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Abstract: There is a strong correlation between the concept of convexity and symmetry. One of these is
the class of interval-valued cr-log-h-convex functions, which is closely related to the theory of symmetry.
In this paper, we obtain Hermite–Hadamard and its weighted version inequalities that are related to
interval-valued cr-log-h-convex functions, and some known results are recaptured. To support our
main results, we offer three examples and two applications related to modified Bessel functions and
special means as well.
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1. Introduction

In recent years, there has been a notable surge in the exploration of various extensions
of convex functions, unveiling a rich landscape beyond traditional convexity. Convexity,
a fundamental concept with far-reaching implications in fields such as optimal control
and game theory, has long been a cornerstone of mathematical analysis. However, real-
world applications often present functions that exhibit properties falling within a broader
spectrum than strict convexity. This realization has sparked considerable interest in the
study of generalized convexity, an area of research that continues to captivate scholars. The
quest to understand and leverage generalized convexity has led to the development of
numerous novel frameworks tailored to address practical challenges. Among these, the
Hermite–Hadamard inequality stands out as a bridge between convex function theory and
integral inequalities, finding relevance across diverse scientific domains. Moreover, the
intricate interplay between convexity and symmetry concepts has given rise to intriguing
classes of functions, such as interval-valued cr-log-h-convex functions, with profound
implications in symmetry theory.

These inequalities serve as powerful tools with practical utility spanning optimization,
numerical analysis, and statistics. Notably, the Hermite–Hadamard inequality, recognized
as an analog of convexity, necessitates the presence of generalized convexity for its estab-
lishment. In engineering, particularly in the realm of 3D printing technology, both the
Hermite–Hadamard inequality and He Chengtian’s inequality are frequently employed to
approximate printing speeds, addressing the challenge of forecasting speeds with precision
(see e.g., [1–3]).
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The field of inequalities research encompasses a broad spectrum of theoretical and
applied mathematics, attracting contributions from renowned scholars such as Josip E.
Pecaric and Dragoslav S. Mitrinović. Pioneering works like “Convex Functions, Partial
Orderings, and Statistical Applications” by Pecarič in [4] and “Analytic Inequalities” by
Mitrinović in [5] shed light on the intricate relationships between analytic, convex, and
probabilistic aspects of inequalities. These works, along with seminal contributions like the
Hermite–Hadamard inequality, enrich our understanding of these mathematical tools and
their applications, broadening the horizon of mathematical knowledge.

Let W be convex subset of R and F : W ⊆ R → R be a convex function with c1, c2 ∈ W
and c1 < c2, then

F
(

c1 + c2

2

)
≤ 1

c2 − c1

c2∫
c1

F(υ)dυ ≤ F(c1) + F(c2)

2
. (1)

Fejér [6], gave the generalized form of inequality Equation (1), as follows:

F
(

c1 + c2

2

) c2∫
c1

H̃(υ)dυ ≤
c2∫

c1

H̃(υ)F(υ)dυ ≤ F(c1) + F(c2)

2

c2∫
c1

H̃(υ)dυ,

(2)

holds, where H̃ : [c1; c2] → R is integrable, symmetric and nonnegative function about
υ = c1+c2

2 .

Definition 1. In reference [4] A function F is said to be log-convex if

F(tc1 + (1 − t)c2) ≤ [F(c1)]
t[F(c2)]

(1−t),

holds for all c1, c2 ∈ W with t ∈ [0, 1].

Many generalizations and improvements related to log-convex functions can be found
(see, e.g., [7–9]).

Definition 2. In reference [10] Let W, V be convex subset of R and h : W → R be a nonnegative
function. A function F : V → (0, ∞) is said to be h-convex if for all c1, c2 ∈ W and t ∈ [0, 1],
one has

F(tc1 + (1 − t)c2) ≤ h(t)F(c1) + h(1 − t)F(c2).

The class of h-convex functions generalizes several other known classes of convexity, see [10].

In [11], Noor et al., mentioned log-h-convex functions as follows:

Definition 3. Let h : W → R be a non-negative function. A function F : V → (0, ∞) is said to be
log-h-convex for all c1, c2 ∈ W and t ∈ [0, 1], if

F(tc1 + (1 − t)c2) ≤ [F(c1)]
h(t)[F(c2)]

h(1−t),

holds.

Due to broad utility of Hermite–Hadamard inequalities and fractional calculus, and
across various scientific disciplines, researchers are actively exploring these type of inequal-
ities. This research direction has gained momentum, as evidenced by recent developments
in the field (see e.g., [12–17]).

Sarikaya et al., in [18] established the Hermite–Hadamard type inequalities for frac-
tional integrals:
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Theorem 1. Let F : [c1, c2] ⊆ R → R be positive function with 0 ≤ c1 < c2 and F ∈ L[c1, c2]. If
F is positive on [c1, c2], then

F
(

c1 + c2

2

)
≤ Γ(ς + 1)

2(c2 − c1)ς

[
Jς
c1−F(c1) + Jς

c2+
F(c2)

]
≤ F(c1) + F(c2)

2
,

with ς > 0. Here L[c1, c2] is the set of all Lebesgue integrable functions on [c1, c2]. The symbols Jς

c+1
and Jς

c−2
represent the left-sided and right-sided Riemann—Liouville fractional integrals of the order

ς ∈ R+ that are defined in [15]

Jς

c+1
F(c) =

1
Γ(ς)

∫ c

c1

(c − φ)ς−1F(φ)dφ, (0 ≤ c1 < c ≤ c2),

and
Jς

c−2
F(c) =

1
Γ(ς)

∫ c2

c
(φ − c)ς−1F(φ)dφ, (0 ≤ c1 ≤ c < c2).

The set RI contains all closed intervals on R. For [ϑ, ϑ] ∈ RI , if ϑ > 0, then [ϑ, ϑ] is a
positive interval. The set of all positive intervals is denoted by R+

I .

Definition 4. In reference [19] For any λ ∈ R, ϑ = [ϑ, ϑ], σ = [σ, σ] ∈ RI , we have

ϑ + σ = [ϑ, ϑ] + [σ, σ] = [ϑ + σ, ϑ + σ],

and

λϑ = λ[ϑ, ϑ] =


[λϑ, λϑ] , λ > 0;
[0, 0] , λ = 0;

[λϑ, λϑ] , λ < 0.

Let ϑ = [ϑ, ϑ] ∈ RI , the centre of ϑ is defined as ϑc = ϑ+ϑ
2 while radius of ϑ is given as

ϑr =
ϑ−ϑ

2 . Then ϑ = [ϑ, ϑ] can also be presented in the form of centre-radius as:

ϑ =

〈
ϑ + ϑ

2
,

ϑ − ϑ

2

〉
= ⟨ϑc, ϑr⟩.

Definition 5. In reference [20] Let ϑ = [ϑ, ϑ] = ⟨ϑc, ϑr⟩, σ = [σ, σ] = ⟨σc, σr⟩ ∈ RI , then the
center-radius order relation is defined by:

ϑ ≤cr σ ⇐⇒
{

ϑc < σc, if ϑc ̸= σc,
ϑc ≤ σc, if ϑc = σc.

Obviously, for ϑ, σ ∈ RI , either ϑ ≤cr σ or σ ≤cr ϑ.

From log-h-convexity can be derived some known convexity classes.
In [11], Noor et al. proposed following inequality for log-h-convex functions:

Theorem 2. Suppose that F be a log-h-convex function with h( 1
2 ) ̸= 0, then

F
(

c1 + c2

2

) 1
2h( 1

2 ) ≤ exp
[

1
c2 − c1

∫ c2

c1

ln F(µ)dµ
]

≤ (F(c1)F(c2))
∫ 1

0 h(φ)dφ.

Liu et al. [21] generalized this concept of log-h-convex function to interval-valued functions.
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Definition 6. Assume that F : [c1, c2] → R+
I be an interval valued function with F =

[
F, F

]
and

F ∈ IR([c1,c2])
. A function F is said to be cr-log− h-convex on [c1, c2] where h : [0, 1] → R+is a

nonnegative function if

F(tc1 + (1 − t)c2) ≤cr [F(c1)]
h(t)[F(c2)]

h(1−t).

The set of all Riemann integrable interval-valued functions on [c1, c2] is denoted by IR([c1,c2])
.

Remark 1. Taking F = F, the function F reduces to log-h convex.

Definition 7. In reference [21] assume F : [c1, c2] → R+
I be an interval-valued function with

F = [F, F] and h : [0, 1] → R+, then F is called cr-log-h-convex on [c1, c2] if

F(tx + (1 − t)y) ≤cr [F(x)]h(t)[F(y)]h(1−t),

holds ∀t ∈ (0, 1) with x, y ∈ [c1, c2].

Theorem 3. In reference [22] let F = [F, F] is an interval-valued function where F : [c1, c2] → RI .
Then the function F is called Riemann integrable on [c1, c2], provided F and F are Riemann
integrable on [c1, c2] and ∫ c2

c1

F(µ)dµ =

[∫ c2

c1

F(µ)dµ,
∫ c2

c1

F(µ)dµ
]

.

Theorem 4. In reference [23] the functions 𭟋1, H̃ : [c1, c2] → R+
I are interval-valued functions

where 𭟋1 = [𭟋,𭟋1] and H̃ = [G, H̃]. If 𭟋1, H̃ ∈ IR([c1,c2])
, and 𭟋1(µ) ≤cr H̃(µ) for all

µ ∈ [c1, c2], then ∫ c2

c1

𭟋1(µ)dµ ≤cr

∫ c2

c1

H̃(µ)dµ.

Utilizing cr-log-h-convex interval-valued functions introduces an innovative frame-
work for comprehending and enhancing intricate mathematical systems. This interdis-
ciplinary approach, blending concepts from convex analysis, interval mathematics, and
fractional calculus, offers a more nuanced and comprehensive method for addressing
mathematical problems. It has the potential to generate novel insights and solutions
across various domains, including optimization, control theory, and other fields reliant on
mathematical modeling.

In the main section, we give various type inequalities of Hermite–Hadamard and its
weighted version specifically for functions that are cr-log-h-convex. To further illustrate the
validity of our findings, we present two applications and three examples. Finally, in the last
section, we wrap up the paper by summarizing our conclusions and offering suggestions
for potential avenues of future research.

2. Main Results

Throughout the discussion cr-log-h-convex functions on [c1, c2] are denoted by SX(cr−
log- h, [c1, c2],R+

I ). The set of all Riemann integrable interval-valued functions on [c1, c2] is
denoted by IR([c1,c2])

.
We are ready to prove the Hermite—Hadamard-type inequality for cr-log-h-convex

functions.
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Theorem 5. Suppose that F be an interval valued function with F : [c1, c2] → R+
I , F =

[
F, F

]
and

F ∈ IR([c1,c2])
, where h : [0, 1] → R+ with h( 1

2 ) ̸= 0. If F ∈ SX(cr − log− h, [c1, c2],R+
I ), then

we have

F
(

c1 + c2

2

) 1
h( 1

2 ) ≤ cr exp
[

Γ(ς)
(c2 − c1)

ς

(
Jς
c2+

ln F(µ) + Jς
c1− ln F(µ)

)]
(3)

≤ cr(F(c1)F(c2))
∫ 1

0 (φς−1+(1−φ)ς−1)h(φ)dφ.

Proof. As F ∈ SX(cr − log− h, [c1, c2],R+
I ), then

F
(

u1 + u2

2

)
≤cr [F(u1)F(u2)]

h( 1
2 ). (4)

We can write Equation (4) as

1
h( 1

2 )
ln F

(
u1 + u2

2

)
≤cr ln F(u1) + ln F(u2). (5)

On substituting u1 = φc1 +(1− φ)c2 and u2 = φc2 +(1− φ)c1 in Equation (5), we get

1
h( 1

2 )
ln F

(
c1 + c2

2

)
≤cr ln F(φc1 + (1 − φ)c2) + ln F(φc2 + (1 − φ)c1). (6)

On multiplying Equation (6) with φς−1 and after integrating between 0 to 1 w.r.t. φ,
we obtain

1
h( 1

2 )
ln F

(
c1 + c2

2

)
≤ cr

∫ 1

0
φς−1 ln F(φc1 + (1 − φ)c2)dφ +

∫ 1

0
φς−1 ln F(φc2 + (1 − φ)c1)dφ. (7)

From Equation (7), we have

1
h( 1

2 )
ln F

(
c1 + c2

2

)
=

[∫ 1

0
φς−1 ln F(φc1 + (1 − φ)c2)dφ,

∫ 1

0
φς−1 ln F(φc1 + (1 − φ)c2)dφ

]
+

[∫ 1

0
φς−1 ln F(φc2 + (1 − φ)c1)dφ,

∫ 1

0
φς−1 ln F(φc1 + (1 − φ)c2)dφ

]
.

After suitable substitution, we obtain

1
h( 1

2 )
ln F

(
c1 + c2

2

)
=

1
(c2 − c1)

ς

[∫ c2

c1

(c2 − µ)ς−1 ln F(µ)dµ,
∫ c2

c1

(c2 − µ)ς−1 ln F(µ)dµ
]

+
1

(c2 − c1)
ς

[∫ c2

c1

(µ− c1)
ς−1 ln F(µ)dµ,

∫ c2

c1

(µ− c1)
ς−1 ln F(µ)dµ

]
=

1
(c2 − c1)

ς

[∫ c2

c1

(c2 − µ)ς−1 ln F(µ)dµ+
∫ c2

c1

(µ− c1)
ς−1 ln F(µ)dµ

]
=

Γ(ς)
(c2 − c1)

ς

[
Jς
c2+

ln F(µ) + Jς
c1− ln F(µ)

]
.
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Similarly, as F ∈ SX(cr − log−h, [c1, c2],R+
I ), we obtain

F(φc1 + (1 − φ)c2) ≤cr [F(c1)]
h(φ)[F(c2)]

h(1−φ),

and
F(φc2 + (1 − φ)c1) ≤cr [F(c2)]

h(φ)[F(c1)]
h(1−φ).

So,

ln F(φc1 + (1 − φ)c2) ≤ crh(φ) ln F(c1) + h(1 − φ) ln F(c2). (8)

ln F(φc2 + (1 − φ)c1) ≤ crh(φ) ln F(c2) + h(1 − φ) ln F(c1). (9)

On multiplying Equations (8) and (9) with φς−1, and after integrating between 0 to 1
w.r.t. φ, we have

Γ(ς)
(c2 − c1)

ς Jς
c2 ln F(µ) (10)

= ln F(c1)
∫ 1

0
φς−1h(φ)dφ + ln F(c2)

∫ 1

0
(1 − φ)ς−1h(φ)dφ.

Γ(ς)
(c2 − c1)

ς Jς
c1 ln F(µ) (11)

= ln F(c2)
∫ 1

0
φς−1h(φ)dφ + ln F(c1)

∫ 1

0
(1 − φ)ς−1h(φ)dφ.

On combining Equations (10) and (11), we obtain

Γ(ς)
(c2 − c1)

ς

[
Jς
c1− ln F(µ) + Jς

c2+ ln F(µ)
]

= [ln F(c1)F(c2)]
∫ 1

0

[
(1 − φ)ς−1 + φς−1

]
h(φ)dφ.

Corollary 1. Taking F = F and ς = 1, we obtain ([11], Theorem 4.3).

Corollary 2. For h(φ) = 1, we have√
F
(

c1 + c2

2

)
≤ cr exp

[
Γ(ς + 1)

2(c2 − c1)
ς

[
Jς
c2 ln F(µ) + Jς

c1 ln F(µ)
]]

≤ crF(c1)F(c2).

Corollary 3. If h(φ) = φς, we obtain

ln F
(

c1 + c2

2

) 1
h( 1

2 ) ≤ cr exp
[

Γ(ς)
(c2 − c1)

ς

[
Jς
c2 ln F(µ) + Jς

c1 ln F(µ)
]]

≤ cr

(
1

1 + ς
+ B(ς + 1, ς)

)
ln F(c1)F(c2),

where B(x,y) is the Euler Beta function, it is defined as:

B(x, y) :=
∫ 1

0
φx−1(1 − φ)y−1dφ.
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Corollary 4. For ς = 1, we obtain ([2], Theorem 3.8):

F
(

c1 + c2

2

) 1
2h( 1

2 ) ≤ cr exp
[

1
c2 − c1

∫ c2

c1

ln F(µ)dµ
]

(12)

≤ cr(F(c1)F(c2))
∫ 1

0 h(φ)dφ.

Corollary 5. If h(φ) = 1 and ς = 1, we have√
F
(

c1 + c2

2

)
≤ cr exp

(
1

c2 − c1

∫ c2

c1

ln F(µ)dµ
)

(13)

≤ crF(c1)F(c2).

Now, we give weighted version inequality for cr-log-h-convexity.

Theorem 6. Assume F be an interval valued function where F : [c1, c2] → R+
I and F =

[
F, F

]
with

F ∈ IR([c1,c2])
, and h : [0, 1] → R+ with h( 1

2 ) ̸= 0. Let H̃ : [c1, c2] → R+ be a function which is
symmetric with respect to c1+c2

2 . If F ∈ SX(cr − log−h, [c1, c2],R+
I ), then

1
2h( 1

2 )
ln F

(
c1 + c2

2

)
Γ(ς)

(c2 − c1)
ς

[
Jς
c1− H̃(µ) + Jς

c2+
H̃(µ)

]
(14)

≤ cr
Γ(ς)

(c2 − c1)
ς

[
Jς
c2+

[ln F(µ)]H̃(µ) + Jς
c1−[ln F(µ)]H̃(µ)

]
≤ cr(ln F(c1)F(c2))

∫ 1

0

[
φς−1 + (1 − φ)ς−1

]
H̃(φ)H̃(φc1 + (1 − φ)c2)dφ.

Proof. As F ∈ SX(cr − log−h, [c1, c2],R+
I ), then

ln F(φc1 + (1 − φ)c2) ≤ crh(φ) ln F(c1) + h(1 − φ) ln F(c2). (15)

ln F(φc2 + (1 − φ)c1) ≤ crh(φ) ln F(c2) + h(1 − φ) ln F(c1). (16)

Multiplying Equation (15) by φς−1H̃(φc1 + (1 − φ)c2) and integrating between 0 to 1
w.r.t. φ, we obtain ∫ 1

0
φς−1[ln F(φc1 + (1 − φ)c2)]H̃(φc1 + (1 − φ)c2)dφ

≤ cr

∫ 1

0
φς−1H̃(φ)[ln F(c1)]H̃(φc1 + (1 − φ)c2)dφ

+
∫ 1

0
φς−1H̃(1 − φ)H̃(φc1 + (1 − φ)c2)[ln F(c2)]dφ.

We obtain

1
(c2 − c1)

ς

∫ c2

c1

(c2 − µ)ς−1[ln F(µ)]H̃(µ)dµ (17)

≤ cr ln F(c1)
∫ 1

0
φς−1H̃(φ)H̃(φc1 + (1 − φ)c2)dφ

+ ln F(c2)]
∫ 1

0
φς−1H̃(1 − φ)H̃(φc1 + (1 − φ)c2)dφ.
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Multiplying Equation (16) by φς−1H̃(φc2 + (1 − φ)c1) and integrating between 0 to 1
with respect to φ, we have∫ 1

0
φς−1[ln F(φc2 + (1 − φ)c1)]H̃(φc1 + (1 − φ)c2)dφ

≤ cr

∫ 1

0
φς−1H̃(φ)[ln F(c2)]H̃(φc2 + (1 − φ)c1)dφ

+
∫ 1

0
φς−1H̃(1 − φ)[ln F(c1)]H̃(φc2 + (1 − φ)c1)dφ.

We obtain

1
(c2 − c1)

ς

∫ c2

c1

(µ− c1)
ς−1[ln F(µ)]H̃(µ)dµ (18)

≤ cr ln F(c2)
∫ 1

0
φς−1H̃(φ)H̃(φc2 + (1 − φ)c1)dφ

+ ln F(c1)]
∫ 1

0
φς−1H̃(1 − φ)H̃(φc2 + (1 − φ)c1)dφ.

On combining Equations (17) and (18), we obtain

Γ(ς)
(c2 − c1)

ς

[
Jς
c2+

[ln F(µ)]H̃(µ) + Jς
c1−[ln F(µ)]H̃(µ)

]
(19)

= (ln F(c1)F(c2))
∫ 1

0

[
φς−1 + (1 − φ)ς−1

]
H̃(φ)H̃(φc1 + (1 − φ)c2)dφ.

Now, multiplying Equation (6) by φς−1H̃(φc1 + (1 − φ)c2) and after integrating be-
tween 0 to 1 w.r.t. φ, we have

1
h( 1

2 )
ln F

(
c1 + c2

2

) ∫ 1

0
φς−1H̃(φc1 + (1 − φ)c2)dφ

≤ cr

∫ 1

0
φς−1H̃(φc1 + (1 − φ)c2) ln F(φc1 + (1 − φ)c2)dφ

+
∫ 1

0
φς−1H̃(φc2 + (1 − φ)c1) ln F(φc2 + (1 − φ)c1)dφ.

Utilizing definition of generalized fractional integral

1
h( 1

2 )
ln F

(
c1 + c2

2

)
Γ(ς)

(c2 − c1)
ς Jς

c2 H̃(µ) (20)

=
1

(c2 − c1)
ς

∫ c2

c1

(c2 − µ)ς−1H̃(µ) ln F(µ)dµ

+
1

(c2 − c1)
ς

∫ c2

c1

(µ− c1)
ς−1H̃(µ) ln F(µ)dµ.

Multiplying Equation (6) by φς−1H̃(φc2 + (1 − φ)c1) and after integrating between 0
to 1 w.r.t. φ, we obtain

1
h( 1

2 )
ln F

(
c1 + c2

2

) ∫ 1

0
φς−1H̃(φc2 + (1 − φ)c1)dφ

≤ cr

∫ 1

0
φς−1H̃(φc1 + (1 − φ)c2) ln F(φc1 + (1 − φ)c2)dφ

+
∫ 1

0
φς−1H̃(φc2 + (1 − φ)c1) ln F(φc2 + (1 − φ)c1)dφ.



Symmetry 2024, 16, 407 9 of 12

Utilizing definition of generalized fractional integral

1
h( 1

2 )
ln F

(
c1 + c2

2

)
Γ(ς)

(c2 − c1)
ς Jς

c1 H̃(µ) (21)

=
1

(c2 − c1)
ς

∫ c2

c1

(c2 − µ)ς−1H̃(µ) ln F(µ)dµ

+
1

(c2 − c1)
ς

∫ c2

c1

(µ− c1)
ς−1H̃(µ) ln F(µ)dµ.

On utilizing Equations (20) and (21), we obtain

1
h( 1

2 )
ln F

(
c1 + c2

2

)
Γ(ς)

(c2 − c1)
ς

[
Jς
c1−H̃(µ) + Jς

c2+
H̃(µ)

]
(22)

=
2

(c2 − c1)
ς

∫ c2

c1

(c2 − µ)ς−1H̃(µ) ln F(µ)dµ

+
2

(c2 − c1)
ς

∫ c2

c1

(µ− c1)
ς−1H̃(µ) ln F(µ)dµ

=
2Γ(ς)

(c2 − c1)
ς

[
Jς
c2+

[ln F(µ)]H̃(µ) + Jς
c1−[ln F(µ)]H̃(µ)

]
.

On combining Equations (19) and (22), we complete the proof.

Corollary 6. For ς = 1, we obtain

1
2h( 1

2 )
ln F

(
c1 + c2

2

)
1

(c2 − c1)

∫ c2

c1

ln F(µ)dµ (23)

≤ cr
1

(c2 − c1)

∫ c2

c1

H̃(µ) ln F(µ)dµ

≤ cr(ln F(c1)F(c2))
∫ 1

0
H̃(φ)H̃(φc1 + (1 − φ)c2)dφ.

Corollary 7. For H̃(µ) = 1 in Equation (23), we obtain Equation (3).

3. Examples

Example 1. Let F(µ) = [0, 2] → R+
I is an interval-valued function given by F(µ) = [eµ, e2µ].

Suppose h(φ) = φ for all φ ∈ [0, 1], then for ς = 2 we have

c1 + c2

2
= 1,

F
(

c1 + c2

2

) 1
2h( 1

2 ) = [2.72, 7.39],

exp
[

Γ(ς)
(c2 − c1)

ς

(
Jς
c2+

ln F(µ) + Jς
c1− ln F(µ)

)]
= [2.72, 7.39],

[F(c1)F(c2)]
∫ 1

0 ((1−φ)ς−1+φς−1)h(φ)dφ =
(
[e2, e4][1, 1]

) 1
2

= [2.72, 7.39].

Since [2.72, 7.39] ≤cr [2.72, 7.39] ≤cr [2.72, 7.39], then Theorem 5 is verified.
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Example 2. Let F(µ) = [1, 2] → R+
I is an interval-valued function given by F(µ) = [µ, 2µ].

Suppose h(φ) = cos φ for all φ ∈ [0, 1], then for ς = 2 we have

c1 + c2

2
=

3
2

, h(
1
2
) = 0.87758,

𭟋
(

c1 + c2

2

) k
ςh( 1

2 ) = [1.26, 1.87],

exp

[
Γ(ς)

(c2 − c1)
ζ

(
Jς
c2+

ln𭟋(µ) + Jς
c1− ln𭟋(µ)

)]
= [1.47, 2.94],

[𭟋(c1)𭟋(c2)]
∫ 1

0 (φζ−1+(1−φ)ζ−1)h(φ)dφ = ([1, 2][2, 4])0.8415

= [1.79, 5.75].

Since [1.26, 1.87] ≤cr [1.47, 2.94] ≤cr [1.79, 5.75], then Theorem 5 is verified.

Example 3. Let F(µ) = [1, e] → R+
I is an interval-valued function given by F(µ) = [µ,µ2].

Suppose h(φ) = 1 + ln(cos φ) for all φ ∈ [0, 1], then for ς = 2 we have

c1 + c2

2
=

1 + e
2

, h(
1
2
) = 0.8694,

𭟋
(

c1 + c2

2

) 1
ςh( 1

2 ) = [1.428, 2.041],

exp

[
Γ(ς)

(c2 − c1)
ζ

(
Jς
c2+

ln𭟋(µ) + Jς
c1− ln𭟋(µ)

)]
= [1.789, 3.202],

[𭟋(c1)𭟋(c2)]
∫ 1

0 (φζ−1+(1−φ)ζ−1)h(φ)dφ = ([1, 2][2, 4])0.8415

= [2.253, 5.077].

Since [1.428, 2.041] ≤cr [1.789, 3.202] ≤cr [2.253, 5.077], then Theorem 5 is verified.

4. Applications
4.1. Modified Bessel Functions

Let recall ψυ(z) : R → [1, ∞] given by Watson’s ([24], pp. 294, 480):

ψυ(z) = 2υΓ(υ + 1)z−υFυ(z), z ∈ R,

where Fυ(z) is the modified Bessel function of the first kind:

Fυ(z) =
∞

∑
n=0

( z
2
)υ+2n

n!Γ(υ + n + 1)
.

Then, the relations for ψ′
υ(z) and ψ′′

υ (z) are as follows:

ψ′
υ(z) :=

z
2(υ + 1)

ψυ+1(z).

ψ′′
υ (z) :=

1
4(υ + 1)

[
z2

υ + 2
ψυ+2(z) + 2ψυ+1(z)

]
. (24)
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Let Fυ(z) = ψ′
υ(z) and h(φ) = 1. Then, from inequality Equation (13) and utilizing the

identities in Equation (24), we can deduce√
c1 + c2

4(υ + 1)
ψυ+1

(
c1 + c2

2

)
≤ cr exp

[
1

c2 − c1

∫ c2

c1

ln(ψ′
υ(µ))dµ

]
≤ cr

c1c2

4(υ + 1)2 ψυ+1(c1)ψυ+1(c2).

4.2. Special Means

1. Arithmetic mean:

A(c1, c2) :=
c1 + c2

2
.

2. Geometric mean:
G(c1, c2) :=

√
c1c2, 0 ≤ c1 < c2.

Proposition 1. Let c1, c2 ∈ R+ where c1 < c2 and m ∈ N, then√
Am+1(c1, c2)

≤ cr exp
(

m + 1
(c2 − c1)

[c2(ln c2 − 1)− c1(ln c1 − 1)]
)

≤ crG2(m+1)(c1, c2).

Proof. Obviously F(υ) = υm+1 is a convex function on R+. From Equation (13), we obtain
the required inequality.

Proposition 2. For c1, c2 ∈ R+ where c1 < c2, then

√
eA(c1,c2) ≤cr eA(c1,c2) ≤cr e2A(c1,c2).

Proof. For F(υ) = eυ is a convex function on R where υ ∈ R. From Equation (13), we
obtain the required inequality.

5. Conclusions

In this paper, using the notion of cr-log-h-convexity for interval-valued functions
several types of Hermite–Hadamard and Fejér inequalities that are related to interval-
valued cr-log-h-convex functions have been given. Moreover, several special cases are
given and some known results are recaptured. To show the validity of our main results, we
have offered three examples and two applications related to modified Bessel functions of
the first kind, and special means. We believe that this class of convexity is a powerful type
to find various type inequalities in the fields of fuzzy systems and real analysis, and with
possible applications to optimization problems with convex shapes associated with them.
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