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Abstract: Metal nanoframes have gained tremendous attention in the domain of modern research
and development due to their distinctive 3D spatial structure, efficient physiochemical properties,
and comparatively good activity. Different strategies have been implicated by the researchers to
design nanoframes of varying chemical natures and shapes. Most of the synthetic protocols being
adopted to design nanoframes consist of two main steps: nucleation and the growth of solid particles
and, secondly, excavation of the interiors. In this context, many synthetic methods are overviewed.
To show their unprecedented performance or activity, a few applications in catalysis, biomedicine,
theranostics, SERS, the sensing of different materials, the reduction of CO2, etc., are also discussed.
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1. Introduction

Different nanostructures have been synthesized previously by many research groups,
including nanostars [1,2], nanobowls [3], nanorings [4], nanohexagons [5], nanopeapods [6],
nanowalls [7], nanotubes [8], nanowires [9], and nanorods [10]. Various vacant nanostruc-
tures have been synthesized, i.e., nanoboxes [11–13], nanocages [14–16], nanoshells [17–19],
and nanoframes [20,21]. Among all of these nanomaterials, hollow structures have gar-
nered much attention because of their distinctive physical, chemical, catalytic, magnetic,
electronic, and optical characteristics when compared to their bulk material [22,23]. Among
all of the above-discussed vacant nanomaterials, the appreciable open structure is pos-
sessed by nanoframes. They are defined as nanocrystals that only consist of ridges lacking
faces. Nanoframes of different shapes are reported in the literature, i.e., cubic, octahedral,
dodecahedral, icosahedral, and plasmonic tripod [24–28]. Various synthetic strategies
have been used to synthesize nanoframes. Regardless of the synthetic technique that is
employed, there are two main steps that are always followed [23]. Initially, nucleation
and the growth of primary particles take place and then the excavation of the interior
happens [29,30]. In addition to the most commonly used synthetic strategies like the gal-
vanic replacement reaction, one-pot synthesis, and etching, some other methods have also
been used by researchers, i.e., thermal reductions, template-assisted synthesis [31], the
self-assembly of nanoparticles [32], and solvothermal methods [33,34]. Metallic nanoframes
have a distinctive morphology, which makes them most suitable for use in the catalytic
domain [35–37]. When considering the stability of these metal nanoframe-like structures
in comparison to other heterogenous catalysts, the former is the most stable one. The
reason is that a high surface area to volume ratio in the latter is achieved by decreasing
the catalyst size, which in turn threatens its stability. However, in the former case, the
excavation of material from the interior of the catalyst takes place, creating more room for
the catalytic reaction to proceed. Apart from their efficient catalytic activity in the ORR
(oxygen reduction reaction), EOR (ethanol oxidation reaction), MOR (methanol oxidation
reaction), HER (hydrogen evaluation reaction), and biomass upgrading, many efforts have
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been made to use them in other domains as well. Their shape, size and composition can be
customized [38] according to the demand.

This review explains how nanoframes could become a strong choice for solving many
of the problems faced during large-scale catalysis. We aimed to summarize the various
synthetic methods used to create nanoframes with the goal of refining their synthesis and
conducting a comparative analysis among different approaches to enhance their efficiency
in addressing catalysis challenges. These synthetic methods encompass the GRR (galvanic
replacement reaction), one-pot synthesis, oxidative etching, the photocatalytic template-
assisted method, the solvothermal technique, the self-assembly of nanoparticles, thermal
reductions, the de-alloying of alloy nanocrystals, the edge-selected deposition of different
metals on the template, and the face-selected carving of the solid nanocrystals. This review
investigates various classifications of nanoframes based on their composition, including
metal NFs, alloy metal NFs, and doped metal NFs. It explores their synthetic procedures
and specific catalytic applications. Given the significant role of nanoframes in addressing
catalytic challenges, this article focuses extensively on their applications, highlighting their
catalytic potential. It discusses the mechanisms underlying the action of nanoframes and
explores their application in various fields, including biomedicine, theranostics, surface-
enhanced Raman spectroscopy (SERS), carbon dioxide reduction, the sensing of volatile
organic compounds (VOCs), hydrogen sulfide gas, cobalt ion detection, dye detection, the
electrochemical production of hydrogen peroxide in acidic conditions, and as materials in
lithium-ion battery anodes.

2. Synthetic Approaches

There are different synthetic procedures which are used now a days to synthesize
Nano frames. A summary showing the different synthetic protocols that have been used to
design different Nano frames are provided in Table 1 and the detailed of each of procedure
is given below

2.1. Face Selected Carving of Solid Nanocrystals

This approach involves dissolving specific solid nanocrystal surfaces to create
nanoframes [39]. The monometallic nanocrystals exhibit surface inhomogeneity due to
different factors like crystallographic defects, grain boundary, vacancy, dislocation, etc.
Octahedral nanocrystals can be converted into octahedral nanoframes by using this method
(Figure 1A). However, it is not always the case that the nanoframe formed has the same
thickness at all the edges. This problem can be resolved by the use of a reducing agent
during the chemical reaction to supplement the carving process with deposition [40]. The
reducing agent should have a profound reduction power so that by tuning the rate of
deposition and the rate of etching, one can control the thickness of the edges. In the case of
bimetallic nanocrystals, if one metal at the faces has a low reduction potential and the other
metal at the vertices and edges has a high reduction potential, then the one at the faces
will be easily dissolved by the etching agent and the one at the edges will remain there
(Figure 1B). Due to the difference in the diffusing rate between two metallic species in an
alloy (Kirkendall effect) [41], a rhombic dodecahedron can be synthesized.

Bimetallic nanocrystals, specifically Pt–Ni nanoframes, have been created from Pt-Ni
nanocrystals using a method called phase segregation at a very tiny scale [42]. The chemi-
cals used to make these nanocrystals included Pt(acetylacetonate)2, Ni(acetylacetonate)2,
stearic acid, octadecylamine (ODA), and carbon monoxide (CO). The reaction conditions
maintained were 1 atm, at 170 ◦C. CO performed the dual function of surface stabilizer and
reducing agent. After 1 h, a Pt–Ni core-shell octahedral nanocrystal was formed, and after
5 h, the concentration of Pt at the edges of the octahedral increased due to the diffusion
of Pt atoms. Afterwards, this octahedral was immersed in acetic acid at 100 ◦C for 1 h
to preferably remove the Ni component, and the Pt-Ni nanoframe was synthesized. A
generalized overview of the synthesis of the Pt-Ni nanoframe using the aforementioned
synthetic protocol can be taken from (Figure 2). TEM images are shown in Figure 3A–D.
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There is no doubt that this is a remarkable synthetic method for nanoframe synthesis.
However, understanding its mechanism is difficult as it offers no information regarding
the intermediate species.
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2.2. Edge Selected Deposition of Different Metals on Template

For cubic nanocrystals, the surface energy is higher compared to the vertices and edges
as the faces are made less active by the use of a capping agent [43]; thus, instead of using
an approach involving the direct carving of atoms from nanocrystals, we can perform a
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deposition of another metal on the edges and vertices of the nanocrystal. The second metal
is selectively deposited at the edges and vertices. Eventually, the core is removed either by
oxidative etching [44] or by the galvanic replacement reaction. The formation of a cubic
nanoframe is shown when metal B (deposited) is more reactive than metal A [45]. After the
etching of metal A from the core, the resultant nanoframe formed will only contain metal B
at the vertices and edges, as shown in Figure 4.
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Figure 4. Schematic diagram depicting the formation of a nanoframe made up of metal B by selective
deposition on the vertices and edges of a nanocube made of metal A and followed by etching.

Despite it being a spectacular synthetic technique for the synthesis of a nanoframe
with clear morphology, there exists inter-diffusion between the atoms of the core and frame
during the deposition or etching process [46]. Consequently, more undesired elements will
exist in the end product.

2.3. De-Alloying of Hollow Alloy Nanocrystals

In this method, galvanic replacement is initiated between metal A and metal B at the
faces of the nanocube to generate pinholes in it [47]. After that, metal A is continuously
carved and a hollow nanostructure is formed. Finally, a nanobox with walls made up of
the A–B alloy and that is free of pores is obtained. Then, the dealloying of metal A takes
place using a chemical etchant and the nanobox is converted into a nanoframe made up of
pure metal B, as shown in Figure 5.
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2.4. Nanoframe-Directed Deposition

In this synthetic approach, the nanoframe acts as a template, and the deposition of
other metals takes place on it, hence augmenting the mechanical strength of the
nanoframe [48]. Whether the deposited metal will create a complete shell on the nanoframe
or will be randomly distributed on the nanoframe depends upon the growth mode [49]. The
ratio between the rate of deposition and the rate of surface diffusion of the atoms present
on the surface is responsible for maintaining the final morphology of the nanoframe. When
the rate of diffusion is greater than the rate of deposition Rdiffusion > Rdeposition, it is said
to be conformal growth and vice versa (Rdiffusion < Rdeposition would be called as island
growth), as shown in Figure 6.
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This strategy can be used to deposit useful materials onto the surface of the
nanoframe [50]. However, this approach has not been practically applied due to certain
limitations, i.e., the lower quantity of nanoframes formed and their structural delicacy.

2.5. One-Pot Synthesis

Cu-enriched Ir-Cu nanoframes have been synthesized using a one-pot synthesis strat-
egy [51]. In the context of the OER (Oxygen Evaluation Reaction), they were found to
have higher electro-catalytic activity. The main strategy behind Ir-Cu nanoframe synthe-
sis is galvanic replacement. IrCl3·3H2O and Cu (acac)2 were dissolved in a solution of
olylamine (surfactant, reductant), oleic acid (emulsifier), and octylamine (soft template
reagent and solvent) under magnetic stirring. The resultant dark-blue-colored solution
was homogenous and transferred to a Teflon-lined stainless steel autoclave for 30 min.
The reaction conditions were maintained at 170 ◦C for 24 h. Ir-Cu nanoparticles were
synthesized. Scanning electron microscopy (SEM), high-resolution transmission electron
microscopy (HRTEM), and high-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM) analysis were used for the morphology assessment of the
prepared Ir-Cu nanoframes. X-Ray diffraction (XRD) analysis was used to determine the
face-centered cubic (fcc) shape of bimetallic nanoframes. Elemental analysis was performed
via energy-dispersive X-ray (EDX). Lead sulfide nanoframes can be synthesized by the
one-pot synthesis method [52]. Lead acetate trihydrate, oleic acid, and diphenyl ether
were all mixed in a round-bottomed flask and degassed at 7 ◦C for 2 h. During heating at
22 ◦C (lithium chloride dimethylformamide), LiCl-DMF solution was added. TMA-DMF
[thioacetamide dimethylformaldehyde] was then added to the mixture when the desired
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temperature was attained. If the solution turned black immediately, this was an indication
of PbS nanoframe formation, as shown in Figure 7.
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Table 1. A summary showing the different synthetic protocols that have been used to design
different nanoframes.

Synthetic Approach Used Metal Morphology References

Nanocrystal face selected carving Pt-Cu-Co Rhombic dodecahedron [30]
Pt-Ni-Sn Rhombic dodecahedron [53]
Au@Pd cubical [54]

Deposition of different metals on the
template by preferential edge selection Ru-Pd Octahedron

cuboctahedron [55]

Ir-Cu Rhombic dodecahedron [51]
Ag-Au-Pt cube [56]

Hollow nanocrystal’s dealloying Ir-Cu-Au Rhombic dodecahedron [51]
Pd-Au Cube truncated octahedron [57]
Pt-Au Cube truncated octahedron [57]

Template-assisted arrangement of nanoscale
building blocks Au Triangle, tripod [58]

Directed deposition of nanoframe Pt-Au@Au Double-layered triangle, ring, hexagon [48]
Pt-Ni@MOF Rhombic dodecahedron [50]
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2.6. Thermal Reductions

Two-dimensional nanoframes of (Ni-Pt) have been prepared by controlling the tem-
perature during the deposition of platinum on nickel hydroxide sheets [59]. Ni-Ir 2D
nanoframes were synthesized in various steps, including those outlined in [60]: first is
the formation of nickel hydroxide nanosheets; second is temperature-controlled treat-
ments to synthesize nickel oxide nanosheets; third is the deposition of Ir onto the previous
nanosheets; and fourth is thermal treatments (200/300 ◦C). Lastly, chemical leaching was
performed under certain conditions to form a Ni-Ir nanoframe, as shown in Figure 8.
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2.7. Oxidative Etching

Oxidative etching is one of the most important methods used to control the shape or
stability of nanomaterials with the help of an etchant. First of all, Pd-Ru nanocrystals were
formed by firstly preparing Pd seeds of 10 nm followed by the mixing of Polyvinylpyrroli-
done (PVP), potassium bromide (KBr), and an Ru [III] precursor in Triethylene glycol (TEG);
this was then heated further to initiate a reaction. TEM analysis showed the monodispersity
and octahedral shape of these nanocrystals, as shown in Figure 9a [61]. To determine the
spatial distribution of both metals in the Pd-Ru cuboctahedra, EDX analysis was performed
(Figure 9c). This showed that within the core of the nanocrystal, there were Pd atoms.
Meanwhile, at the corners and edges, Ru atoms were distributed. When these nanoframes
were subjected to oxidative etching in the presence of Br ions, the etching of Pd resulted, as
Ru is more resistant to oxidative etching. The inductively coupled plasma mass spectrome-
try (ICP-MS) analysis confirmed that the weight percentage of Pd decreases from 69.1% in
the octahedral to 6.6% in the nanoframe, whereas Ru increases from 30.9% to 93.4%.

Other metal nanoframes can be synthesized in the same way as PtNi [62] by this
oxidative etching method. The metal precursors used were H2PtCl6·6H2O, Ni(acac)2, and
Hexadecylamine (HDA), serving as reducing agents, surface ligands, and solvents. Initially,
the platinum metal precursor was mixed with HDA at 20 ◦C. After that, the Ni precursor
was added to a solution containing Pt seeds, and the solution was heated at 20 ◦C for
25 min to form PtNi nanoparticles of rhombic dodecahedral shape. EDS shows that on
the corner and edges, Pt was in more proportion, while Ni was in the bulk. Using acetic
acid as an etchant, these nanoparticles were converted into PtNi dodecahedral nanoframes
(Figure 10), as confirmed by TEM analysis in Figure 11.
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2.8. Galvanic Replacement Reaction

Galvanic replacement occurs between two metals with different values of standard
reduction potential. The one present in the metal template has a low reduction potential
and is hence oxidized; meanwhile, the one present in the solution has a high reduction
potential and hence it gets reduced and deposited on the template metal surface [53]. For
example, Pt@Ru dodecahedral nanoframes can be synthesized by galvanic replacement
reactions. Initially, the Pt@Ni dodecahedral [precursor] is taken, and Ru is deposited on
the Pt edges by the replacement of Ni via the addition of Rucl3, and the etching of Ni is
performed by using HCl as an etchant. Consequently, hollow Pt@Ru dodecahedra are
formed, as shown in Figure 12 [63]. TEM and SEM images are shown in Figure 13.
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2.9. Kirkendall Effect

The Kirkendall is a technique mediated by vacancies in which the flow of species
that diffuse faster is stabilized by the antagonistic flow of vacancies [64]. This method
is not usually used to synthesize metal alloy nanoframes. However, the nanoframes
synthesized by this method and reported in the literature include Cu3Pt NFs and some
trimetallic nanoboxes, like a Pd-Au-Ag nanobox [65]. Successive galvanic replacement and
the Kirkendall effect can be performed to design complex hollow nanostructures, i.e., a
Pd-Au-Ag hollow nanobox. In this context, two stages are required (Figure 14). In the first
stage, a metal precursor with a high reduction potential (Pd) is needed to create cavities in
the metal nanoparticle (Ag). Cetyl Trimethyl Ammonium Bromide (CTAB) can be used as
the controlling agent. In the second stage, the already designed hollow structure is used
as a support for the second carving by using gold as a metal precursor to create further
strained cavities. Ascorbic acid is then used as a controlling agent.
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2.10. Photocatalytic Template Synthesis

Three-dimensional Pt nanocages have been successfully prepared by the photocatalytic
template synthetic protocol (Figure 15). First of all, platinum nanobranches were deposited
on titanium oxide NPs in the presence of UV radiation (UV-340A) for almost one and a
half hours under non-stop magnetic stirring. When the templates were removed, platinum
nanocages [NCs] were acquired. These NCs were found to have good electrocatalytic stabil-
ities in the case of the methanol oxidation reaction when assessed by chronoamperometric
analysis [66]. TEM images at different growth stages are shown in Figure 16.
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2.11. Self-Assembly of Nanoparticles

Molecular Dynamic (MD) simulations were used to explain this synthetic protocol, in
which nanoparticles acting as building blocks were first annealed at a high temperature and
the metal nanostructures obtained at the end were cooled at 10 K. Silver–gold nanoframes
were synthesized by the self-gathering of almost 12 similar 5083-atoms of Ag-Au NPs. At
1000 K, an annealing MD simulation was performed. At 50 ps, the gathering of NPs into a
triangular Ag-Au nanoframe took place, and finally at 100 ps, a triangular nanoframe was
formed Hexagonal gold NFs (Figure 17) and cubic Fe NFs were also synthesized by the
same method [22].
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2.12. Solvo-Thermal Synthesis

Solvo-thermal synthesis is a technique in which the precursor material is mixed in a
proper solvent and then heated to a temperature greater than its boiling point after sealing
it in an autoclave. The synthesis of ptCu dodecahedral NFs using this method has been
reported. The solution containing cetyltrimethyl ammonium chloride (CTAC), olylamine,
copper chloride (CuCl2), and allantoin was first stirred and then ultrasonicated for 40 min;
this was followed by the transference of the mixture to an autoclave at 180 ◦C for 10 h. It
was then allowed to cool down naturally [67]. Afterward, centrifugation, washing, and
drying at 60 ◦C were performed. A schematic illustration of the dPtCu nanoframes is
shown in Figure 18. TEM images are shown in Figure 19.
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Rhombic dodecahedral ptCu NFs synthesis via this method using CTAC and L-proline
has also been reported [68]. PtCu octopod nanoframe architectures (OFAs) were also
synthesized by this method [69].
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3. Different Metal Nano-Frames
3.1. Metal Nanoframe

A novel structure containing Au films deposited by Ag nanoframes was checked
for the surface-enhanced Raman (SER) effect [70]. It was reported that intense surface-
enhanced Raman scattering (SERS) signals were shown by Ag nanoframes and the Au film
sample (Figure 20C), whereas no such response was observed for the Au film without Ag
nanoframes. This substrate was found to be a suitable material for the identification of
material in the biological domain. 
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Figure 20. (A) CV curves of four different catalysts in 0.5 M H2SO4. (B) Comparison of specific activity
and mass activity at 0.8 V vs. Reversible Hydrogen Electrode (RHE). Reprinted with permission
from Ref. [63]. Copyright 2020 American Chemical Society. (C) Resonance wavelength excitation for
silver nanoframe on Au mirror. Reprinted with permission from Ref. [70]. Copyright 2020 American
Chemical Society.

3.2. Alloy Metal Nanoframe

For the electro-oxidation catalytic performance of pt-Cu, nanoframes were investi-
gated using two different morphologies named (PtCu2 CONFs) and (PtCu UONFs); these
are abbreviated as PtCu2 concaved octopod nanoframes and PtCu2 ultrathin octopod
nanoframes, respectively [29]. The electrochemically active surface area (ECSA) of con-
caved octopod nanoframes (CONFs), ultrathin octopod nanoframes (UONFs), the platinum
on carbon catalyst (pt/C), and Pt black were found to be 44.5 m2/g, 52.1 m2/g, 46.1 m2/g,
and 41.4 m2/g, respectively. Due to its small size and greater access to the inner area of the
nanoframes, platinum–copper ultrathin octopod nanoframes (PtCu UONFs) exhibited a
comparatively superb electrochemical performance. PtNi dodecahedral nanoframes have
been prepared by the oxidative etching method from already designed precursors like
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ptNi rhombic dodecahedron nanoparticles. The specific activity of these nanoframes in the
ORR was found to be 1.9 mAcm−2, which is greater than the commercially available Pt/C-
specific activity, i.e., 0.19 A·mg−1 [62]. Ni-Pt nanoframes (2D) were also synthesized from
Pt containing Ni(OH)2 nanosheets. The ORR-specific activity for these nanoframes was
found to be (5.8 mA cmPt−2), which is much greater than the Pt/C catalyst [71] icosahedral
Pd-Ru nanoframes [72]. Ru octahedral nanoframes were prepared from the octahedral
structure of the Pd-Ru core frame by the preferential etching of Pd cores. Compared to
Ru nanowires, their fcc nanoframe morphology was found to be most suitable for the
degradation of p-nitrophenol [73]. Another category of nanoframes includes porous metal
oxide nanoframes like manganese tin oxide nanoframes, which have been analyzed for
their capacity to enhance Li-ion storage abilities. Their initial capacity was found to be
1620.6 mA h g−1 at 0.05 A g−1 and their durability was so high that they were capable of
transporting a capacity of 547.3 mA h g−1 at 2 A g−1 even after one thousand cycles [74].
Some yolk–shell nanoframes like Ag@mSiO2, with Ag NPs as yolk and glucose oxidase
conjugated mesoporous silica as shell, have been prepared to investigate their role in
cancer treatment. The experimental results showed that glucose oxidase is a basic com-
ponent of nanocarriers, which were mainly responsible for triggering the entire approach.
These NFs exhibited marvelous results regarding their cancer-killing effect and efficient
cellular-uptake ability [75].

3.3. Doped Metal Nanoframes

Copper nanoframes were found to have a much better performance in the ORR. It was
reported that the half-wave potential for Cu ISs/NC-1000 (copper isolated sites anchored
on nitrogen-doped carbon material) was 0.92 V, which is much more efficient compared to
commercially available Pt/C [76]. Fe-N-doped 3D carbon nanoframes exhibited outstand-
ing ORR activity. The catalyst had a more positive half-wave potential, which was 0.70 V in
alkaline medium; similarly, Pt3Ni RDH nanoframes yielded a high ORR mass activity of
5.7 A mgPt−1 at 0.9 VRHE, which is 22 times higher than that of commercial Pt/C [37].

4. Applications
4.1. Electro Catalytic Performance

Nanoframes have garnered significant attention as electrocatalysts because of their
inherently high active surface areas [77]. The nanoframe structure offers an extensively
porous framework, increasing both interior and exterior catalytic surface areas [37,78]. Fur-
thermore, nanoframe electrocatalysts exhibit high surface-to-volume ratios and extensive
surface areas [79]. Within the confined nanospace, reactants readily collide on the catalytic
surface, facilitated by the nanoframe structure [78].

4.1.1. Methanol Oxidation Reaction (MOR)

The nanoframes named d-Pt@Ru and h-Pt@Ru were analyzed for their efficient electro-
catalytic activity during methanol oxidation [63]. For this purpose, these hollow nanoframes
were carried on multi-walled carbon nanotubes (MWCNTs) with their 20wt% loading. Their
activity for methanol oxidation was checked for different Pt-Ru nano-samples by using sul-
furic acid (H2SO4) and methanol (CH3OH). Their catalytic efficiency was detected initially
by ECSA, which in turn was estimated from the hydrogen desorption region of CV curves
(Figure 20A). Among all the samples analyzed, the highest mass activity was possessed
by d-Pt@Ru dodecahedra, i.e., 0.80 A mgPt−1, and the specific activity was found to be
1.61 mA cmpt−2 (Figure 20B). In comparison to commercial Pt/C, the mass activity and
specific activity of the d-Pt@Ru dodecahedra were found to be 5.25 and 7.78 times more
efficient. The d-Pt@Ru and h-Pt@Ru were also tested for their anti-poisoning ability, which
ensures their enhanced electro catalytic ability. In addition to this material, the cyclic
voltammogram (CV) curves of PtCuRh RDND (ptCuRh-rhombohedral dodecahedron
nanoframe with nanodentrites), PtCuRh RDN (rhombic dodecahedron nanoframe), PtCu
NC and commercial Pt/C catalysts were analyzed and their peak current densities were
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found to be 56.9 mA cm−2, 56.0 mA cm−2, 32.3 mA cm−2, and 25.76 mA cm−2, respectively.
To find the durability of this material, a durability test was performed. For Pt/C and PtCu
NC, the durability was reduced up to 44% and 49%, and PtCuRh RDND and PtCuRh RDN
were able to maintain 73.2% and 60.6% of their original activity [80].

4.1.2. Ethanol Oxidation Reaction (EOR)

For the EOR, CV plots for PtCuRh RDND, PtCuRh RDN, PtCu NC, and Pt/C are
compared (Figure 21A). It was estimated that PtCuRh RDND exhibited a maximum cur-
rent density of 29.9 mA cm−2, which is 2.3 times higher than commercial Pt/C catalysts.
Regarding the mass activity, it was calculated as 0.98 A mg−1

Pt for the former compared
to 0.48 A mgPt−1 for the latter [80]. A 44% and 49% decrease in the mass activity of Pt/C
and PtCuNc was found compared to PtCuRh RDND and PtCuRh RDN, which were quite
durable and maintained their mass activity up to 73.2% and 60.6% of the original value
even after 1000 cycles of the stability test (Figure 21B). In addition to that, Pt nanoframes
with incorporated Bi(OH)3 exhibited a marvelous EOR performance, with a mass activity
of 6.87 A mg-1

pt, which is 13.5 times higher than commercial platinum [81]. 
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4.1.3. Oxygen Reduction Reaction (ORR)

The ORR activity of Ni(OH)2@Pt was detected by using a rotating disc electrode
(RDE). In the NiPt-200 and NiPt-300 nanoframes [71], the half-wave potential was found
to be 70 mv more positive than Pt/C. Their CV plots are shown in Figure 22A. The
specific activity was found to be 3.2 ± 0.6 and 5.8 ± 2.4 mA cmPt−2, respectively, which
shows that the NiPt-300 nanoframe was found to be 10.2 times more efficient than Pt/C
(0.57 ± 0.03 mA cmPt−2) in terms of its specific activity (Figure 20B). The increased specific
activity of NiPt-300 compared to NiPt-200 might be due to many factors, like the complete
transformation of Ni (OH)2 that took place in its structure and the presence of micropores.
The decreased mass activity of the NiPt-300 and NiPt-200 nanoframes in comparison to
Pt/C is because the ECSA of Pt is lower in NiPt nanoframes.
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4.1.4. Hydrogen Evaluation Reaction (HER)

Different metal nanoframes like PtCu DNFs (dodecahedral nanoframes) have been
investigated for use in the enhanced HER. To analyze their electrocatalytic performance, CV
graphs of different samples like PtCu DNFs, PtCu NPHs, Pt/C, and Pt black catalysts were
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studied (Figure 23A) [67]. The onset potential determined through the Tafel slope shows
that it is more positive (0 mV) for PtCu DNFs when compared to −20 mV, −21 mV, and
−36 mV for Pt/C, PtCu NPHs, and Pt black, respectively, which is a clear manifestation
of the increased HER performance of the former (Figure 23B). The over potential values
for all the above-mentioned catalyst structures were found to be 27 mV, 37 mV, 66 mV, and
78 mV, depicting very efficient electron transfer in the dodecahedral nanoframe structure.
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4.1.5. Formic Acid Oxidation Reaction (FAOR)

Palladium nanoframes were found to be an efficient catalyst for formic acid oxidation.
Formic acid can be used as fuel in fuel cell technology. CV graphs of two catalysts were
analyzed for their electro-oxidation of formic acid, and Pd NFs showed 7.5 times more
activity in comparison to the Pd octahedral catalyst (Figure 24A) [40]. When the electro-
chemical durability after 1000 cycles was checked, it was found to be 6.5 times higher for
the Pd nanoframe compared to the Pd octahedral (Figure 24B).
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American Chemical Society.

4.1.6. Overall Water Splitting

CoP nanoframes were found to possess the best catalytic activities for the HER and
OER [82]. Besides this, they also had both water reduction and oxidation properties or, in
short, water splitting capacities [82]. The linear sweep voltammogram (LSV) curves for the
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CoP NFs and CoP nanocubes (CoP NCs) showed that cell voltages of 1.65 and 1.75 V were
required to acquire a current density of 10 mAcm−2 for water splitting (Figure 25A). As
far as durability is concerned, the water splitting capacity remained constant even after
30 h (Figure 25B). Transition metal phosphide (TMP) 3D nanoframes were found to be the
best material for overall water splitting [83]. Another metal nanoframe (Ni, CO)2PNF) was
used as both an anodic and cathodic material for overall efficient water splitting [84].
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Figure 25. LSV curve of CoP NFs and CoP NCs (A) in 1 M KOH without iR compensation in a
two-electrode configuration (B) before and after electrolysis in 1 M KOH. Reprinted with permission
from Ref. [82]. Copyright 2020 American Chemical Society.

4.1.7. Glycerol Oxidation Reaction (GOR)

PtCu HCNFs were declared to be the best catalyst for the GOR compared to the other
catalysts observed under the same conditions in Ref. [85]. It was demonstrated that a
diffusion-controlled process occurred on the surface of the catalyst for the GOR. The slope
values of the CV plots for the Pt-HCNFs (PtCu alloyed hollow cubic nanoframes), Pt-NCs
(Pt nanocubes), and Pt/C were calculated as 12.8, 6.2, 2, and 2.6, respectively. The ECSA of
the PtCu-HCNFs, Pt black, and PtCu NPs was calculated as 23.4 m2 g−1 Pt, 12.04 m2 g−1 Pt,
and 15 m2 g−1 Pt, respectively (Figure 26A). Moreover, the ORR polarization curve depicts
the enhanced stability and activity towards the ORR (Figure 26B); the PtCu-HCNFs were
considered to possess an enhanced electrochemical performance in the GOR [86].
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4.2. Biomedical Applications

Nanostructures are liked because they have interesting properties related to light
(plasmonic), and because we can easily add things onto their surfaces. Also, tiny bits of gold
called nanostructures are very proficient at helping us detect and take pictures of biological
things. For example, they make techniques like super-powered Raman spectroscopy,
better-looking fluorescence, special biosensors, and using sound to make images inside
the body possible [87]. Nanoframes have been introduced in biomedical fields due to their
heightened LSPR shift towards NIR. Furthermore, their empty architectures are highly
compatible with drug delivery and systems for controlled drug release.

4.2.1. Healing of Liver Injury

Gold nanoframes have been analyzed for in vivo biomedical applications due to their
increased physiological stability and efficient biocompatibility [87]. C57BL/6 female mice
were used as a model to evaluate liver injury via the intravenous injection of different
nanostructures like GNSs (Gold nanoshells) and GNFs (Gold nanoframes). The portion
of the liver treated with GNSs showed the existence of inflammation. The causative
agent responsible for this inflammatory response was oxidative stress due to the enhanced
assembling of GNSs, which in turn increases.

In contrast, the same concentration of GNFs did not cause any unusual biological
changes in the portion of the liver in which they were inducted. In addition to the liver,
the experiment was also conducted on the spleen, kidney, and lungs by performing a 24 h
post-injection of GNFs, and no unusual changes were observed. In comparison to GNSs,
GNFs not only have excellent physiological stability but also efficient stability (Figure 27).
Hence, GNFs can be suggested as the best material in the future for in vivo utilizations like
cancer detection, etc.
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4.2.2. Detection of Tumor Cells

To achieve excellent sensitivity and the detection of cancerous cells, there is a need to
further amplify the detection signals. For this purpose, detection signals were converted
into temperature and pressure signals by using novel (NIR-II) responsive gold nanoframes
(Au-NFs) [88]. The Near-Infrared Spectroscopy (NIR) absorption spectra of different Au-
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NFs systems are shown in (Figure 28A). The production of CO2, NH3 and O2 as a result of
the disintegration of H2O2 and the photo thermal conversion of NH4HCO3 enhances pres-
sure signals, and its peroxidase activity converting to TMB (3,3 5,5 tetramethylµ benzidine)
to TMB oxide (oxTMB) further improves its photo thermal response. The pressure and
temperature signals were found to be linearly correlated with the Au-NF concentration.
The system containing Au NF, TMB and H2O2 showed improved signals with temperature
changes (Figure 28B). To investigate its clinical applications, Hela cells were introduced
into human serum and blood samples; Au-NFs were found to have good biocompatibility,
as the hemolysis rate calculated was only 5%. The limit of detection (LOD) determined
for both the temperature and pressure signals through this nanoframe was found to be
very low compared to the other methods already reported, i.e., electrochemistry [89,90],
mass spectrometry [91,92], and optics [93]. Au@Au–Ag DCFs (Au@Au–Ag dot in cubic
nanoframes) have also been reported for asymptomatic surface-enhanced Raman spec-
troscopy (SERS) and the photoacoustic detection of tumors with a detection depth of up
to 4 mm [94]. The SERS images become brighter with an increasing Au@Au–Ag DCF
concentration (Figure 29(A1)). Moreover, the SERS intensity increases with its increased
concentration (Figure 29(A2)). The fact that SERS images become darker with increasing
depth was analyzed, and the SERS intensity was found to be decreased with an increasing
depth (tissue mimicking thickness) of detection (Figure 29(B1,2)).
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Figure 29. (A) 1: SERS images of Au@Au–Ag DCFs at different penetration depths; 2: SERS spectra of
agarose phantom containing different concentrations of Au@Au–Ag DCFs. (B) 1: NIR-II SERS images
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2: the decay of the average NIR-II SERS intensity over the increasing penetration depth under a
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Copyright 2021 Wiley Online Library.

4.2.3. Synergistic Photo Thermal and Chemo Dynamic Therapy

Concave octahedral PtCu nanoframes were loaded with vitamin C to form CoPtCU-
nfs@VC as an anti-tumor nanoagent. They were also modified with tumor-targeting
folic acid to form CoPtCU-nfs@VC@FA [95], which can easily deliver Vitamin C VC to
cancerous cell targets. These NFs were related to the generation of OH radicals and
H2O2 production, which cause serious toxicity and damage to tumor cells. Its photo
thermal conversion (PC) efficiency was found to be 68.4%, with heat loss of only 2% after
performing six thermogenesis cycles. NIR laser irradiation at 880 nm showed the quick
release of model drugs (methylene blue and hydrophobic rhodamine) compared to when
no laser radiations were used. These NFs in combination with NIR showed better tumor
volume reduction (Figure 30A) and a better survival rate of mice in comparison to other
samples or combinations; this is shown in Figure 30B.
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Figure 30. In vivo anti-tumor experiments. (A) Relative tumor volume for various therapeutic treat-
ments within 16 days. (B) Survival rate of mice in various groups during 60-day period. Reprinted
with permission from Ref. [95]. Copyright 2022 Elsevier.

4.3. Theranostic Application

The combined strategy of therapeutic and diagnostic capabilities comes under the um-
brella of theranostic applications [96]. The combination of the experimental and theoretical
analysis showed that on the surface of Au NFs and throughout their interior structure, in-
tense plasmonic surface field effects occur in comparison to other solid nanostructures [97].
Nanoframe can have different dimensions: (L) edge length; (W) edge thickness (Figure 31).
Due to the distinctive framework of NFs, their localized surface plasmon resonance (LSPR)
can be modulated to NIR from the visible region by changing the dimensions of NFs during
synthesis, and this property makes them a promising candidate for in vivo applications.
In addition to that, they have appreciable sensitivity factors and hence serve as the best
material for nanosensors in NIR. The optical response of nanoframes was investigated
as a function of the aspect ratio (R) and length (L). It is estimated that nanoframes with
better absorbance in NIR are best for theranostic applications. When the L value increases,
LSPR absorption also increases from 690 to 1060 nm (Figure 32A). As the R value increases,
the LSPR peak wavelength also increases from 600 nm to 1090 nm as R = L/W; L is kept
constant (Figure 32B).

Symmetry 2024, 16, x FOR PEER REVIEW 24 of 48 
 

 

 
Figure 31. Nanoframe with different dimensions: (L) edge length; (W) edge thickness. 

(A) (B) 

Figure 32. Absorption spectra of nanoframe as a function of different geometric parameters. (A) 
Absorption spectra vs. L (W = 7 nm). (B) absorption spectra vs. R = L/W (L = 28 nm). Reprinted with 
permission from Ref. [97]. Copyright 2016 American Chemical Society. 

4.4. Industrial Applications (Dye Removal) 
4.4.1. Methyl Red 

Metal nanoframes have been used in the past for the detection of dyes [98]. The UV–
visible absorption spectra showed that MR+Ag/Au Fr5 possesses more intense absorption 
peaks at 415,508,650 nm (Figure 33A). By analyzing the SERS spectra of Ag/Au NFs, the 
absorption peak intensity of these NFs was found to be more intense compared to the 
silver nanoplate structure. This is because the active surfaces on the nanoframe structure 
are efficient due to its intense edges and vertices, which in turn hold the responsibility of 
enhancing the resonance signal. Ethanol-diluted methyl red dye was excited by a laser 
signal of 532 nm. This NF material served as the best SERS podium to detect methyl red 
dye as it was found to be stable and reproducible, with a high enhancement factor and 
low limit of detection (10−5) compared to its nanoplate structure. The SERS spectra showed 
that the Ag/Au Fr5 sample possessed a precise and distinct SERS signal (Figure 33B). The 
Relative Standard Deviation (RSD) value for the SERS signal at 1613 cm−1 was found to be 
2.3%, which shows the superb reproducibility of NFs. In comparison to methylene blue, 
the rhodamine 6G SERS signal intensity for methyl red was stronger and more intense. 

Figure 31. Nanoframe with different dimensions: (L) edge length; (W) edge thickness.



Symmetry 2024, 16, 452 23 of 46

Symmetry 2024, 16, x FOR PEER REVIEW 24 of 48 
 

 

 
Figure 31. Nanoframe with different dimensions: (L) edge length; (W) edge thickness. 

(A) (B) 

Figure 32. Absorption spectra of nanoframe as a function of different geometric parameters. (A) 
Absorption spectra vs. L (W = 7 nm). (B) absorption spectra vs. R = L/W (L = 28 nm). Reprinted with 
permission from Ref. [97]. Copyright 2016 American Chemical Society. 

4.4. Industrial Applications (Dye Removal) 
4.4.1. Methyl Red 

Metal nanoframes have been used in the past for the detection of dyes [98]. The UV–
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signal of 532 nm. This NF material served as the best SERS podium to detect methyl red 
dye as it was found to be stable and reproducible, with a high enhancement factor and 
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that the Ag/Au Fr5 sample possessed a precise and distinct SERS signal (Figure 33B). The 
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2.3%, which shows the superb reproducibility of NFs. In comparison to methylene blue, 
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4.4. Industrial Applications (Dye Removal)
4.4.1. Methyl Red

Metal nanoframes have been used in the past for the detection of dyes [98]. The UV–
visible absorption spectra showed that MR+Ag/Au Fr5 possesses more intense absorption
peaks at 415,508,650 nm (Figure 33A). By analyzing the SERS spectra of Ag/Au NFs, the
absorption peak intensity of these NFs was found to be more intense compared to the
silver nanoplate structure. This is because the active surfaces on the nanoframe structure
are efficient due to its intense edges and vertices, which in turn hold the responsibility of
enhancing the resonance signal. Ethanol-diluted methyl red dye was excited by a laser
signal of 532 nm. This NF material served as the best SERS podium to detect methyl red
dye as it was found to be stable and reproducible, with a high enhancement factor and low
limit of detection (10−5) compared to its nanoplate structure. The SERS spectra showed
that the Ag/Au Fr5 sample possessed a precise and distinct SERS signal (Figure 33B). The
Relative Standard Deviation (RSD) value for the SERS signal at 1613 cm−1 was found to be
2.3%, which shows the superb reproducibility of NFs. In comparison to methylene blue,
the rhodamine 6G SERS signal intensity for methyl red was stronger and more intense.

Symmetry 2024, 16, x FOR PEER REVIEW 25 of 48 
 

 

 
Figure 33. (A) UV–visible absorption spec tra of MR, Ag/Au Fr5 and MR+Ag/Au Fr5 at a 10−5 M con-
centration of MR. (B) SERS spectra of 10−5 M methyl red on Ag/Au nanoframe substrate. Reprinted 
with permission from Ref. [98]. Copyright 2021 RSC Advances. 

4.4.2. Methylene Blue 
The use of photo-electro Fenton electro catalysts like concave octopus-like Pt-Cu 

nanoframes (COPC-NFs) has been reported to improve wastewater treatment and elimi-
nate dyes [99]. In comparison to the previous Fenton processes reported, the photo-electro 
Fenton method has shown better results due to its self-production of hydrogen peroxide 
[99] and also due to the use of copper instead of iron in the Fenton catalyst, which shows 
enhanced efficiency in a neutral environment. Fenton’s degradation can be enhanced by 
considering NIR signals [100,101]. Methylene blue was used as a sample dye. The degra-
dation performance of these COPC-NFs and the previously reported photocatalysts was 
compared with COPC-NFs and is summarized in Tables 2 and 3 and the COPC-NFs was 
found to be the best one. As far as durability is concerned, after 10 cycles of reuse, they 
still showed excellent activity of about 95% (Figure 34A). When treated with 10 mA DC, 
additional electro catalytic activity for H2O2 generation was observed (Figure 34B). 

 
Figure 34. (A) Recyclability of CoPC-NFs treated with DC and NIR laser for methylene blue removal 
within 10 cycles. (B) H2O2 generation profile for different nanocatalysts under DC treatment. Re-
printed with permission from Ref. [99]. Copyright 2022 Nanoscale Advances. 

  

Figure 33. (A) UV–visible absorption spec tra of MR, Ag/Au Fr5 and MR+Ag/Au Fr5 at a 10−5 M con-
centration of MR. (B) SERS spectra of 10−5 M methyl red on Ag/Au nanoframe substrate. Reprinted
with permission from Ref. [98]. Copyright 2021 RSC Advances.



Symmetry 2024, 16, 452 24 of 46

4.4.2. Methylene Blue

The use of photo-electro Fenton electro catalysts like concave octopus-like Pt-Cu
nanoframes (COPC-NFs) has been reported to improve wastewater treatment and eliminate
dyes [99]. In comparison to the previous Fenton processes reported, the photo-electro
Fenton method has shown better results due to its self-production of hydrogen peroxide [99]
and also due to the use of copper instead of iron in the Fenton catalyst, which shows
enhanced efficiency in a neutral environment. Fenton’s degradation can be enhanced
by considering NIR signals [100,101]. Methylene blue was used as a sample dye. The
degradation performance of these COPC-NFs and the previously reported photocatalysts
was compared with COPC-NFs and is summarized in Tables 2 and 3 and the COPC-NFs
was found to be the best one. As far as durability is concerned, after 10 cycles of reuse, they
still showed excellent activity of about 95% (Figure 34A). When treated with 10 mA DC,
additional electro catalytic activity for H2O2 generation was observed (Figure 34B).

Table 2. Photo-degradation of methylene blue (MB) dye with different nanocatalysts.

Catalyst Catalyst (g/L) Irradiation
Time (min)

Wavelength
(nm)

Degradation
% References

ZnFe2O4 0.6 360 400–700 nm 32.0 [99]
MnFe2O4/rGO - 60 662 nm 97 [102]
MgFe2O4 0.6 180 400–700 nm 26.0 [103]
CaFe2O4 1.0 360 ›420 nm 28.0 [104]
BaFe12O19 1.0 360 420–700 nm 26.0 [105]
COPC-NFs 0.3 30 808 nm 43.9 Present work

Table 3. Photo-electrode gradation of MB dye with different nanocatalysts.

Catalyst DC Power
(W)

Time
(min)

Degradation
(%) References

TiO2 500 180 22.4 [106]
CO/TiO2 500 120 74.2 [106]
COPC-NFs 500 30 99.2 Present work
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4.4.3. 4-Nitro Phenol

AuAgPd polyhedral nanoframes have been reported for their efficient catalytic reduc-
tion of 4-nitrophenol in the presence of UV–visible light [107]. The catalytic reduction of
these NFs was found to be greater than AuAgPd NPs due to the Plasmon enhancement
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effect. The rate constant value determined for the aforementioned reaction was found to be
1.7 times greater in the presence of light when compared to the light-off reaction condition
(Figure 35A,B). The UV–visible spectra showed that the absorption peak for nitrophenol
obtained at 400 nm started to become less intense slowly and gradually, depicting its
reduction [108].
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4.5. Electro Fenton Application: H2O2 Production in Acids

PdAu-NFs have been analyzed as efficient catalysts for the electrochemical generation
of H2O2 [109], which reacts with ferrous ions (Fenton’s reaction) to produce OH−, which
is responsible for the rapid degeneration of contaminants. The organic dye Rhodamine B
(RhB) was used as a sample dye. PdAu-NFs cause the very fast disintegration of dye in a
very short period. UV-visible analysis showed that almost 90% of the RhB was degraded in
just the initial 5 min of reaction as shown in Figure 36A and decay of RhB concentration
over time during electro-Fenton reaction at 0.3 V by Pd Au-NF and Au/C is shown in
Figure 36B.
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4.6. Electrical Batteries
4.6.1. Lithium-Ion Battery Anodes

Porous manganese tin oxide nanoframes (PMNs) were investigated as the best material
for use as the anode in lithium-ion batteries. They were found to possess excellent durability,
capacity, and reversibility [74]. Different samples were checked for their reaction rates at
different current densities, including PMNs, bulk MnSnO3, and SnO2. The one that could
produce better capacitance either at low or higher current densities was the PMN anode
due to its shorter grain size (Figure 37A). In addition to that, due to their smaller diameter,
PMNs offer less resistance and as a result, they enhanced the interface charge transfer,
which further augmented their rate properties when compared to bulk MnSnO3. As far
as durability is concerned, even after 100 cycles, the PMNs were able to transfer a stable
capacity of 912.0 mA h g−1; meanwhile, other samples (Bulk MnSnO3, and SnO2) could
only transfer a stable capacity of 383.2 and 223.1 mA h g−1, respectively. Due to their shorter
grain size and porous structure, PMN samples have shown higher capacities at different
voltage ranges (Figure 37B). Hierarchical multilayered bipyramid nanoframes (HMBNFs)
made up of ZnO/CoO were also found to possess a very efficient cycling capacity and
better electrochemical performance [110] when they were analyzed as an anodic material
for Li-ion batteries.
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4.6.2. Na-Ion Batteries

Na-ion batteries (NIBs) are considered to be better than Li-ion batteries due to their
natural reserves and low cost [111,112]. Copper-doped CoSe2 nanoframe cubes (Cu-CoSe2-
NFCs) have been reported as the best electrodic materials for NIBs [113]. The charging ca-
pacities of these NFs doped with copper and without copper were found to be 470 mAh g−1

and 420 mAh g−1, respectively. The rate performance of Cu-CoSe2-NFC electrodes at differ-
ent current densities has confirmed their superb specific activity (Figure 38A). The presence
of copper has also increased the electrical conductance of these NFs, as depicted by the EIS
(Figure 38B). Moreover, Cu-CoSe2-NFCs were able to retain a 90% charging capacity even
after 100 cycles.



Symmetry 2024, 16, 452 27 of 46

Symmetry 2024, 16, x FOR PEER REVIEW 3 of 6 
 

 

 
Figure 37. Electrochemical properties of PMNs, bulk MnSnO3, and SnO2: (A) Rate properties at var-
ied current densities and (B) capacity variation at two voltage ranges with respect to the cycle num-
ber. Reprinted with permission from Ref. [74]. Copyright 2018 American Chemical Society. 

 

 

 
Figure 38. Electrochemical properties of Cu-CoSe2 NFCs: (A) Rate property at 0.1–2 Ag−1 and (B) 
Electrochemical impedance spectra. Reprinted with permission from Ref. [113]. Copyright 2021 
Elsevier. 

Figure 38. Electrochemical properties of Cu-CoSe2 NFCs: (A) Rate property at 0.1–2 Ag−1 and
(B) Electrochemical impedance spectra. Reprinted with permission from Ref. [113]. Copyright
2021 Elsevier.

4.7. Energy Storage Devices
4.7.1. Lithium–Sulfur Li-S Cells

Lithium–sulfur pouch cells are considered to be the best energy storage devices due to
their high energy density and specific activity [114,115]. The use of 3D ZnCoN co-doped
carbon NFs (3DZCN-C) as a cathodic material for these cells has been reported due to their
best activity being presented when inhibiting the shuttling effect of lithium polysulfides
(LiPS), with superb cyclability and durability [116]. Moreover, the discharge capacity
of these cells comprising 3DZCN-C reaches up to 975.6 mAh−1 at 0.5C, and the decay
rate even after 1000 cycles is very low, i.e., 0.03% (Figure 39). The 3D structure of these
nanoframes offers a highly porous structure and the availability of nitrogen vacancies
enhances the Li-ion diffusion coefficient, thus improving the electrochemical properties.
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4.7.2. Supercapacitor Electrodes

An asymmetric supercapacitor system has been designed by using 3D nanoframes
such as sulfurized Ni-Al as a positive electrodic material and Bi-Ce-S as a negative electrodic
material [117]. Instead of conventional carbon-based negative electrodic material, Bi-based
material is preferable due to its high capacitance and easy manufacture [118,119]. The
capacitance of sulfurized electrodic material is high, i.e., 1230.6 F g−1, compared to the
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material without substitutional sulfur present, i.e., 896 Fg−1, at a current density of 1 A g−1

(Figure 40A). The capacitive retention values at 20 Ag−1 were determined to be 69.8%
and 59.3%, respectively. This electrode was found to possess 81.4% capacitive retention
even after 4000 cycles (Figure 40B). Moreover, the specific capacitance of Bi-Ce-S was high
compared to Bi-S when the current was increased from 1 to 10 A g−1. The capacitive
retention was 92.2% at a current density of 10 Ag−1 for the Bi-Ce-S electrode. The capacitive
retention for the whole device was 80.6% at 10 Ag−1, with a coulombic efficiency of 96.9%
even after 8000 cycles (Figure 40C). For device fabrication, the mass ratio of the material
required for both electrodes was determined through charge–balance theory [120,121].
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permission from Ref. [117]. Copyright 2022 springer Nature.
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4.8. Surface-Enhanced Resonance Spectroscopy (SERS)

In SERS, there is the production of more intensified Raman signals due to the molecules
absorbed on the surface; hence, analytes with very low concentrations can be detected easily.
Some specific sites of these absorbed molecules called “hotspots” are mainly responsible
for the enhanced intensity of Raman signals, which contribute to the overall intensity
factor. The SERS activity of Au nanoframes has been compared with Au nanospheres
of the same size [122]. Laser signals of 633 nm irradiations were used to detect SERS
signals (Figure 41A). It was reported that the Raman signals originating from the substrate
surface formulated with Au nanospheres were almost six times less intense than those of
Au nanoframes of similar size due to the existence of intramolecular hotspots along with
intermolecular ones later (Figure 41B). In another synthetic strategy, a gold ring inside a
triangle metal nanoframe was synthesized and this firm structure was found to be suitable
for near-field focusing, as they were able to withstand high-temperature and oxidizing
conditions. They have also played their part in the so-called “lightening rod effect” [123].
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Figure 41. (A) Electric field distribution of Au nanoframe. A laser of 633 nm wavelength was
irradiated from the z-axis with polarization in the x direction. A dotted square indicates the area
of maximum electric field enhancement. (B) SERS spectrum of crystal violet (10−6 M) absorbed on
the substrate modified with an Au nanoframe and Au nanosphere. Reprinted with permission from
Ref. [122]. Copyright 2015 American Chemical Society.

4.9. Fuel Cell Electrolysis

Pt-Co nanoframes were analyzed for their fabulous performance in fuel cell technology
for both the MOR and ORR in acidic and alkaline media and also for their structural
stability [124]. First of all, the electrocatalytic activity required for ORR measurement was
detected through CV graphs in an acidic medium (Figure 42C). Initially, the ECSA was
found to be 50.0 m2 gPt−1, and after 10,000 cycles, the value only reduced to 45.8 m2 gPt−1.
This ensured the excellent stability and durability of Pt-Co nanoframes in an acidic medium.
Moreover, the specific activity and mass activity were found to be 0.80 mA cm−2 and
0.40 A mgPt−1, i.e., six and four times greater than Pt/C (Figure 42D). In basic media,
CV was performed in the same manner as in an acidic medium to calculate the ECSA
(Figure 42A). The mass activity left behind after 2000 and 6000 cycles was found to be
0.37 and 0.31 A mgPt−1, respectively, which is higher than the value for commercial Pt/C
(Figure 42B). For the MOR activity, the CA responses of Pt-Co nanoframes and Pt/C were
analyzed at 0.67 V vs. RHE. It was reported that after 1800 cycles, the activity of Pt/C
declined from 0.31 to 0.02 A mgPt−1, which is an almost 94% loss, but the Pt-Co nanoframe
suffered only a little degradation and had a mass activity of 0.33 A mgPt−1.
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4.10. Sensing of Gaseous Molecules
4.10.1. VOCs and CWA (Chemical Warfare Agent)

The sensing of gaseous molecules such as benzenethiol (BT) is an important aspect
of explosives, medical diagnostics, and many industrial protocols [125]. The SERS spectra
of BT were analyzed using 3D Au NFs and 3D Au nanoparticles for the adsorption of
gaseous molecules, i.e., 10−2 M benzenethiol. After 60 s of exposure, the gold nanoframe
showed very clear Raman peaks, but the gold NP gave peaks after an exposure time of 150 s.
This fast sensing property of Au NF can be used for sensing toxic species like VOCs and
chemical warfare agents (CWAs). Moreover, for the 10−14 M benzenethiol molecule, the 3D
Au NF arrays showed characteristic peaks, but the Au NP under the same experimental
conditions showed no clear signals (Figure 43).
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Copyright 2020 American Chemical Society.

4.10.2. Hydrogen Sulfide (H2S) Detection

Recently, it has been reported that nanoframes can be used for hydrogen sulfide gas
detection. In comparison to solid nanocubes, PdRh SC/ZnO and the hollow nanocube PdRh
HC/ZnO-based sensors possessed better sensing activity towards H2S gas, showing good
selectivity towards H2S gas in comparison to all other gases detected (Figure 44A) [126].
This is because the latter has a greater surface area for the adsorption of gas and is also
due to the hollow structure passage of gas, which makes the redox reaction between gas
molecules and adsorbed oxygen anions more feasible. With the increase in temperature,
the sensing ability of sensors first increases and then decreases due to competition between
gas adsorption and desorption (Figure 44B). Fe-doped MOF-derived porous C-based NFs,
i.e., Zn10Fe1-C-900, have been proposed as efficient H2S sensors with a fast response time
of 0.1 s and recovery time of 0.6 s, a long-term stability of up to 8 days, and a LOD of up to
0.13 µg mL−1 [127], the comparative analysis for H2S sensing of Fe-doped MOF-derived
porous C-based NFs with rest of the Nano frames which are used in this regard are reported
in Table 4. With the increase in H2S concentration, the CTL sensor intensity also increases
(Figure 45B).

Table 4. Comparison of different H2S CTL gas sensors.

Sensing Materials Temperature
(◦C)

Response/Recovery
Time LOD References

Metal free
BN 245 0.1/0.2 s 0.52 µgmL−1 [128]
F-SiC 298 0.6/1.0 3 ppm [129]

Metal oxide
Fe2O3 320 15/120 3 ppm [130]
MnO2 224 0.3/0.4 0.28 µgmL−1 [131]

Metal–carbon
complex

Mn3O4/g-
C3N4

184 0.6/0.6 0.13 µgmL−1 [132]

Fe2O3/g-C3N4 183 0.1/0.6 0.5 µgmL−1 [133]
Metal-doped
porous carbon
nanomaterial

Fe doped
Porous carbon 215 0.1/0.6 0.13 µGmL−1 Present work
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4.11. Reduction of CO2 
4.11.1. Photocatalytic 

The main products after the photocatalytic reduction of CO2 are CO and H2. The pho-
tocatalytic reduction of different sample materials like ZFs [134] (ZrO2 nanoframes) ZFs-
TCCP (Tetrakis-4-carboxyphenyl porphyrin), the HNTM (bulky zirconium porphyrin-
based metal–organic framework) was assessed, and then the one with the best activity 
was checked with different concentrations. It was concluded that ZFs-TCPP-Ni showed 
the highest CO evolution yield among all other samples, with 6 mg being the optimum 
amount of catalyst used (Figure 46A,B). Moreover, no drop in the activity of ZFs-TCPP-
Ni was found during recycling tests, suggesting its excellent stability as well (Figure 46D). 
EIS plots showed its reduced charge transfer resistance under light irradiation (Figure 
46C). 

Figure 45. (A) Stability of proposed CTL-based sensor based on Zn10Fe1-C-900 within 8 days.
(B) CTL sensor response to different H2S concentrations. Reprinted with permission from Ref. [127].
Copyright 2022 Wiley online library.

4.11. Reduction of CO2
4.11.1. Photocatalytic

The main products after the photocatalytic reduction of CO2 are CO and H2. The
photocatalytic reduction of different sample materials like ZFs [134] (ZrO2 nanoframes)
ZFs-TCCP (Tetrakis-4-carboxyphenyl porphyrin), the HNTM (bulky zirconium porphyrin-
based metal–organic framework) was assessed, and then the one with the best activity
was checked with different concentrations. It was concluded that ZFs-TCPP-Ni showed
the highest CO evolution yield among all other samples, with 6 mg being the optimum
amount of catalyst used (Figure 46A,B). Moreover, no drop in the activity of ZFs-TCPP-Ni
was found during recycling tests, suggesting its excellent stability as well (Figure 46D). EIS
plots showed its reduced charge transfer resistance under light irradiation (Figure 46C).
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4.11.2. Electro Catalytic

In addition to having excellent catalytic performance towards the ORR, the FeSAs/CNF-
900 C-based metal–organic framework (MOF) has been used by some researchers for the
electro catalytic reduction of CO2 [135]. The LSV curve depicts low overpotential losses
for CO2 reduction and the value of the onset potential measured is positive. The current
density and turnover frequency (TOF) value found for this catalyst for CO production
showed a high value compared to all other catalysts, i.e., 86.9% at 0.47 V and 639.9 h−1

among all other sample catalysts used (Figure 47A). Moreover, by increasing the pyrolysis
temperature, the selectivity of the CO product increases (Figure 47B).
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4.12. Hydrogen Enrichment and Molecular Sieving

The hydrogenation reaction is an elementary constituent of metal catalysis. How
efficiently this reaction will proceed depends upon the use of the most suitable metal surface
for absorption, as well as the dissociation of hydrogen on that surface. The H2 adsorption
efficiency for three different catalysts was compared, i.e., the Pt-Ni polyhedral, Pt-Ni frame,
and platinum–nickel frame within the metal–organic framework (Pt-Ni frame @ MOF); the
last one was found to have the best performance among all of them (Figure 48A) [50]. An
important hydrogenation reaction of 1-chloro-2-nitrobenzene to form 2-chhloroaniline was
used as a test reaction to check the adsorption capability of the catalyst, which shows that
the Pt-Ni frame @ MOF possesses a greater % yield for 2-chloroaniline (Figure 48B).
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peaks with an increasing concentration of cobalt (Co+2) ions (Figure 49B). Therefore, these 
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Au/AgNFs have shown the high selective detection of Co+2 ions among all other ions (Fig-
ure 49A). 

Figure 48. Catalytic hydrogen efficiencies of the Pt–Ni polyhedra, Pt–Ni frame, and Pt–Ni frame @
MOF. (A) Comparison of H2 adsorption isotherm at 273 K, with 1 bar among three different catalysts.
(B) % yield of 2-chloroaniline produced as a result of hydrogenation of 1-chloro-2-nitrobenzene.
Reprinted with permission from Ref. [50]. Copyright 2015 Nature Communication.

4.13. Spectator of Co+2 Ions

Glutathione (GSH)-modified gold and silver nanoframes (GSH-Ag/Au Nfs) have been
reported as the best candidate for the detection of Co+2 ions [136]. UV-vis spectrophotome-
try showed that there exists a linear relation between the absorption intensity of peaks with
an increasing concentration of cobalt (Co+2) ions (Figure 49B). Therefore, these NFs can be
used for the quantitative analysis of cobalt ions up to 1.7 micro molar. GSH-Au/AgNFs
have shown the high selective detection of Co+2 ions among all other ions (Figure 49A).

Metal nanoframes can be used as a catalyst for biomass upgrading. To investigate the
catalytic activity of ZrO2-promoted Ni (Ni/ZrO2) catalysts, biomass acids like octanoic acid
(OA,C8) and stearic acids (SA,C18) were used [137]. The catalyst used was in various forms
like Ni/ZrO2-F (nanoframe), Ni/ZrO2-H (hollow sphere), and Ni/ZrO2-C (commercial
NPs). Among all of them, Ni/ZrO2-F was found to be a more suitable and excellent
catalyst in the conversion of Octanoic acid as depicted through Table 5 and Stearic acid
depicted through Table 6 and this is due to its high turnover frequencies of 10.2 and
3.4 h−1, respectively, compared to Ni/ZrO2-H and Ni/ZrO2-C (Figure 50). Their turnover
frequencies were found to be 8.8 and 2.7 h−1 and 5.5 and 1.6 h−1, respectively.
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Figure 49. UV–visible spectra of GSH-Ag/Au nanoframes (A) for different metal ions and (B) various
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Table 5. Reaction conditions: Octanoic acid (1 g), decane (100 mL), catalyst (0.1 g), 330 ◦C, 3 MPa, H2,
4 h.

Catalyst Conversion %
Yield %

Heptane Octane Octanol Others

NiZrO2-C 54.2 38.7 6.6 3.2 5.6
NiZrO2-H 86.4 70.3 6.9 2.6 6.3
NiZrO2-F 100.0 86.0 6.0 2.1 2.1
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Table 6. Reaction conditions: Stearic acid (1 g), dodecane (100 mL, catalyst (0.1 g), 260 ◦C, 3 MPa, H2.

Catalyst Conversion %
Yield %

Heptane Octane Octanol Others

NiZrO2-C 48.1 38.6 5.8 1.5 2.2
NiZrO2-H 80.3 69.5 7.8 1.3 1.7
NiZrO2-F 100.0 89.3 7.1 1.2 2.4

4.14. Antibacterial Performance

AgAu yolk–shell cubic nanoframes (AgAuYSCNFs) have been analyzed as an efficient
material for antibacterial activity by using Methicillin-resistant staphylococcus aureus (MRSA)
as a testing bacteria. When no laser irradiations were used, huge amounts of bacteria
were found on the plate in the absence of these yolk–shell nanoframes [138]. However, by
increasing the concentration of AgAuYSCNFs yolk–shell cubic nanoframes, the antibacterial
efficiency was also increased (Figure 51A). Moreover, with an increase in temperature, the
photothermal performance was increased (Figure 51B). The yolk–shell cubic nanoframes
(YSCNF-60) were found to possess good photothermal activity with increasing temperature
(Figure 51C). The antibacterial activity of these nanoframes was further escalated when
irradiated with near-infrared spectroscopy (NIR) for just 10 min due to the synergistic
effect of the Ag present and the high temperature produced as a result of photothermal
conversion. They possess excellent photothermal stability even after five laser irradiation
ON/OFF cycles (Figure 51D).

There is a need to make conventional gold nanoparticles (GNPs) more tolerant towards
high temperatures, reductants, and surfactants [139]. Catechin, which is related to tea
polyphenol, has been reported as a green reducing agent with the ability to synthesize
gold NPs and also make the chelation of metal ions easier. Thus, phenol-assisted gold
nanoparticles incorporated with an iron (pGNP-Fe) composite can generate a large amount
of intracellular reactive oxygen species (ROS) in situ, which in turn makes the antibacterial
effect last for a greater period [140].
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Figure 51. (A) Growth retardation of MRSA and antibacterial activity at different concentrations of
AuAg YSCNFs-60 with and without NIR radiation. (B) Photothermal conversion performance of
pure water and YSCNFs recorded with NIR laser (808 nm). (C) temperature changes for YSC-
NFs with different edge lengths. (D) Photothermal stability of YSCNF-60 with five cycles of
ON/OFF laser irradiation. Reprinted with permission from Ref. [138]. Copyright © 2022 American
Chemical Society.

4.15. Nano Probes for Bio Sensing
4.15.1. Human Chorionic Gonadotrophin (HCG)

It has been reported that 3D Au dual-rim NFs show greater bio-sensitivity towards
HCG (human chorionic gonadotrophin) compared to their 2D structure due to surface-
enhanced Raman scattering, which in turn is due to the many intra-nanogaps present in
the 3D structure (Figure 52) [141]. An intense electric field can be produced due to the
well-known “lightening rod effect” [142].
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Differential pulse voltammetry (DPV) curves have shown that the oxidation current in-
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4.15.2. Glucose in Human Tears

Despite electrochemical [143] and photochemical [144] biosensors being the best and
most efficient sensing tools, photo-electrochemical (PEC) biosensors are comparatively
the most efficient biosensing strategy, showing both the advantage of photochemical
and electrochemical bio-sensing [145,146]. Near-infrared photo-electrochemical (NIR-PEC)
biosensors have been designed by using h-BN/Au5Pt9 nanoframes as an electrodic material
for the monitoring of glucose in human tears with a detection limit of up to 0.406 nM [147].
Differential pulse voltammetry (DPV) curves have shown that the oxidation current in-
creases with as the glucose concentration increases (Figure 53A). These NFs offered better
results compared to the previously reported results using electro-catalytic and visible light
reactions [148–150]. As far as stability is concerned, this NIR-PEC biosensor was able
to maintain 96.7% of the initial current value even after 20 days. The relative standard
deviation (RSD) for the amperometric current response was found to be not more than 5%.
The glucose level in tears and blood was found to be increased by using hexagonal boron
nitride (h-BN)-based h-BN/Au5Pt9 nanoframes in the NIR-PEC biosensor (Figure 53B).

Due to the expeditious usage of naturally existing energy resources and their signif-
icant role in boosting environmental pollution, there is a need for clean and renewable
energy resources [151]. Hydrogen is the best way to store energy compared to conventional
energy resources like fossil fuel [152].
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Figure 53. (A) DPV curves of h-BN/Au5Pt9 nanoframes in dark containing different concentrations
of glucose in artificial tears. (B) Glucose concentration in tears and blood of volunteer before and
after breakfast. Reprinted with permission from Ref. [147]. Copyright 2021 Published by Elsevier.

4.16. Photo and Thermal Driven Catalytic Activity of Nanofrmes
4.16.1. Photothermal Catalytic

Multi-shell nanoframes (MNFs) like 3D C@TiO2 can be used for the production of
hydrogen from wastewater containing dyes [153]. A C@TiO2 MNF showed a catalytic
performance that was 4.3 times higher than a TiO2 MNF in terms of hydrogen evolution,
i.e., 503 µmolg-1 h−1 and 116µmolg−1 h−1, respectively. It was also confirmed that the
catalytic activity of C@TiO2 MNF for the hydrogen evolution reaction in the case of pure
water was reduced to 35% compared to rhodamine B-containing water.

4.16.2. Solar-Driven H2 Production

To tackle the emerging issue of energy crises, hydrogen can be produced from water
using solar energy [154–156]. Zinc Sulfide (ZnS) nanoframes with 1% copper doping have
been reported for their superb photocatalytic activity in terms of hydrogen production in
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the presence of solar radiation (Figure 54A) [157]. There was no significant decrease in the
activity of the catalyst observed even after five runs (Figure 54B).
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5. Conclusions

In this review, we have highlighted the potential of nanoframes in tackling large-
scale catalysis challenges, summarizing a range of synthetic methods aimed at improving
their effectiveness. These synthetic methods include the galvanic replacement reaction,
one-pot synthesis and chemical etching. However, many other strategies have been used
recently by many research groups. This review also examined classifications based on
their composition, either being made of pure single metal, alloys, or some other metal
that is present as a dopant in the parent metallic nanoframe structure. Therefore, we
represent these classifications as metal NFs, alloy metal NFs, and doped metal NFs. As
we discussed metal nanoframes for their excellent applications, we tried to provide an
overview of their application in various fields other than only the catalytic domain. This
includes theranostics, biomedicine, the sensing or detection of different materials, and the
photocatalytic and electrocatalytic reduction of CO2. In addition to their distinctive 3D
structure, nanoframes exhibit unparalleled physiochemical properties, yet they present
significant challenges that must be addressed in future research. These challenges include
the need to control their thickness and the limitation of obtaining only small quantities of
the final product, which may not be sufficient to meet industrial requirements.

6. Future Directions

Despite having unique physiochemical properties and a spatial 3D structure, chal-
lenges still exist in controlling the thickness of ridges, the extent of excavation, and their
elemental composition. We can say that the primary concerns of future work should be
as follows:

• The thickness of ridges should be controlled by tuning the breadth of the metal being
deposited on the template surface, which in turn can be achieved by the adjustment of
the relative amount of both.

• Until now, the production of NFs has been limited to a very small scale, i.e., milligrams.
Attention should be given in future work to the enhancement of their production to
meet industrial demands.
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