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Abstract: The symmetry of vibration signals collected from healthy machinery, which gradually de‑
generateswith the development of faults, must be detected for timely diagnosis and prognosis. How‑
ever, conventional methods may miss spatiotemporal relationships, struggle with varying sampling
rates, and lack adaptability to changing loads and conditions, affecting diagnostic accuracy. A novel
bearing fault diagnosis approach is proposed to address these issues, which integrates the Gramian
angular field (GAF) transformation with a parallel deep convolutional neural network (DCNN). The
crux of this method lies in the preprocessing of input signals, where sampling rate normalization is
employed to minimize the effects of varying sampling rates on diagnostic outcomes. Subsequently,
the processed signals undergo GAF transformation, converting them into an image format that effec‑
tively represents their spatiotemporal relationships in a two‑dimensional space. These images serve
as inputs to the parallel DCNN, facilitating feature extraction and fault classification through deep
learning techniques and leading to improved generalization capabilities on test data. The proposed
method achieves an overall accuracy of 96.96%, even in the absence of training data within the test
set. Discussions are also conducted to quantify the effects of sampling rate normalization andmodel
structures on diagnostic accuracy.

Keywords: bearing fault diagnosis; deep convolutional neural network; Gramian angular field;
sampling rate

1. Introduction
1.1. Background and Scope

In the field of modern mechanical engineering, rolling bearings play a key role as es‑
sential components. However, the demands of high speeds, heavy loads, and extended op‑
eration in harsh environments make rolling bearings prone to various failures. Vibration
signals that are collected from healthy machinery often exhibit strong symmetry. How‑
ever, as the fault progresses, the symmetry of these signals gradually deteriorates. Failing
to promptly identify asymmetry in the signal can lead to a series of consequences, includ‑
ing reduced bearing performance, shortened lifespan, and potentially catastrophic system
failures [1]. Accurate and timely fault diagnosis is paramount, given the importance of
rolling bearings to overall system performance and safety [2]. Unfortunately, the signals
detected from rolling bearings are often obscured by background noise and extraneous
information, making accurate and reliable diagnosis challenging. Therefore, continuous
research and development efforts are needed to enhance fault diagnosis techniques fur‑
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ther and ensure the optimal performance and safety of mechanical systems that rely on
rolling bearings [3].

Currently, fault diagnosis for rolling bearings involves two main approaches: tradi‑
tional time‑frequency analysis methods and emerging AI‑based techniques. Traditional
methods rely on established signal processing techniques to extract fault signatures from
noisy backgrounds. In contrast, AI‑based techniques leverage pattern recognition and pre‑
dictive capabilities to improve diagnostic accuracy and precision. These two approaches
provide a comprehensive solution for fault diagnosis in rolling bearings, leading to more
resilient and reliable mechanical systems.

1.2. Related Works
Currently, numerous time‑frequency domain analysis methods are widely applied.

These methods either directly extract or reconstruct signaling components in the time do‑
main, often relying on specific iterative algorithms or model optimization techniques to
achieve effective signal decomposition, or they adopt techniques such as wavelet trans‑
forms, which essentially employ filtering methods aimed at extracting waveform informa‑
tion of different frequencies from the signal. Among them, empirical mode decomposi‑
tion (EMD) is currently the most prominent signal decomposition method [4]. However,
EMD also presents numerous challenges, such as boundary effects, mode mixing, sensitiv‑
ity to noise, and a lack of mathematical theoretical support. To address these issues, the
authors of [5] proposed ensemble empirical mode decomposition (EEMD), which elimi‑
nates the mode mixing problem. Many researchers in these areas have proposed methods
such as cosine filter‑based empirical mode decomposition [6], B‑spline‑based approaches
to enhance EMDperformance [7], and replacement‑selection algorithm‑basedmethods [8].
These advancements have significantly improved the accuracy of time‑domain signal de‑
composition and the precision of bearing fault diagnosis. Similar to EMD, iterative filtering
decomposition (IFD) is a method that utilizes low‑pass filtering techniques to obtain the
mean value of the signal, ensuring better convergence [9]. To address the issue of frequency
mixing, adaptive local iterative filtering methods were introduced in [10]. These methods
adaptively adjust the filter length at different time instances, enabling the decomposition
of frequency‑modulated signaling components and achieving promising results.

During bearing faults, prominent non‑stationary signals often accompany thedetected
waveforms, and the direct application of the aforementioned transforms in such scenar‑
ios yields unsatisfactory results. Many studies have investigated the nonlinear frequency
modulation characteristics of signaling components by extensively exploring new theories
and methods for nonlinear frequency modulation component decomposition. This has
led to significant improvements in the accuracy of bearing fault diagnosis. Reference [11]
introduces an enhanced NSP algorithm based on complex‑valued differential operators
for multi‑component signal separation, which exhibits quadratic convergence and supe‑
rior performance compared to other advanced methods. The authors of [12] presented
a variational approach for nonlinear chirp mode decomposition, which works on scale‑
space representation‑based automated boundary detection in a magnitude spectrum. One
study [13] addressed the limitations of existing signal decomposition methods by intro‑
ducing adaptive bandwidth parameters, and it has been successfully applied in mechani‑
cal fault diagnosis. Furthermore, methods such as those based on ridge path regrouping
and intrinsic chirp component decomposition [14], parameterized time‑frequency trans‑
forms and phase compensation techniques [15], and rough time‑frequency ridge‑guided
multi‑band feature extraction [16] have demonstrated precise extraction capabilities for
non‑stationary signals, significantly facilitating accurate bearing fault diagnosis.

The advent of deep learning theories has profoundly impacted bearing fault diagno‑
sis. Deep learning excels at extracting features fromhigh‑dimensional data, offering strong
generalizability and robustness [17]. Recently, researchers have found that mapping time‑
domain signals to the time‑frequency domain via TFAmethods before applying deep learn‑
ing can lead to better outcomes. TFA techniques range from conventional (e.g., Fourier



Symmetry 2024, 16, 432 3 of 20

and wavelet transform) [18–20] to advanced methods (e.g., transient‑extracting transform
and synchrosqueezing transform) [3,21,22], all providing valuable foundations for deep
learning‑based fault diagnosis. For the deep learning‑based method, the authors [23] in‑
troduced an advanced CNN for bearing fault diagnosis, integrating signal processing and
deep learning for precise feature extraction and classification, outperforming traditional
methods. The authors of [24] presented a tailored HADCNN for bearing faults, which
significantly boosted identification accuracy. In [25], a robust deep‑learning model was
used to handle raw vibration signals and achieved excellent results in noisy environments
without complex feature engineering. Another study [26] surveyed deep learning tech‑
niques for bearing fault diagnosis and analyzed their strengths, limitations, and areas for
improvement. The authors of [27] enhanced deep learning for rotating machinery faults
using data augmentation, improving classification accuracy, especially with limited data.
The aforementioned deep learning algorithms have achieved profound impacts, with nu‑
merous studies demonstrating their robust capabilities in accurately identifying the types
and severity of bearing faults. This approach effectively enhances diagnostic reliability
and provides valuable support for the health monitoring and maintenance of mechanical
equipment. Similar approaches have demonstrated marked effectiveness in various areas.
For instance, the study in [28] extracted useful features from local current signals to gener‑
ate RGB images for utilization by a CNN classifier. Furthermore, the research conducted
in [29] initially employed variational mode decomposition to extract pertinent features
from locally measured current signals, subsequently feeding them into a deep CNN for
efficient fault detection and classification in transmission lines. These examples clearly
demonstrate the powerful capabilities of deep learning methods in addressing fault iden‑
tification, diagnosis, and classification issues.

1.3. Motivation
Despite the remarkable achievements of deep learning algorithms in bearing fault

diagnosis, there are still several pressing issues in this domain:
(1) First, the current time‑frequencydomain analysismethods combinedwith deep learn‑

ing algorithms exhibit limitations in capturing the spatiotemporal relationships be‑
tween sampling points in input time series, which constrains the accuracy of diagnos‑
tic outcomes. Specifically, when dealing with complex and nonlinear bearing fault
signals, these methods often struggle to adequately reveal the underlying structure
and dynamic characteristics of the signals, thereby affecting the precision and relia‑
bility of the diagnosis.

(2) Second, deep learning models tend to produce biased diagnostic results when the
input time series sampling rate differs from that of the training data. This indicates a
need to enhance the model’s ability to extract features and recognize patterns under
varying sampling rates. Unfortunately, research addressing this issue is insufficient,
and practical solutions have not yet been proposed to optimize model performance
across different sampling rates.

(3) Finally, the generalization capability of deep learningmodels poses a significant chal‑
lenge. In practical applications, models often perform well on training data collected
under specific load conditions. However, when the load conditions change, and the
current load scenario is not included in the training set, the diagnostic accuracy de‑
creases, highlighting the model’s limitations in adapting to different operating con‑
ditions and load variations.
When these three issues occur simultaneously, using deep learning methods for bear‑

ing fault diagnosis faces even more complex and challenging obstacles.
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1.4. Contributions
To address the aforementioned issues, this paper proposes a bearing fault diagnosis

method based on integrating the Gramian angular field (GAF) and parallel deep convolu‑
tional neural network (DCNN), aiming to address all three problems simultaneously. The
following contributions correspond to the motivations for this study:
(1) First, we employed the GAF to convert the waveforms obtained under various bear‑

ing operating conditions at specific sampling frequencies into images, generating a
set of Gramian angular summation field (GASF) andGramian angular difference field
(GADF) images through the GAF transformation. Both GASF and GADF simultane‑
ously calculate the spatiotemporal correlations between sampled sequence points in
polar coordinates, effectively mitigating common‑mode and differential‑mode inter‑
ference in the signals.

(2) Second, we delve into data preprocessing techniques when the sampling rate of the
input time series differs from that of the training data. It introduces an upsampling
method for input samples based on cubic spline interpolation, further enhancing the
accuracy of diagnostic results. Detailed experimental results are provided to support
this approach.

(3) Finally, we present a parallel DCNN‑based method for bearing fault diagnosis. Each
CNN within the parallel DCNN comprises two convolutional layers designed to ex‑
tract vibration patterns under different operating conditions as comprehensively as
possible. These networks process the image data generated by GASF and GADF sep‑
arately. An attention mechanism is then employed to fuse the features extracted by
the two CNNs, culminating in a comprehensive fault diagnosis methodology. The
experimental results demonstrate that this approach exhibits strong adaptability to
varying load conditions.
The remainder of this paper is organized as follows. In Section 2, a theoretical analysis

is conducted to introduce the data preprocessing methodology, including the upsampling
method, the GAF transform, the establishment of the parallel DCNN, and the attention
mechanism to consider both the GASF and the GADF channels. In Section 3, case studies
are conducted to assess the performance of the proposed method under various fault sce‑
narios. The performance of the method is quantified using several indicators. In Section 4,
the necessity of sampling rate normalization and the superiority of the proposed method
over existing methods are validated. Section 5 discusses the method’s robustness in sce‑
narios involving large sample sizes and repetitive trials. The optimal model structure is
also discussed.

2. Theoretical Basis and Methodology
2.1. Data Preprocessing
2.1.1. Sampling Rate Normalization

In terms of varying load scenarios, rolling bearing failures can be broadly categorized
into four distinct modes: normal operation, inner ring defects, outer ring defects, and
rolling element defects, as shown in Figure 1. Each of these modes exhibits varying de‑
grees of degradation. A critical challenge arises because, even within the samemechanical
system, different experimental settings often necessitate the use of diverse sampling rates.
This inconsistency in sampling rates poses a significant obstacle to the reliable extraction
of fault features from rolling bearings under identical fault conditions.
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Figure 1. Four types of defects for rolling bearings. 
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Figure 1. Four types of defects for rolling bearings.

To ensure consistent feature extraction across different scenarios, it is imperative to
preprocess the sampled data and harmonize their dimensions. This preprocessing step
involves normalizing the data to a common format or standard, facilitating accurate com‑
parisons and analyses. To unify the feature dimensions, these sampling results must be
preprocessed. Assuming that a signal collected from a rolling bearing is represented as:

x = (u+ n) ∗ h (1)

where x, u, n, and h are the sampled signal, impulsive signal of the faulty bearing, back‑
ground noise, and convolution of the transmission path, respectively. Let f s denote the
sampling rate and x = {x[1], x[2], · · · x[i], · · · x[n]} be the sampled signal sequence repre‑
sented accordingly. Given an upsampling factor L, the new sampling rate after upsampling
should be L∗f s. The fundamental principle behind upsampling using cubic spline interpo‑
lation [30] is as follows:

First, each sample point in the original sampling sequence x is treated as an interpo‑
lation node. These nodes serve as control points for constructing the cubic spline interpo‑
lation function. Then, for each pair of adjacent interpolation nodes (x[i]) and (x[i + 1]), a
cubic polynomial (Sn(t)) is constructed. Here, t is a normalized time variable that varies
between 0 and 1. The general form of this polynomial expression is:

Si(t) = ai + bit + cit2 + dit3 (2)

where ai, bi, ci, and di are the coefficients of the polynomial, which need to be determined
based on the function values, first derivatives, and second derivatives at nodes (x[i]) and
(x[i + 1]). They can be obtained by solving a system of linear equations subject to the fol‑
lowing boundary conditions:
1. The boundary conditions for the equality of acquired signal values are as follows:{

x[i] = Si(t)|t=0
x[i + 1] = Si(t)|t=1

(3)

2. The boundary conditions for the equality of the first derivatives of the acquired sig‑
nals are as follows:

{ .
x[i] = S′

i(t)
∣∣
t=0.

x[i + 1] = S′
i(t)

∣∣
t=1

(4)

3. The boundary conditions for the equality of the second derivatives of the acquired
signals are as follows:

{ ..
x[i] = S′′

i (t)
∣∣
t=0..

x[i + 1] = S′′
i (t)

∣∣
t=1

(5)
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By utilizing the tridiagonal matrix algorithm [31] to solve Equations (1)–(5), the uni‑
fication of sampling rates for fault acquisition signals of rolling bearings under different
sampling rates can be achieved. Denoting this unified signal as y, the correspondence re‑
lationship between the signals before and after the upsampling operation is as follows:

y = [y[1], y[2], · · · y[nL]] (6)

In Equation (6), we have:
y[jL − L + 1] = x[j], j = 1, 2, · · · , n
y[jL − L + 2] = Sj(t)

∣∣
t=j+1/L, j ̸= 1, 2, · · · , n

...
y[jL] = Sj(t)

∣∣
t=j+(L−1)/L j ̸= 1, 2, · · · , n

(7)

2.1.2. Visualization of the Input Time Series
GAF is amethodology that facilitates the transformation of time series data into image‑

based representations [32]. This approach not only preserves the integrity of the signal
information but also maintains the temporal dependencies inherent in the original one‑
dimensional sampled sequence. Initially, the GAF resales the time series data within a
specified range. Subsequently, each time point’s value is converted into an angular rep‑
resentation by computing the polar coordinates of the rescaled time series. Finally, the
GAF derives two distinct fields: the Gramian angular summation field (GASF), which cal‑
culates the cosine of the sum of all the angles, and the Gramian angular difference field
(GADF), which determines the sine of the same summation. This conversion results in an
image where each pixel’s value corresponds to a specific time point in the original data.
The advantage of this process is that the resulting images are highly suitable as input for
image processing models, such as convolutional neural networks, which were previously
inapplicable to time series data in their raw form. First, the rolling bearing fault signal
y, obtained under unified sampling rate conditions, undergoes normalization and scaling
as follows:

yi =
2(yi −min(y))
max(y)−min(y)

− 1 (8)

To capture the spatiotemporal relationships between the normalized sequence points
obtained from Equation (8), the sequence can be represented using the amplitude and
phase angle in polar coordinates:{

ϕi = arccos(yi), −1 ≤ yi ≤ 1 , yi ∈ y
ri = ti/N(y) , ti = 1, 2, · · · , N(y) (9)

The length of the normalization matrix, denoted by N(y), is equivalent to nL in this
paper. Each normalized timestamp ti within the sequence is associated with a distinct
phase angle ϕi. This association implies that, over time, a particular time series will follow
a consistent and distinguishable pattern in polar coordinates. Consequently, by calculating
both the sum and difference of angles for every pair of points, we can derive two matrices:
the GASF and the GADF. These matrices serve to quantitatively represent the temporal
relationships between sample values at varying time intervals within the same time series,
providing a comprehensive characterization of its internal dynamics:

GGASF =


cos(ϕ1 + ϕ1) cos(ϕ1 + ϕ2) · · · cos(ϕ1 + ϕnL)
cos(ϕ2 + ϕ1) cos(ϕ2 + ϕ2) · · · cos(ϕ2 + ϕnL)

...
...

...
...

cos(ϕnL + ϕ1) cos(ϕnL + ϕ2) · · · cos(ϕnL + ϕnL)


= yTy−

√
1 − y2

T√
1 − y2

(10)
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GGADF =


sin(ϕ1 − ϕ1) sin(ϕ1 − ϕ2) · · · sin(ϕ1 − ϕnL)
sin(ϕ2 − ϕ1) sin(ϕ2 − ϕ2) · · · sin(ϕ2 − ϕnL)

...
...

...
...

sin(ϕnL − ϕ1) sin(ϕnL − ϕ2) · · · sin(ϕnL − ϕnL)


=

√
1 − y2

T
y− yT

√
1 − y2

(11)

It is evident that for the same input time series, GASF and GADF can be utilized to
mitigate differential mode interference and commonmode interference, respectively. This
significantly contributes to enhancing the robustness of fault diagnosis.

2.2. Fault Diagnosis Based on a Parallel Deep Convolutional Neural Network
The parallel DCNN is a sophisticated deep learning architecture designed for accel‑

erated performance through parallel computing techniques. At its core, it encompasses
an intricate hierarchy of layers, including an input layer, multiple convolutional layers for
feature extraction, pooling layers for downsampling, fully connected layers for high‑level
reasoning, and an output layer for final predictions. Within this framework, the layers op‑
erate seamlessly, leveraging the power of parallel processing to handle data concurrently
and expedite model training. This parallelization aspect is crucial in addressing the com‑
putational demands of complex pattern recognition tasks.

In the context of this study, Figure 2 outlines the architecture of the employed parallel
DCNN model. The workflow commences with the preprocessing of input data through a
polar coordinate transformation. This transformation, governed by Equation (9), reveals
the temporal evolution of phases, encoding valuable information for subsequent analysis.
Subsequently, the transformed data undergo further refinement through the computation
of the GASF and GADF, as dictated by Equations (10) and (11), respectively. These calcula‑
tions capture angular relationships and differences within the data, enriching the feature
set available to the model. Finally, the enriched data, which are now encoded with both
spatial and temporal characteristics, are fed into the parallel DCNN. Herein, the model
leverages its parallel processing capabilities to process the data and learn intricate patterns.
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2.2.1. Selection Principle for the Input Data Length
The selection of the input data length, denoted by the parameter nLmentioned earlier,

requires careful consideration of the characteristic frequencies across various fault modes.
This ensures that the input data are sufficiently long to reliably capture the distinctive os‑
cillatory patterns associated with different types of faults. However, excessively long data
can undermine the real‑time capability of the proposed method, potentially complicate in‑
put features, and reduce training efficiency. As indicated in [33], for bearings with a fixed
outer ring installation, the characteristic frequencies include the ball‑pass frequency of the
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inner ring (BPFI), the ball‑pass frequency of the outer ring (BPFO), and the rolling element
rotational frequency (BEF), which are calculated as follows:

fBPFI =
1
2

z fi

(
1 +

d
D

cos α

)
(12)

fBPFO =
1
2

z fi

(
1 − d

D
cos α

)
(13)

fBEF =
1
2

D
d

(
1 − d2

D2 cos2 α

)
fi (14)

where fi is the rotational frequency of the inner ring in r/s. D and d are the pitch diam‑
eter and the rolling element diameter, respectively. α is the contact angle. Let fre be the
maximum resolution frequency. The following equation is used:

L fs × Tw = nL (15)

where Tw is the window length corresponding to the maximum resolution frequency, and
Tw = 1/fre. The maximum resolution frequency is determined as the greatest common divi‑
sor (GCD) of BPFI, BPFO, and BEF:

fre = GCD(J fBPFIK, J fBPFOK, J fBEFK) (16)

Substituting Equations (15) and (16), we have the value of n:

n =
fs

GCD(J fBPFIK, J fBPFOK, J fBEFK) (17)

where [[ ]] represents the rounding operator.

2.2.2. Structure and Parameter Determination of the Parallel DCNN
The dual‑channel CNNs include convolutional layers, batch normalization (BN) lay‑

ers, rectified linear unit (ReLU) layers, andmax pooling layers. The convolutional layer ex‑
tracts local features from the input data via convolutional operations. Each convolutional
layer comprises multiple convolution kernels that slide over the input data, executing con‑
volutional operations to generate feature maps. These maps are then stacked, enabling the
progressive extraction of increasingly abstract and intricate features. When confronted
with intricate input features, the deployment of multiple convolutional layers bolsters the
network’s comprehension of complex input samples. Specifically, in this investigation,
two convolutional layers are dedicated to extracting features from the GASF and GADF
images, with dimensions of 7 × 7 and 3 × 3, respectively.

The pooling layer, situated subsequent to the convolutional layer, serves to diminish
the dimensionality of the feature maps. This reduction not only alleviates computational
demands but also mitigates the risk of overfitting; in this endeavor, max pooling is the cho‑
sen method. Following the ReLU layer, two fully connected layers of identical dimensions
are positioned, amalgamating the ultimate convolutional outputs for holistic feature learn‑
ing and classification. These layers foster dense connections. Notably, in this endeavor,
the DCNN does not directly yield classification outcomes. Instead, it employs an attention
mechanism to amalgamate features from GASF and GADF. Consequently, the flattened
layer is situated subsequent to the fully connected layers. In the context of this investi‑
gation, the fully connected layers for both the GASF and GADF pathways are configured
with 128 neurons.

Furthermore, within the parallel DCNN architecture established in this study, an ad‑
ditional layer is positioned after the two flattened layers. Subsequently, a self‑attention
layer is introduced to compute attention weights pertaining to each element vis‑à‑vis other
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elements within the two sequences. These weights are indicative of the significance of
distinct elements in decision‑making processes. Specifically, each element within the se‑
quences emanating from the GASF and GADF flattened layers is assigned a query vector,
a key vector, or a value vector. The query vector facilitates the computation of matching
scores with the key vectors, while the value vectors underlie the calculation of weighted
sums to arrive at the final output. By leveraging the self‑attention layer, the model gains
enhanced flexibility in processing information within the input sequences, enabling it to
prioritize the most pertinent aspects pertinent to the task at hand. This mechanism proves
particularly advantageous in managing variable‑length sequences, capturing intricate de‑
pendencies within sequences, and tackling complex tasks, thus justifying its application in
this study.

Additionally, the output generated by the self‑attention layer undergoes further pro‑
cessing via a fully connected layer and is transformed into a probability distribution using
the Softmax function. This yields predicted probabilities for each of the ten classes pertain‑
ing to bearing operating conditions, as delineated in Table 1.

Table 1. Categories of bearing operating conditions.

Flag 0 1 2 3 4 5 6 7 8 9

Fault
element N.A. Inner

race
Inner
race

Inner
race Ball Ball Ball Outer

race
Outer
race

Outer
race

Fault
level [mils] N.A. 7 14 21 7 14 21 7 14 21

2.2.3. Methodology
The bearing fault diagnosis process based on the parallel DCNN, as depicted in

Figure 3, comprises three stages: data preprocessing, network training, and real‑time di‑
agnosis. The details are as follows:
1. Data preprocessing: Obtain the bearing fault waveforms and specify the sampling

rate for the waveforms used in training. If a portion of the waveforms in the train‑
ing samples has a different sampling rate from the others, the method described
in this paper is employed to perform upsampling using cubic spline interpolation.
Following polar coordinate transformation, the vibration signal sample set under‑
goes GAF transformation, converting the one‑dimensional time series data into two‑
dimensional GASF and GADF images. These training samples are then labeled ac‑
cording to their operational conditions using the method outlined in Table 1 to dis‑
tinguish between different abnormal or normal states.

2. Network training and validation: The labeled image data are divided into training,
validation, and test sets. The parallel DCNN model is used for training, and the
model’s performance is validatedusing the validation set during each iteration. When
themodelmeets the preset convergence criteria, themodel parameters are saved. No‑
tably, if satisfactory performance cannot be achieved or training does not converge
despite hyperparameter adjustments, the number of convolutional layers is increased
by 1, and the hyperparameter adjustment process is repeated until satisfactory diag‑
nostic performance is obtained.

3. Fault diagnosis: During the actual operation of the system, the vibration signals of the
bearings are collected in real‑time. After adjusting the sampling rate and undergoing
polar coordinate transformation, the GASF and GADF images are generated. These
images are then input into the trained model to monitor the operational health status
of the bearings in real‑time.



Symmetry 2024, 16, 432 10 of 20

Symmetry 2024, 16, 432 10 of 21 
 

 

3. Fault diagnosis: During the actual operation of the system, the vibration signals of 
the bearings are collected in real-time. After adjusting the sampling rate and under-
going polar coordinate transformation, the GASF and GADF images are generated. 
These images are then input into the trained model to monitor the operational health 
status of the bearings in real-time. 

Start training

Data preparation

Sampling 
frequency fs

Unify sampling frequency 

Polar coordination transform

Flag the bearing fault type

Established Parallel DCNN
(Number of convolution layers = C)

Performance assessment

Maximum performance?

Hyperparameter Tuning

Maximum performance?

End

GASF GADF

fdata=fs?

Test
Set

Online measurements

Data preparation

Polar coordination 
transform

Training
Set

Validation
Set

Sampling frequency 
unification

GASF GADF

9876543210

Start diagnosing

Data pre-processing Network training Fault diagnosis

Y

N

Y

Y

N

N

C
 =

 C
+1

 
Figure 3. A flowchart of the fault diagnosis methodology. 

3. Results 
This paper utilizes experimental rolling bearing data obtained from the Electrical En-

gineering Laboratory at Case Western Reserve University in the United States. The exper-
imental setup, as depicted in Figure 4a, involves a connection between a motor and a load 
via a transmission shaft, with the SKF6205 deep groove ball bearing positioned at the mo-
tor’s drive end. Vibration signals are acquired using a 16-channel data recorder at sam-
pling frequencies of 12 kHz and 48 kHz. These signals encompass data from both the fan-
end and drive-end sensors, including normal baseline data, drive-end bearing fault data, 
and fan-end bearing fault data [34,35]. 

The experiments are conducted under varying loads and rotational speeds, encom-
passing ten distinct states of the rolling bearing, including normal operation, inner race 
faults, outer race faults, and ball faults, each with different levels of performance degra-
dation. Data from the drive end, sampled at 48 kHz, are selected for analysis. The fault 
conditions are distinguished by the damage diameters on the inner race (IR), balls (B), and 
outer race (OR), with suffixes 07, 14, and 21 denoting damage severities of 7 mils, 14 mils, 
and 21 mils, respectively; N denotes the normal state. 

The experiments are performed under four different loads: 0 hp, 1 hp, 2 hp, and 3 hp. 
To assess the model’s generalization capabilities across various loads, data from the 1 hp, 
2 hp, and 3 hp loads are used as the training set, while data from the 0 hp load serve as 
the test set. The method for generating the datasets involves segmenting the data using a 
fixed-size window, as illustrated in Figure 4b, and then moving the window by a x% step 
size to capture the next segment. 

Figure 3. A flowchart of the fault diagnosis methodology.

3. Results
This paper utilizes experimental rolling bearing data obtained from the Electrical En‑

gineering Laboratory at Case Western Reserve University in the United States. The exper‑
imental setup, as depicted in Figure 4a, involves a connection between a motor and a load
via a transmission shaft, with the SKF6205 deep groove ball bearing positioned at the mo‑
tor’s drive end. Vibration signals are acquired using a 16‑channel data recorder at sampling
frequencies of 12 kHz and 48 kHz. These signals encompass data from both the fan‑end
and drive‑end sensors, including normal baseline data, drive‑end bearing fault data, and
fan‑end bearing fault data [34,35].

The experiments are conducted under varying loads and rotational speeds, encom‑
passing ten distinct states of the rolling bearing, including normal operation, inner race
faults, outer race faults, and ball faults, each with different levels of performance degra‑
dation. Data from the drive end, sampled at 48 kHz, are selected for analysis. The fault
conditions are distinguished by the damage diameters on the inner race (IR), balls (B), and
outer race (OR), with suffixes 07, 14, and 21 denoting damage severities of 7 mils, 14 mils,
and 21 mils, respectively; N denotes the normal state.

The experiments are performed under four different loads: 0 hp, 1 hp, 2 hp, and 3 hp.
To assess the model’s generalization capabilities across various loads, data from the 1 hp,
2 hp, and 3 hp loads are used as the training set, while data from the 0 hp load serve as
the test set. The method for generating the datasets involves segmenting the data using a
fixed‑size window, as illustrated in Figure 4b, and then moving the window by a x% step
size to capture the next segment.
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Figure 4. The CWRU test platform for machinery faults.

Utilizing data from [35], the experimental bearing parameters are determined as fol‑
lows: pitch diameter D = 39.0398 mm, rolling element diameter d = 7.94004 mm, number
of rolling elements z = 9, contact angle α = 0◦, and motor speed fi = 1797 r/min. From these
parameters and Equations (12)–(14), the fundamental ball pass frequencies for the inner
race f BPFI, outer race f BPFO, and rolling element rotational frequency f BEF are calculated to
be 162.18 Hz, 107.36 Hz, and 70.58 Hz, respectively. After rounding these values, Equa‑
tion (17) indicates that a data window length of nL = 4800 provides optimal preservation
of vibration impact frequencies across various operational modes, yielding a frequency
resolution of 10 Hz.

For the purpose of training a convolutional neural network, a server running Win‑
dows is employed, featuring an Intel(R) Core (TM) i9‑10900K CPU operating at 3.70 GHz,
64 GB of RAM, and an NVIDIA GeForce RTX 2060 GPU. The parallel DCNN is imple‑
mented inMATLAB.During training, theRMSprop optimization algorithm is utilizedwith
an initial learning rate of 0.001 to control the update step size for the model parameters.
Additionally, a piecewise constant learning rate scheduling strategy is adopted to effec‑
tively adjust the learning rate throughout the training process. Specifically, the learning
rate is reduced by a factor of 0.2 every 20 epochs, promoting more stable convergence in
later stages of training or until a maximum of 100 epochs is reached. Before each training
epoch, the data are shuffled to enhance diversity and encourage the model to learn more
robust feature representations, thereby improving its generalization capabilities. A mini‑
batch size of 256 is used, meaning that the model processes 256 samples simultaneously
during each iteration.

It is important to note that in the testing data provided by CWRU, the dataset with a
sampling rate of 48 kHz does not include normal operating conditions, while the normal
operating conditions are only available at a sampling rate of 12 kHz. Therefore, it is neces‑
sary to unify the sampling rates. Figure 5 illustrates the process of sampling rate unification
using cubic spline interpolation, which expands the original sampling sequence while pre‑
serving its temporal characteristics. Figure 6a shows phase diagrams of an acceleration
signal in polar coordinates. Figure 6b,c present the GASF and GADF transformations of
the phase diagram under polar coordinates at a resolution of 227× 227, which convert the
one‑dimensional time series into images that are used as input for the parallel DCNN.
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According to Equations (9)–(11), the length of the image pixels on any given coordi‑
nate axis, when directly derived from the GAF transformation, remains consistent with
the original time series and its polar coordinate‑transformed counterpart; thus, theoreti‑
cally, the image dimensions should be nL × nL. However, to optimize memory usage dur‑
ing training and enhance the computational efficiency of the implemented DCNN while
preserving adequate precision, the images employed for training, validation, and testing
purposes in this research adopt a reduced resolution of 227 × 227 pixels.

This downscaling process involves the independent application of bilinear interpola‑
tion to each color channel in the case of color images. Specifically, the value of each new
pixel is determined through interpolation based on the values of its 4 nearest neighboring
pixels. Additionally, a scaling factor is calculated to identify the corresponding floating‑
point coordinates in the original image for the newpixel positions. Using these coordinates,
the final pixel values are computed by considering the surrounding pixel values in the orig‑
inal image, ultimately yielding a lower‑resolution image suitable for our analysis [36].

To investigate the impact of different input datasets on model performance, two sep‑
arate approaches are taken: using drive‑end data exclusively and fan‑end data exclusively
as one‑dimensional time series inputs. Additionally, a comparative test is conducted by
multiplying the acceleration data measured at the same sampling instant from both the
drive‑end and fan‑end, which serve as the input data. The training process of the model is
illustrated in Figure 7.

Observations indicate that the model converged most rapidly when using drive‑end
data, followed by fan‑end data. Both achieved 100% accuracy on the validation set after
1000 epochs, while the product input failed to converge even after the completion of train‑
ing. Table 2 and Figure 8 demonstrate the performance of the model trained using drive‑
end data as input on the test set, where the confusion matrix, precision, recall, and F1
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score are illustrated. Notably, for various types of faults, the precision ranges from 91.36%
to 100%, the recall rates vary from 92.50% to 100%, and the F1 scores fall between 91.93%
and 100%. Overall, the accuracy rate is approximately 96.96%, where 2327 out of 2400 test
samples are correctly judged, even though the training set excludes inputs from the 0 hp
scenario. This suggests that the model, trained solely on drive‑end data, exhibits strong
generalization capabilities and can accurately predict outcomes in unseen scenarios.
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4. Validation
4.1. The Necessity of Sampling Frequency Unification

In current research practices, a prevalent approach involves generating training, vali‑
dation, and testing sets using input data with a uniform sampling rate, a method that has
demonstrated effectiveness in numerous studies. However, in the practical operation of
rolling bearings, acquired signals may exhibit varying sampling rates. Due to practical
constraints, it may become necessary to use data with a lower sampling rate as input for
the test set with a pre‑trained model, a common occurrence in engineering applications.
Nevertheless, whether directly utilizing measurement data with different sampling rates
as input impacts the classification accuracy of the model remains a question requiring fur‑
ther quantitative investigation.

To delve deeper into this issue, we designed three quantitative research scenarios out‑
lined in Table 3. Specifically, Scenario 1 corresponds to the findings presented in Section 3
of this paper, which examines the situation where the input data under Flag 0 are upsam‑
pled from 12 kHz to 48 kHz, with its performance depicted in Table 2 and Figure 8. In
Scenario 2, all other conditions are held constant, and the model is trained and evaluated
using a 12 kHz sampling rate, with the performance given in Table 4 and Figure 9a. In Sce‑
nario 3, the model is trained at 48 kHz, but the input prediction data for normal conditions
retain a 12 kHz sampling rate without any upsampling. The corresponding performances
are shown in Table 5 and Figure 9b. Through a comparative analysis of the results, the
following conclusions can be drawn:

Table 3. Testing dataset under different sampling frequencies.

Flag 0 1 2 3 4 5 6 7 8 9

Fault
element N.A. Inner

race
Inner
race

Inner
race Ball Ball Ball Outer

race
Outer
race

Outer
race

Fault
level [mils] N.A. 7 14 21 7 14 21 7 14 21

Scenario 1 Number of 240 240 240 240 240 240 240 240 240 240
Training sampling
frequency = 48 kHz Samples (48 kHz) (48 kHz) (48 kHz) (48 kHz) (48 kHz) (48 kHz) (48 kHz) (48 kHz) (48 kHz) (48 kHz)

Scenario 2 Number of 240 240 240 240 240 240 240 240 240 240
Training sampling
frequency = 12 kHz Samples (12 kHz) (12 kHz) (12 kHz) (12 kHz) (12 kHz) (12 kHz) (12 kHz) (12 kHz) (12 kHz) (12 kHz)

Scenario 3 Number of 240 240 240 240 240 240 240 240 240 240
Training sampling
frequency = 48 kHz Samples (12 kHz) (48 kHz) (48 kHz) (48 kHz) (48 kHz) (48 kHz) (48 kHz) (48 kHz) (48 kHz) (48 kHz)

The presence of “N.A.” signifies that the bearing is functioning within its normal operational range, thus indicat‑
ing the absence of both fault element and fault level.

Table 4. Confusion matrix for Case 2.

Real Flag
Test Flag

0 1 2 3 4 5 6 7 8 9

0 239 1 0 0 0 0 0 0 0 0
1 0 234 0 1 0 4 0 0 1 0
2 0 1 202 0 0 13 0 0 23 1
3 0 0 3 212 0 4 7 1 13 0
4 0 0 0 0 240 0 0 0 0 0
5 0 0 14 4 0 217 1 0 3 1
6 0 0 2 1 0 3 232 0 1 1
7 0 0 0 1 0 0 0 239 0 0
8 0 2 6 16 0 4 5 4 203 0
9 0 0 0 0 0 0 0 0 0 240
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4.2. Comparison with Existing Methods 
To compare the fault diagnosis method proposed in this study with existing meth-
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Table 5. Confusion matrix for Case 3.

Real Flag
Test Flag

0 1 2 3 4 5 6 7 8 9

0 185 19 14 11 3 5 0 2 0 1
1 4 222 0 3 0 0 0 0 11 0
2 3 0 228 1 0 3 0 0 4 1
3 10 0 0 218 0 8 3 0 1 0
4 0 0 0 0 240 0 0 0 0 0
5 0 0 2 5 1 224 0 0 5 3
6 0 0 0 1 0 0 239 0 0 0
7 0 0 0 0 0 0 0 240 0 0
8 0 9 1 7 0 1 0 0 222 0
9 0 0 0 0 0 3 0 0 0 237

In Scenario 2, while achieving a prediction accuracy of 94.1% using 12 kHz data for
both training and prediction, the performance of the parallel DCNN model is compro‑
mised compared to its representation at higher sampling rates due to the loss of detailed
vibration signal information. This finding underscores the significant influence of sam‑
pling rate selection on model performance.

In Scenario 3, when the model is trained at 48 kHz, but some input samples have a
sampling rate of 12 kHz, there is a notable decrease in the model’s generalizability. Com‑
paring the results of Case 1 and Case 3, it can be observed that when all other conditions
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remain unchanged and only the sampling rate of the prediction data for the bearing under
normal operation is reduced to 12 kHz, the recall rate of label 0 drops significantly to ap‑
proximately 77.1%. This suggests that a portion of themeasurement signals during normal
operation have been falsely classified as other types. Consequently, the overall accuracy of
Case 3 decreases from approximately 97% to 94%, almost reaching the same level as Case
2. Nevertheless, the precision rate of label 0 remains at a high level, indicating that fault
conditions of other types are rarely misclassified as normal operation, as the sampling rate
for these faults remains at 48 kHz.

In conclusion, to ensure optimal training and prediction accuracy, it is imperative to
standardize the sampling rate of all acquired signals before training and testing. This not
only reduces the likelihood of information loss and misclassification but also enhances the
model’s generalizability and overall performance.

4.2. Comparison with Existing Methods
To compare the fault diagnosis method proposed in this study with existing methods,

the methodology outlined in [37] is employed. This involves the extraction of both time‑
domain and frequency‑domain signals from operational rolling bearings. Once the neces‑
sary features are constructed, the support vector machine (SVM) is utilized to identify ten
distinct states under varying load conditions. The implementation of SVM is facilitated
by LIBSVM software, as described in [38]. To maintain consistency with the proposed
method, the same validation approach is adopted, where data from 1 hp, 2 hp, and 3 hp
load conditions are used as the training set, while data from the 0 hp condition serve as
the test set. Two distinct feature construction strategies are considered:
1. Frequency‑domain features: This entails the application of EEMD to decompose the

vibration signals of rolling bearings into nine distinct modes. Subsequently, the first
five IMFs and four residual components are extracted. Hilbert transforms are then
performed on each IMF to generate five envelope spectra, each with a data length of
4800. These spectra are concatenated to form a comprehensive feature vector, which
is then fed into the SVM for training and classification.

2. Time‑domain features: The raw time‑domain signals, with a length of 4800, are di‑
rectly fed into the SVM for training and classification without any intermediate trans‑
formations or decompositions.
According to Table 6, the results indicate that when traditional SVMs are utilized in

rolling bearings, the direct incorporation of pure time‑domain signals as input leads to a
mere 18.79% accuracy. This performance underscores the inadequacy of solely relying on
these signals to accurately capture the intricate nature of the testing data. Therefore, it
becomes evident that, particularly under varying load conditions, relying solely on time‑
domain signals is not a viable strategy for bearing fault diagnosis.

To address this limitation and fully capitalize on the distinct vibrational patterns hid‑
den within the input time series, the EEMD technique is introduced in the comparative
analysis to improve the effectiveness of the SVM. EEMD has emerged as an adaptive sig‑
nal processing tool capable of decomposing intricate nonlinear and non‑stationary signals
into a collection of simpler IMFs. By carefully selecting the most informative IMFs and
extracting their envelope spectra via Hilbert transforms, a more comprehensive and nu‑
anced feature representation space is constructed. This meticulous approach elevates the
SVM’s accuracy to 65.25%, indicating a substantial improvement. Nevertheless, despite
this enhancement, a significant disparity remains when juxtaposed against the proposed
method based on the GAF transform and parallel DCNN. This discrepancy underscores
the inherent limitations of shallow learning algorithms and structures when confronted
with high‑dimensional feature data. Conversely, the proposed methodology, fortified by
its robust feature extraction and learning capabilities, proves more adept at navigating the
complexities inherent in such data, attaining an exceptional 97% accuracy.
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Table 6. Confusion matrix of the SVM‑based method.

Real Flag
Test Flag

0 1 2 3 4 5 6 7 8 9

Method

0
(1) 240 0 0 0 0 0 0 0 0 0
(2) 240 0 0 0 0 0 0 0 0 0

1
(1) 0 240 0 0 0 0 0 0 0 0
(2) 184 56 0 0 0 0 0 0 0 0

2
(1) 13 73 143 5 1 1 0 0 4 0
(2) 220 15 5 0 0 0 0 0 0 0

3
(1) 0 156 0 78 0 0 3 0 3 0
(2) 168 7 0 0 0 0 1 0 64 0

4
(1) 0 0 0 0 167 0 0 0 0 73
(2) 154 65 4 0 17 0 0 0 0 0

5
(1) 0 231 0 2 0 0 0 6 1 0
(2) 205 29 0 0 0 6 0 0 0 0

6
(1) 0 0 0 48 3 0 188 0 0 1
(2) 201 25 5 0 0 0 4 0 0 5

7
(1) 0 0 0 0 0 0 0 240 0 0
(2) 48 35 11 0 0 0 16 54 0 76

8
(1) 0 183 0 0 0 0 0 0 57 0
(2) 183 0 0 0 0 0 0 0 57 0

9
(1) 0 0 0 0 27 0 0 0 0 213
(2) 117 77 34 0 0 0 0 0 0 12

5. Discussions
Modifications are made to the architecture of the established parallel DCNN to fur‑

ther assess the fault diagnosis capabilities of the proposed method across varying network
structures. Specifically, the convolutional layers are fixed at 1, 2, and 3 while maintaining
consistent conditions, as outlined in Figure 3. This entails optimizing the hyperparame‑
ters for each convolutional layer count to ensure the representation of the highest fault
diagnosis accuracy achievable in each scenario.

Following the completion of model training, quantitative testing is conducted to eval‑
uate the fault diagnosis performance of the proposed principle using a large sample size.
For each network configuration, 200 sets of test samples, comprising 10,000 data points per
set, are randomly extracted from the test dataset. The training and convergence processes
for these scenarios are detailed in Figure 10, while the results obtained under large sample
conditions are presented in Figure 11.
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The findings indicate that when the number of convolutional layers is limited to 1, the
convolutional neural network lacks the necessary depth to effectively extract spatial and
temporal information from the GASF and GADF images resulting from polar coordinate
transformation. As a result, the accuracy improvement during training is slowand remains
unstable even after 1200 epochs. Additionally, the decrease in loss with increasing epochs
is relatively gradual, culminating in maximum, minimum, and median test accuracies of
only 87.90%, 85.88%, and 84.22%, respectively, as shown in Figure 11. In contrast, when
the convolutional layers are increased to 2 or 3, the parallel DCNN demonstrates strong
convergence during training, with a rapid decrease in the loss function to the order of
10−4. Under a large number of test samples, no significant differences are observed in
the maximum, minimum, or median test results between these two configurations. Given
their comparable performance, simpler network structures are preferred to enhance real‑
time capabilities.

6. Conclusions
This paper combines the strengths of both the GAF and the parallel DCNN to en‑

hance the performance of bearing fault diagnosis. Additionally, the limitations imposed
by conventional methods’ strict requirements on input data sampling rates and operating
conditions are addressed. The conclusions are summarized as follows:
(1) A method for selecting the time window of input signals is proposed based on the

characteristic frequencies of vibration signals associated with different fault modes.
By utilizing a 0.1‑s time window, the input signals effectively capture a wide range
of characteristic frequencies.

(2) With the GAF transform, one‑dimensional time series are transformed into two dis‑
tinct image representations: the GASF and the GADF. These images are subsequently
used as inputs for two parallel DCNN channels. An attention mechanism is em‑
ployed to merge the outputs effectively. In the absence of training data within the
test set, the proposed method achieves remarkable performance, with accuracy rates
ranging from 91.36% to 100%, recall rates between 92.50% and 100%, and F1 scores
varying from 91.93% to 100%. Overall, the method achieves a remarkable 96.96%
improvement.

(3) This paper further investigates the impact of different network structures on key per‑
formance metrics. The results reveal that using two convolutional layers are suf‑
ficient to provide robust fault diagnosis capabilities. Specifically, in scenarios in‑
volving large sample sizes and repetitive trials, the median accuracy reaches 96.83%,
significantly surpassing the 85.88% achieved with one convolutional layer. Further,
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increasing the number of convolutional layers does not result in additional
improvements.

(4) The necessity of unifying the sampling rate is examined using the control variable
method. Feeding time series data obtained at different sampling rates into a trained
model can decrease the fault identification accuracy to approximately 94%. Such
degradation can be partly solved according to this study. Challenges remain when
the model’s sampling rate is not an integer multiple of the input data’s rate.
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