of the variation in parameter W in Equation (2), we fixed g = 0,
α = 1, f0 = 1, and S = 1. In Figure 5a, the power of the VA-predicted and numerically
found stable vortex soliton solutions are plotted as a function of W for both the self-
focusing and defocusing cases, i.e., σ = +1 and σ = −1, respectively. In the former case,
the azimuthal MI set in at W ≥ 2.7; see an example in Figure 5b for W = 2.75.

Figure 5. (a) The power of the VA-predicted vortex soliton solutions (solid blue and dashed black
lines pertaining to the self-focusing, σ = +1, and self-defocusing, σ = −1, cubic nonlinearitry,
respectively) and their numerically found counterparts (red circles and green squares pertaining to
the self-focusing and self-defocusing nonlinearitry, respectively) vs. the pump’s width W. Other
parameters are g = 0, α = 1, f0 = 1, and S = 1. (b) The profile produced, at t = 100, by the
numerically generated unstable solution in the case of the self-focusing, σ = +1, with W = 2.75.

In the self-focusing case, σ = +1, the azimuthal MI for the solitons with higher
vorticities, S = 2, 3, 4, or 5, set in at W ≥ 2.1, 1.7, 1.6, and 1.4, respectively. In the self-
defocusing case, no existence/stability boundary was found for the vortex modes with
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S = 1, S = 2, and S = 3 (at least up to W = 5). At higher values of the vorticity, the
localized vortices do not exist; in the defocusing case, they exist at W > 3.5 and W > 2.5
for S = 4 and S = 5, respectively.

3.4. Variation in the Pump’s Strength f0

The effects of the variation in f0 are reported here, where we fixed the other parameters
as g = 0, α = 1, and W = 2. In the case of the cubic self-focusing, σ = +1, the vortex
soliton with S = 1 was subject to an MI at f0 ≥ 1.6. As a typical example, in Figure 6, we
display the VA-predicted solution alongside the result of the numerical simulations for
f0 = 1.7. For higher vorticities, S = 2, 3, 4, and 5, the azimuthal instability set in at f0 ≥ 1.1,
0.6, 0.3, and 0.08, respectively. Naturally, the narrow vortex rings with large values of S are
much more vulnerable to the quasi-one-dimensional azimuthal MI.

The power of the vortex solitons with S = 1 and 2, as produced by the VA and
numerical solution, is plotted vs. the pump amplitude f0 in Figure 7a. As an example,
Figure 7b showcases an example of the cross-section profile of the vortex soliton with S = 2,
thus demonstrating the reliability of the VA prediction. In the range of f0 ≤ 1, the highest
relative difference in the power between the numerical and variational solutions cases was
5.5% and 7.5% for S = 1 and S = 2, respectively.

Figure 6. (a) The VA-predicted profile of |u|2 in the self-focusing case, with parameters g = 0, σ = +1,
α = 1, f0 = 1.7, W = 2, and S = 1. (b) The unstable solution, produced at t = 100, by the simulations
of Equation (1) for the same parameters.

Figure 7. (a) The power versus f0 for the confined vortex modes in the self-focusing case (σ = +1).
The VA solutions for S = 1 and 2 are shown by solid blue and dashed black lines, respectively. The
corresponding numerical solutions are represented by red circles and green squares, respectively.
Recall that the numerical solutions are stable, in this case, at f0 < 1.6 and f0 < 1.1 for S = 1 and 2,
respectively. (b) The VA-predicted and numerically obtained (the dashed red and solid blue lines,
respectively) profiles of the stable solution with S = 2 and f0 = 0.4, drawn as cross-sections through
y = 0 . The other parameters are g = 0, σ = +1, α = 1, W = 2.

It is relevant to mention that the “traditional” azimuthal instability of vortex ring
solitons with a winding number S demonstrates the fission of the original axially symmetric
shape into a set consisting of a large number N ≥ S of symmetrically placed localized
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fragments [2,40], while the above examples, displayed in Figures 3b, 5b, and 6b, demon-
strate the appearance of a single bright fragment and a “garbage cloud” distributed along
the original ring. At larger values of f0, our simulations produced examples of the “clean”
fragmentation, viz., with N = 4 produced by the unstable vortex rings with S = 1 in
Figure 8a, N = 5 produced by S = 2 and 3 in Figure 8b,d, N = 7 by S = 2 and 3 in
Figure 8c,e, and N = 8 by S = 3 in Figure 8f. These outcomes of the instability develop-
ment were observed at the same evolution time of t = 100 as in Figures 3b, 5b, and 6b. The
gradual increase in the number of the fragments on S is explained by the dependence of
the azimuthal index of the fastest growing eigenmode of the breaking instability on the
underlying winding number S, which is a generic property of vortex solitons [2,40].

Figure 8. Examples of the fission of unstable vortex ring solitons produced by simulations of the LL
Equation (1), with σ = +1 (cubic self-focusing), g = 0 (no quintic nonlinearity), α = 2, W = 2, and
η = 1. Each plot displays the result of the numerical simulations at time t = 100. Values of the initial
vorticity and pump’s strength are indicated in panels.

In the self-defocusing case, σ = −1, a summary of the results produced by the VA
and numerical solution for the stable vortex solitons with S = 1 and 2, in the form of the
dependence of their power on f0, is produced in Figure 9a (cf. Figure 7a for σ = +1).
Naturally, the VA–numerical discrepancy increases with the growth of the pump’s strength,
f0; see an example in Figure 9b. Unlike the case of σ = +1, in the case of self-defocusing the
vortex modes with S ≤ 5 remained stable, at least, up to f0 = 5 (here, we do not consider
the case of S > 5).

Figure 9. (a) The power versus f0 for the vortex modes in the self-defocusing case (σ = −1). The
VA solutions for S = 1 and 2 are shown by solid blue and dashed black lines, respectively. The
corresponding numerical solutions are presented by red circles and green squares, respectively.
(b) The VA-predicted and numerically obtained (the dashed red and solid blue lines, respectively)
profiles of the solution with S = 2 and f0 = 2 drawn as the cross-sections through y = 0 . The other
parameters are g = 0, σ = −1, α = 1, W = 2.
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3.5. Influence of the Quintic Coefficient g

In the above analysis, the quintic term was dropped in the LL Equation (1), thus
setting g = 0. To examine the impact of this term, we first addressed the case shown
above in Figure 3, which demonstrated that the vortex soliton with S = 1, as a solution
to Equations (1) and (2) with g = 0, σ = +1 and f0 = 1, W = 2, was unstable if the loss
parameter fell below the critical value of α = 0.35. We found that adding to Equation (1)
the quintic term with either g = −1 or g = +1 (the self-focusing or defocusing quintic
nonlinearity, respectively) led to the stabilization of the vortex mode displayed in Figure 3,
which was unstable in the absence of the quintic term. The stabilization of the soliton by
quintic self-defocusing is a natural fact. More surprising is the possibility to provide the
stabilization by self-focusing quintic nonlinearity because, in most cases, the inclusion of
such a term gives rise to the supercritical collapse in 2D, thus making all solitons strongly
unstable [2,40]. However, it is concluded from the stability charts displayed below in
Figure 12 that the stabilizing effect of the quintic self-focusing occurrs only at moderately
small powers, for which the quintic term was not a clearly dominant one. In the general
case, the soliton stability regions naturally shrunk in Figure 12 under the action of the
quintic self-focusing quintic term, with g < 0.

In the presence of the quintic term, the comparison of the numerically found stabilized
vortex soliton profiles with their VA counterparts, whose parameters were produced by
a numerical solution of Equations (18) and (19), is presented in Figure 10. Similar to the
results for the LL equation with the cubic-only nonlinearity, the VA is essentially more
accurate in the case of the self-focusing sign of the quintic term (g < 0) than in the opposite
case, where g > 0. In particular, in the case shown in Figure 10, the power-measured
discrepancy for g = −1 and +1 was, respectively, 4% and 64%. An explanation for this
observation is provided by the fact that the soliton’s amplitude was much higher in the
latter case.

Figure 10. Cross-section profiles (drawn through y = 0) for stable vortex solitns with S = 1, produced
by Equation (1) with the quintic self-focusing g = −1 (a) or defocusing g = +1 (b) term. In both
cases, the cubic self-focusing cubic term, with σ = +1, is present. The numerically found profiles and
their VA-produced counterparts are displayed, respectively, by the solid blue and dashed lines. Other
parameter are α = 0.2, η = 1, and f0 = 1, W = 2.

Another noteworthy finding is the stabilization of higher-vorticity solitons by the
quintic term. For instance, it was shown above that, for parameters α = 1, η = 1, f0 = 1,
W = 2, g = 0, and σ = +1 (the cubic self-focusing), all vortex solitons with S ≥ 3,
produced by Equation (1), were unstable. Now, we demonstrate that the soliton with S = 3
is stabilized by adding the self-defocusing quintic term with a small coefficient, just g = 0.1;
see Figure 11b. As a counterintuitive effect, the stabilization of the same soliton by the
self-focusing quintic term was possible too, but the necessary coefficient was large, g = −6;
see Figure 11a (recall that g = −1 is sufficient for the stabilization of the vortex soliton
with S = 1 and α = 0.2 in Figure 10a). Nevertheless, similar to what has been said above,
the set of Figure 12c,f,i demonstrates the natural shrinkage of the stability area under the
action of quintic self-focusing. For the stabilized vortex modes shown in Figure 11a—in the
case when both the cubic and quintic terms are self-focusing—the relative power-measured
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discrepancy between the numerical and VA-predicted solutions was very small, ≈0.7%,
while in the presence of the weak quintic self-defocusing in Figure 11b, the discrepancy
was 6.6%.

Figure 11. Cross-section profiles (drawn through y = 0) of vortex solitons with S = 3, stabilized by
the self-focusing (a) or defocusing (b) quintic term in Equation (1), with the respective coefficient
g = −6 or g = 0.1, with other parameters being σ = −1 (cubic self-focusing), α = 1, η = 1, and
f0 = 1, W = 2 in Equation (2). The numerically found solutions and their VA-predicted counterparts
are plotted by the solid blue and dashed red lines, respectively.

Figure 12. Stability areas for families of the vortex solitons with winding numbers S = 1, 2, and 3, in
the plain of the loss coefficient (α) and amplitude of the pump beam ( f0), for three different values
of the quintic coefficient, g = −1, 0,+1 (recall that g < 0 and g > 0 correspond, respectively, to the
self-focusing and defocusing). Other parameters of Equations (1) and (2) are σ = +1 (the self-focusing
cubic term), η = 1, and W = 2.

3.6. Stability Charts in the Parameter Space

The numerical results produced in this work are summarized in the form of stability
areas plotted in Figure 12 in the parameter plane ( f0, α), for the vortex soliton families with
winding numbers S = 1, 2, 3, and three values of the quintic coefficient, g = −1, 0, +1,
while the cubic term is self-focusing, σ = +1, and the width of the pump beam is fixed,
W = 2. In addition to that, stability charts corresponding to the combination of the cubic
self-defocusing (σ = −1) and quintic focusing (g = −1), also for S = 1, 2, 3, are plotted in
Figure 13.
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Figure 13. The same as in Figure 12a–c but for σ = −1 and g = −1 (the cubic self-defocusing and
quintic focusing terms).

The choice of the parameter plane ( f0, α) in the stability diagrams displayed in
Figure 12 is relevant, as the strength of the pump beam, f0, and loss coefficient, α, are
amenable to accurate adjustment in the experiment (in particular, α may be tuned by par-
tially compensating the background loss of the optical cavity by a spatially uniform pump
taken separately from the confined pump beam). As seen in all panels of Figures 12 and 13,
the increase in α naturally provides effective stabilization of the vortex modes, while
none of them are stable at α = 0, which is in agreement with the known properties of
vortex soliton solutions of the 2D nonlinear Schrödinger equation with the cubic and/or
cubic–quintic nonlinearity [2,40]. The apparent destabilization of the vortices with the
increase in the pump’s amplitude f0 is explained by the ensuing enhancement of the
destabilizing nonlinearity. Other natural features exhibited by Figure 12 are the general
stabilizing/destabilizing effect of the quintic self-defocusing/focusing (as discussed above)
and expansion of the splitting instability area with the increase in S (the latter feature is also
exhibited by Figure 13). The latter finding is natural too, as a larger S makes the ring-shaped
mode closer to the quasi-1D shape (see, in particular, Figure 8), which facilitates the onset
of the above-mentioned azimuthal MI (modulational instability).

Thus, the inference is that the instability mode, which determines the boundary of
the stability areas, in Figures 12 and 13 is the breaking of the axial symmetry of the vortex
rings by azimuthal perturbations, as shown above, in particular, in Figures 3b, 5b, and 6b.
The destabilization through the spontaneous splitting of the rings into symmetric sets of
fragments (see Figure 8) occurs deeply inside the instability area, i.e., at larger values of f0.

4. Conclusions

We have introduced the two-dimensional LL (Lugiato–Lefever) equation including the
self-focusing or defocusing cubic or cubic–quintic nonlinearity and the confined pump with
embedded vorticity (winding number), S ≤ 5. Stable states in the form of vortex solitons
(rings) for these values of S were obtained, in parallel, in the semianalytical form by means
of VA (variational approximation) and numerically, by means of systematic simulations
of the LL equation starting from the zero input. The VA provided much more accurate
results in the case of the self-focusing nonlinearity than for the defocusing system. Stability
areas of the vortex solitons with S = 1, 2, 3 were identified in the plane of experimentally
relevant parameters, viz., the pump amplitude and loss coefficient, for the self-focusing and
defocusing signs of the cubic and quintic terms. Stability boundaries for the vortex rings
were determined by the onset of the azimuthal instability, which broke their axial symmetry.
These findings suggest new possibilities for the design of tightly confined robust optical
modes, such as vortex pixels.

As an extension of this work, it may be interesting to construct solutions pinned to
a symmetric pair of pump beams with or without intrinsic vorticity. In this context,
it is possible to consider the beam pair with identical or opposite vorticities. In the
case of the self-focusing sign of nonlinearity, one may expect an onset of spontaneous
breaking of the symmetry in the dual-pump configuration. Results for this setup will be
reported elsewhere.
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