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Abstract: Geometric problem solving (GPS) has always been a long-standing challenge in the fields
of automated reasoning. Its problem representation and solution process embody rich symmetry.
This paper is the second in a series of our works. Based on the Geometry Formalization Theory and
the FormalGeo geometric formal system, we have developed the Formal Geometric Problem Solver
(FGPS) in Python 3.10, which can serve as an interactive assistant or as an automated problem solver.
FGPS is capable of executing geometric predicate logic and performing relational reasoning and
algebraic computation, ultimately achieving readable, traceable, and verifiable automated solutions
for geometric problems. We observed that symmetry phenomena exist at various levels within
FGPS and utilized these symmetries to further refine the system’s design. FGPS employs symbols
to represent geometric shapes and transforms various geometric patterns into a set of symbolic
operation rules. This maintains symmetry in basic transformations, shape constructions, and the
application of theorems. Moreover, we also have annotated the formalgeo7k dataset, which contains
6981 geometry problems with detailed formal language descriptions and solutions. Experiments
on formalgeo7k validate the correctness and utility of the FGPS. The forward search method with
random strategy achieved a 39.71% problem-solving success rate.

Keywords: symmetry in geometric problem; formal mathematics; geometric problem solving;
geometric symbolic solver

1. Introduction

Symmetry refers to the property of an object remaining invariant under a certain
transformation, which is widely present in various aspects of the real world, such as
the periodic repetition of musical notes [1], the time/space translational symmetry of
physical properties [2], and the bilateral symmetry of organisms [3]. This article designs
a formal symbolic solver for the formal representation and automated solution of planar
geometric problems and explores the symmetry involved in various aspects of geometric
problem solving (GPS). GPS has always been a long-standing challenge [4–6] in the fields
of mathematical reasoning and Artificial Intelligence (AI), owing to the cross-modal forms
of knowledge and the absence of automated solving methods. As depicted in Figure 1,
a geometry problem typically consists of geometric texts and images.

Based on the Geometry Formalization Theory and the FormalGeo geometric formal
system [7], we have developed the Formal Geometric Problem Solver (FGPS) in Python.
We elucidate the symmetry phenomena present in FGPS and how these symmetries can be
utilized to improve solver design:

• Geometric shapes consist of several points, and when performing basic transforma-
tions such as rotation and scaling on the shapes, the relative positional information
among the points does not change; that is, the shape’s topological structure informa-
tion is symmetrical with respect to basic transformations. A complex geometric shape

Symmetry 2024, 16, 404. https://doi.org/10.3390/sym16040404 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16040404
https://doi.org/10.3390/sym16040404
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-5678-7485
https://orcid.org/0009-0000-2513-7060
https://orcid.org/0000-0001-9958-5173
https://orcid.org/0009-0001-3657-4909
https://orcid.org/0009-0006-1499-6576
https://orcid.org/0009-0006-1677-6630
https://orcid.org/0000-0002-2921-3291
https://doi.org/10.3390/sym16040404
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16040404?type=check_update&version=2


Symmetry 2024, 16, 404 2 of 18

is often composed of several basic shapes, and the order of combination of the basic
shapes does not change the final complex shape constructed; that is, the construction
result is symmetrical relative to the construction order. We have implemented the
above formal representation methods and construction methods, transforming the
symmetry and asymmetry into a series of rules for symbolic operations. The imple-
mentation of these symmetries helps to ensure the comprehensiveness and correctness
of the FGPS design.

• The process of GPS can be seen as the application of theorems, where each application
derives new conditions, ultimately leading to the derivation of the solution objective.
The application order of geometric theorems can form a directed acyclic graph (DAG),
and any theorem sequence obtained through its topological sorting can solve the
current geometric problem. The solvability of geometric problems with respect to the
topological sorting of the theorem’s DAG is symmetrical. By leveraging this symmetry,
we expand the number of problems according to the process of GPS, effectively
addressing issues such as high labeling costs and scarcity of datasets.

• FGPS incorporates two symmetric problem-solving algorithms: forward search, which
starts from known conditions and continuously applies theorems to reach the prob-
lem’s goal, and backward search, which starts from the problem’s goal and expands
it into sub-goals until all sub-goals are known conditions. We organize the process
of GPS into a hypertree with conditions as hypernodes and theorems as hyperedges.
The hypertrees obtained from the two algorithms are mirror-symmetrical. We de-
signed the backward search algorithm by analyzing the symmetrical processes of
forward search, and the solution generation process of backward search is also based
on forward search.
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Figure 1. Interactive geometric problem solving based on FGPS.

Traditional methods for GPS can generally be divided into three categories [8]: synthe-
sis methods, algebraic methods, and invariant-based point elimination methods. Synthesis
methods, such as the backward search method [9], forward chaining method [10] and
deductive database method [11], is essentially a search-based method. Algebraic methods
are based on coordinates, such as Wu’s method [12], transforming GPS into a computational
problem. Invariant-based point elimination methods [13] find that the solution methods for
geometric problems are embedded in their geometric shape construction. Due to limitations
in computing power and the readability of the solution process, traditional methods can
solve only a limited type and difficulty of geometric problems.

The rapid development of AI has provided new ideas for GPS. New neural network
architectures have given models the ability to model geometric knowledge. New learning
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and training methods have made it easier for people to teach computers geometric a priori
knowledge. Hence, AI-assisted synthesis methods, i.e., heuristic search methods, have
attracted much attention from researchers. Such works can generally be divided into
two categories [14]: symbolic approaches [15] and probabilistic approaches [16]. Symbolic
methods require the prior construction of a formal system, and then geometric problem texts
and images are parsed into a unified formal language. The AI predictor predicts theorems
that may be needed in problem solving according to the formal language. The formal
reasoner applies theorems and updates the known conditions of the problem. Direct
theorem prediction can be modeled as a sequence generation task, and step-by-step theorem
prediction can be modeled as a multi-classification task. Probabilistic methods model GPS
as a sequence generation task with multimodal inputs, directly encoding geometric problem
texts and images into a unified internal representation, then learning from human examples
to generate problem-solving programs. These programs are subsequently executed by an
executor to obtain the solution.

Nevertheless, both symbolic and probabilistic methods focus on the study of learning
methods and model structures, neglecting the study of formal systems. Existing formal
systems are roughly implemented using programming languages, and defining new pred-
icates and theorems requires changing the solver’s code, making it difficult to expand.
The reasoning process cannot record process information, making the problem-solving pro-
cess unreadable and unverifiable by humans. There is little research on the formal theory of
geometry, and no systematic sorting of the structure and knowledge in the geometric field.
These shortcomings severely limit the representational ability of formal systems, making it
almost impossible to solve higher difficulty problems, such as International Mathematical
Olympiad (IMO)-level geometric problems [17]. There is an urgent need for research on
geometric formal systems and solvers.

Based on FormalGeo [7], we constructed a search-based symbolic solver to addresses
these issues. FormalGeo is a geometric formal system built on Geometry Formalization
Theory, featuring good readability. The syntax of the geometric formal language is simi-
lar to predicate logic and close to natural language, providing excellent readability and
establishing a bridge for communication between humans and computers. The geometric
formal language includes Geometric Definition Language (GDL) and Condition Declaration
Language (CDL). FGPS parses GDL and CDL to configure the formal system and input
geometric problem. FormalGeo transforms the process of GPS into a series of applications
of theorems, defined using Geometric Predicate Logic (GPL). FGPS can parse and execute
GPL, achieving traceable geometric relational reasoning and algebraic equation solving.
The known conditions of a geometric problem are stored internally in FGPS as quintu-
ples (condition ID, condition type, condition body, premises, and theorem). Based on the
premises and theorem of conditions, we reorganize and structure them, transforming the
process of GPS into a hypertree with conditions as hypernodes and theorems as hyperedges.
Thus, we achieve formal language input of problems and structured output of solutions,
ultimately realizing readable, traceable, and verifiable solutions for geometric problems.

FGPS can run in two modes: interactive and automated. As shown in Figure 1, in the
interactive mode, an external decision-maker is required to provide the next theorem
information. FGPS applies the theorem and updates the problem status. When the external
decision-maker is a human, FGPS can serve as an interactive proof assistant to help humans
verify the proof process; when the decision-maker is an AI, it can conveniently implement
heuristic search methods. When FGPS operates in automatic mode, it can use various
methods (forward search, backward search, and heuristic search) combined with various
search strategies (breadth-first search, depth-first search, random search, and random beam
search) to solve problems, automatically removing redundant theorems after achieving the
solution goal.

Our contributions can be summarized as follows:

• We crafted FGPS in Python. It serves as both an interactive assistant for verifying
problem-solving processes and an automated problem solver that utilizes a variable
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search-based method and strategy. FGPS incorporates functions such as formal state-
ment parsing, condition validity checks, automatic diagram construction, and condi-
tion expansion. It is capable of performing readable, traceable, and verifiable algebraic
equation solving and relational reasoning.

• We explored the symmetry phenomena inherent in basic geometric transformations,
geometric constructions, geometric problem solving, and the design of the solving
system, and utilized these symmetries to further refine the system’s design. The two
symmetrical parts can verify and complement each other, making the design of FGPS
more comprehensive and avoiding omissions.

• We annotated the formalgeo7k dataset, which contains 6981 (expanded to 133,818 us-
ing data augmentation method). Each problem comprises a complete natural language
description, geometric shapes, formal language annotations, and theorem sequences
annotations. Additionally, we have attempted to annotate 18 geometry IMO-level
problems, forming the dataset formalgeo-imo.

• We conducted experiments on formalgeo7k, comparing different search methods and
strategies in terms of their problem-solving success rate, search time, and search step.
The forward search method combined with random search strategy achieved a 39.7%
problem-solving accuracy rate.

2. Related Works

Gelernter et al. developed the pioneering automated GPS system known as the
Geometry Theorem Prover [9], which employed a backward search approach to solve pre-
formalized problems. Nevins pointed out that the forward chaining method [10] can also be
effective by efficiently representing the known conditions of the problem and limiting the
typical application of those conditions. The development of geometry problem solving has
led to the emergence of various downstream tasks, including geometry problem formaliza-
tion [18,19], geometric knowledge extraction [20–24], geometric diagram parsing [25–27],
geometric theorem proving [28–30], and geometry problem solving [31–36]. Such methods
are essentially a search-based method, which requires humans to predefine the search space
or provide the system with a priori knowledge, namely theorems. Meanwhile, geomet-
ric problems need to be highly formalized to suit search formats. Theoretically, given a
complete formal system and a priori knowledge, the search-based solver could provide
solutions to any problem. However, in practice, we cannot determine if the given a priori
knowledge is complete. Additionally, due to the exponential explosion characteristic of
search-based methods, it is impossible to provide a correct solution within reasonable
memory and time constraints.

Wen-Tsun proposed Wu’s method [12], which transforms geometric problem into a
system of algebraic equations consisting of polynomials and inequalities. Then, by utilizing
the properties of algebraic computation, these algebraic expressions are simplified and
solved, transforming complex algebraic expressions into forms understandable by humans,
and thus interpreting their geometric meanings. The study of algebraic approaches to
geometry problems has given rise to a range of research achievements, such as Buch-
berger’s Gröbner bases method [37], numerical parallel methods [38], polynomial system
triangulation elimination algorithm [39], cylindrical algebraic decomposition for solving
inequalities [40], dimensionality reduction methods [41], and software tools like GEOTHER
1.0 [42]. These methods fully leverage the computational power of computers, but their
problem-solving processes are not easily comprehensible to humans.

Zhang proposed the point elimination method based on geometric invariants [13].
This approach employs constructive methods to describe problems and is capable of
generating concise and meaningful readable proofs for a large number of non-trivial
geometric problems. Subsequently, research on machine proofs of geometric theorems
based on geometric invariants rapidly advanced [43–45], leading to the development of
practical software tools such as Geometry Explorer 1.1 [46], Geometry Expert 1.0 [47],
and Java Geometry Expert 0.8 [48]. The method based on geometric invariant can also



Symmetry 2024, 16, 404 5 of 18

be extended to solid geometry [49] and non-Euclidean geometry [50]. Point elimination
method is a mechanized method but requires a lot of effort in discovering new invariants
and shape construction, and the types of geometric problems that can be solved are limited.

GPS has been gaining more attention in the natural language processing community
recently. Several geometry formal systems and datasets have been constructed, such as
Geometry3K [15], GeoQA [16], and GeometryQA [51]. Geometry3K [15] translates the
known conditions of geometric problems into formal statements, defining theorems as
a set of rules for converting between formal statements. This approach, referred to as
“formal language”, is also used in GeoRE [22], which focuses on geometric relation ex-
traction, and PGDP5k [52], which is designed for geometric image parsing; while these
methods are intuitive, they lack theoretical guidance, are not comprehensive, and are not
easily extensible with additional predicates and theorems. GeoQA [16] employs the formal
method of the “program” approach, transforming the process of GPS into a sequence of
programs consisting of variables and operators. Executing this program sequence yields
the solution. Subsequent work extended the number and types of questions and rules,
resulting in GeoQA+ [53], UniGeo [54], and PGPS9K [55]. These formal methods can repre-
sent algebraic and symbolic problem-solving processes, but compared to formal language
methods, they are less intuitive and cannot represent traditional solutions. Additionally,
adding new rules requires modifying the solver’s code, making them less extensible. Ge-
ometryQA [51] employs a formal method known as the expression tree, which transforms
the problem-solving process into a solving tree composed of operators and variables. This
method is similar to the program approach but is more structured. Shared benchmarks and
datasets have significantly advanced research in AI-assisted GPS. Several AI systems, such
as the CL-based model [56], SCA [57], GeoDRL [14], and LANS [58], have been constructed
to achieve higher problem-solving success rates.

The integration of logic and neural networks has increasingly captured researchers’ inter-
est in recent years. Early research endeavors, such as Neural Turing Machines [59], Memory
Networks [60], and Neural Programmer [61], replaced discrete algorithms with end-to-end
differentiable counterparts, which enable models to not only optimize via gradient descent
but also to incorporate discrete computational and reasoning capabilities. Subsequent stud-
ies infused this concept into logical reasoning, proposing many neurosymbolic approaches.
Notable examples include Neural Theorem Provers [62], DeepProbLog [63], Logical Tensor
Networks [64], Neural Logic Machines [65], and Conditional Theorem Provers [66], which
have been extensively applied in the area of knowledge graph reasoning [67,68]. In the field
of automated theorem proving, simple reasoning rules are inducted as tactics, while large
language models (LLMs) learn higher-level reasoning rules from experience, predicting the
tactics necessary for problem solving. These tactics are then fed into a symbolic reasoner for
verification. Approaches such as SCL [69], Thor [70], and HTPS [71] have been successful in
solving IMO-level problems [72]. Furthermore, the reasoning capabilities of LLMs [73,74]
have become a focal point of current research [75,76].

3. FGPS

In this section, we introduce the specific implementation of FGPS. FGPS is built upon
Geometry Formalization Theory and the FormalGeo formal system [7].

3.1. Architecture

As illustrated in Figure 2, FGPS can be divided into five components:

• Main is the control module of FGPS, invoking other modules to enable interactive
problem solving and automated problem solving. The automated solving component
implements both forward search and backward search, allowing for the configuration
of various search strategies and defining interfaces for AI-assisted searches.

• Engine is the core component of FGPS, responsible for parsing and executing GPL
and consists of two sub-modules, GPL executor for relational reasoning and equation
solver for algebraic computation.
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• Parser facilitates bidirectional conversion between formal language and machine
language. It consists of three sub-modules. GDL parser parses GPDL and GTDL into
machine language, enabling custom configuration of the solver. CDL parser parses
the formal describing of problems into machine language for subsequent reasoning.
Inverse parser translates machine language back into formal language, facilitating the
verification and checking of the solution process.

• Data preserves all details of the problem-solving process and comprises two sub-
modules. The problem module ensures the correctness and consistency of the problem
input conditions, implementing automatic diagram construction, condition auto-
expansion, and validity checks. The condition module is responsible for data storage.

• AI interface defines the interface for interaction between the AI system and FGPS.
Both the AI automatic formalization and the AI problem solver can be seamlessly
integrated with FGPS.

Engine

Data

GPL Executor

Equation Solver

Problem

Condition

Engine

Data

GPL Executor

Equation Solver

Problem

Condition

Main

Interactive mode

Automatic mode

Search

AI-assisted Search
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GDL Parser

AI Interface

Output

Input

Output
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Figure 2. The components of FGPS.

Guided by Geometry Formalization Theory and modular design, FGPS boasts excellent
extensibility, allowing for easy customization of the formal system and the definition of
external interfaces.

3.2. GPL Executor

The process of GPS can be represented as a sequence of theorem applications and
theorems are defined using GPL. As a result, the process of GPS within FGPS is essentially
the execution of GPL. GPL statements can consist of multiple logical conjunction words,
geometric relations, and quantitative relations nested together. The application process can
be divided into three steps:

1. In the GPL parsing phase, the solver expands complex GPL statements into Disjunctive
Normal Form (DNF) using the distributive law. Each simple conjunction represents a
branch of the theorem. This not only meets the requirements for backward reasoning
and facilitates the generation of sub-goals but also speeds up theorem execution by
skipping irrelevant branches.

2. In the GPL ordering phase, for each branch of the theorem, the solver adjusts the
positions of geometric relations and quantitative relations within simple conjunctions
according to the commutative law. The guiding principles for this adjustment are as
follows: 1. Transforming relation composition into geometric constraints. 2. Moving
geometric constraints forward. 3. Moving algebraic constraints backward. This
approach not only helps filter out geometric relation elements that do not comply
with the constraints, preventing the explosion of combinatorics caused by Cartesian
product operations, but also reduces the number for algebraic equation solving,
thereby improving theorem application speed.

3. In the GPL execution phase, the solver reads geometric and quantitative relations
sequentially and performs relational reasoning in the order of their appearance.

The GPL execution process can be illustrated with an example. Suppose that we
have a theorem defined as shown in Equation (1), which includes five geometric rela-
tions R1(v1, v2), R2(v2, v3), R3(v2), R4(v2, v3), and R5(v2) and one quantitative relation
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RA(v1, v2). It should be noted that the detailed definition of &, | and ∼ can be found in
Geometry Formalization Theory [7].

R1&(R2|(∼ R3|RA)&R4&R5) (1)

During the GDL parsing phase, it is expanded into a DNF according to the distributive
law, as shown in Equation (2). This DNF consists of three simple conjunctions, with each
simple conjunction serving as a theorem branch.

R1&R2|R1& ∼ R3&R4&R5|R1&RA&R4&R5 (2)

In the GDL reordering phase, let us take branch R1&RA&R4&R5 as an example. It
adjusts the order of its statements according to the commutative law, resulting in the form
shown in Equation (3).

R1&R5&R4&RA (3)

In the GPL execution phase, the GDL statements are read and executed in order,
and the process is as shown in Equation (4).

R1&R5&R4&RA → R1,5&R4&RA → R1,5,4&RA → R1,5,4,A (4)

3.3. Core Engine

This subsection introduces the key methods that enable FGPS to perform geometric
relational reasoning and algebraic equation solving. These methods are organized within a
unified framework and constitute the core solving engine of FGPS.

3.3.1. Traceable Geometric Relational Reasoning

We transformed the execution process of GPL into its two most fundamental oper-
ations: R1&R2 and R1&RA. R1 and R2 are geometric relations, and RA is an quantita-
tive relation. Let us assume the existing geometric relations R1(a, b) = {(X, Y), (M, N)},
R2(b, c) = {(Y, Z)}, quantitative constraint RA(a, b): Equal(Attr(a), Attr(b)), and the
known algebraic equations being {attr_m− attr_n = 0}.

For the R1&R2 type of operation, first, a Cartesian product operation is executed to
obtain preliminary reasoning results R′. Subsequently, intersection is performed on their
point variables to obtain common variables, and each value of the common variables in
R′ is checked for correctness, filtering out the elements that meet the requirements. Then,
a union of point variables is taken to reorganize the reasoning results.

Let us take R1(a, b)&R2(b, c) as example. First, we perform the Cartesian product
operation:

R1(a, b)&R2(b, c) = {(X, Y, Y, Z), (M, N, Y, Z)} (5)

We filter out the elements based on common variables:

R′(a, b, b, c) = {(X, Y, Y, Z)} (6)

Remove duplicates variables:

R1,2(a, b, c) = {(X, Y, Z)} (7)

For the R1&RA type of operation, the intersection of point variables is taken to obtain
common variables, and then the values of these common variables are substituted into the
quantitative relation RA, filtering out the elements that conform to the algebraic constraints.

Let us take R1(a, b)&RA(a, b) as example. First, we construct equations:

R1(a, b)&RA(a, b) = {attr_a− attr_b = 0, attr_m− attr_n = 0} (8)
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We construct a system of equations based on the known algebraic equations and check
whether the equations hold true.

R
′
A(a, b) = {attr_m− attr_n = 0} (9)

Filter the elements in R1 based on whether the equations hold true.

R1,A(a, b) = {(M, N)} (10)

In the above reasoning process, the premises of the new relations are recorded syn-
chronously, achieving traceable geometric relational reasoning.

3.3.2. Minimum Dependency Equation Constructing

The known conditions of geometric problems can be categorized into geometric and
quantitative relationships. Quantitative relationships are eventually represented as a set of
algebraic equations or inequalities. When performing algebraic constraint in the execution
of GPL, the satisfaction of the algebraic constraint under the known algebraic equations or
inequalities of the problem is checked.

Algebraic constraints can be transformed into algebraic expressions represented by a,
creating the target equation g− a. Among the several known equations X in the problem
conditions, those relevant to g− a are selected to construct the target equation group G,
which is subsequently solved. If g = 0 is obtained as a solution, the algebraic constraints
are satisfied. Typically, only a few equations in X are related to g− a, and this subset of
equations is referred to as the minimum dependency equations.

The solving of equations accounts for the majority of the time spent in the entire
process of solving geometric problems. Accelerating the equation solving process is crucial
for enhancing the speed of geometric problem solving. To address this, we propose a
method for constructing the minimum dependency equations. Without loss of generality,
we examine the intermediate process of constructing G. At time t (t = 1, 2, . . .), Gt contains
t equations and m unknowns, with the set of unknowns denoted as Mt. We need to select a
candidate equation xt from X to add to Gt in a way that increases the likelihood of obtaining
a solution for the unknown g. The set of unknowns in xt is represented as Bt. This process
is repeated until |Mt| = t or no new equations can be added.

|Bt ∩Mt| > 0 (11)

min(|Bt −Mt|) (12)

max(|Bt ∩Mt|) (13)

The selection criteria for xt are as follows:

1. Bt must intersect with Mt, as shown in Equation (11). If they do not intersect, it
implies that xt is unrelated to Gt.

2. Under the condition of satisfying Equation (11), adding xt should introduce as few
new unknown variables as possible, as depicted in Equation (12). The closer the
number of t and |Mt| are, the higher the likelihood of solving Gt. In the initial stages
of constructing G, which only contains g − a, M1 − 1 > 1. The number of added
equations each time is a fixed value 1. If we aim to minimize the gap between t and
|Mt|, we should try to introduce as few new equations when selecting xt.

3. Under the condition of satisfying Equations (11) and (12), the equation to be added
should encompass more unknown variables, as demonstrated in Equation (13). These
additional unknown variables are often associated with other equations within Gt,
providing more choices for simplifying Gt. If there are multiple equations that satisfy
these conditions, we can choose any of them at random.



Symmetry 2024, 16, 404 9 of 18

3.4. GPS Methods

By invoking FGPS’s core modules, we have developed both an interactive solver and
a search-based problem solver. Next, we will introduce the forward search algorithm and
the backward search algorithm.

Forward search (FW) starts from the known conditions of the problem and contin-
uously applies theorems to derive new conditions until the goal is achieved. The search
process involves the construction of a search tree, with nodes representing sets of known
conditions and edges denoting theorems, as depicted in Figure 3. The description of the
forward search algorithm is provided in Algorithm 1. The function get_expandable() tra-
verses the search tree based on predefined strategies (BFS, DFS, RS, and RBS) and returns
nodes with the EXPANDABLE state. The function apply_theorem() applies the theorem
associated with the current node and returns whether the problem solved. The function
get_theorem_seqs() returns a list of theorems applied from the root node to the current
node. The function expand(), guided by the known conditions of the current node, checks
the list of applicable theorems and extends new nodes.

Theorem

Node

Expandable

Expanded

Solved

Failed 

Expandable

Expanded

Solved

Failed 

Super

Node

Node

Theorem

Figure 3. Forward search tree (left). Backward search tree (right).

Algorithm 1 Forward search

Input: tree: a tree with the known problem conditions as the root node.
Output: theorem_seqs: list of theorem sequences for problem solving.
Initialize a list theorem_seqs
node← tree.get_expandable()
while node is not None do

solved← node.apply_theorem()
if solved then

node.state← SOLVED
theorem_seqs← node.get_theorem_seqs()
break

end if
node.state← EXPANDED
if node.expand() = 0 then

node.state← FAILED
end if
node← tree.get_expandable()

end while

The complexity of forward search is related to the size of the search space (the number
of defined theorems M) and the difficulty of the problem (the length of the problem-solving
theorem sequence L). We need to apply theorems to expand each node of the forward
search tree. The number of theorems that can be applied varies for different types of nodes,
and we take the average number, k f M, as the number of applied theorems for each node
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expansion. From the beginning to the end of problem solving, the search tree expands to
the M level, and we need to store all nodes of the search tree. The time complexity and
space complexity are shown in Equation (14) and Equation (15), respectively.

T(M, L) =
L

∑
l=1

(k f M)l =
k f M(k f ML − 1)

k f M− 1
= O(ML) (14)

S(M, L) =
L

∑
l=0

(k f M)l =
k f ML+1 − 1

k f M− 1
= O(ML) (15)

Backward search (BW), on the other hand, begins with the problem-solving goal,
expands it into multiple sub-goals, and repeats this process until all sub-goals are resolved.
The search process involves the construction of a search tree, with nodes representing
sub-goals, supernodes representing sets of sub-goals, and edges representing theorems,
as illustrated in Figure 3. The description of the backward search algorithm is provided in
Algorithm 2. The function get_expandable() traverses the search tree based on predefined
strategies, returning supernodes with the EXPANDABLE state. The function node.check()
updates the state of the superNode based on the known problem conditions, while the
function super_node.check() updates its own state based on the states of its nodes. The func-
tion expand() extends the current goal into several sub-goals based on the list of theorems.
The function update() propagates the state update from child nodes to parent nodes,
starting from the leaves and progressing up to the root. The function get_theorem_seqs()
provides a list of theorems applied from the current node to the root node.

Algorithm 2 Backward search

Input: super_tree: a super tree with the problem goal as the root super node.
Output: theorem_seqs: list of theorem sequences for problem solving.
Initialize a list theorem_seqs
super_node← super_tree.get_expandable()
while super_node is not None do

for i = 1 to len(super_node.nodes) do
node← super_node.nodes[i]
node.check()
if node.state is SOLVED then

continue
else if node.state is FAILED then

break
else if node.expand() = 0 then

node.state← FAILED
break

else
node.state← EXPANDED

end if
end for
super_node.check()
super_tree.update()
if super_tree.solved then

theorem_seqs← super_tree.get_theorem_seqs()
break

end if
super_node← super_tree.get_expandable()

end while

Similar to the forward search algorithm, the backward search algorithm is related to M
and L. Let us assume that each node can be expanded into an average of kb M supernodes,
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and each supernode contains an average of ks nodes. In the node expansion phase, the
algorithm needs to expand one node to kb M × ks nodes. In the the backpropagation
phase, algorithm needs to update the state of (kskb M)l nodes from l levels up to root node.
Therefore, its overall time complexity is as shown in Equation (16). The algorithm needs
to save all nodes during the running process, and its space complexity is as shown in
Equation (17).

T(M, L) =
L

∑
l=1

(kskb M)l +
L

∑
l=1

l(kskb M)l = O(LML) (16)

S(M, L) =
L

∑
l=1

(kskb M)l = O(ML) (17)

4. Datasets

Most of the existing datasets for GPS suffer from the following issues: 1. Limited data
volume or non-open source availability. 2. Lack of annotations or incomplete and low-
quality annotations. 3. Absence of formalization theory support, resulting in incoherent
and inconsistent formal systems. 4. Low scalability, defining new predicates and theorems
require solver’s code modifications. 5. Lower difficulty level of the problems. To address
the aforementioned issues, we annotated datasets formalgeo7k and formalgeo-imo. We
conducted a comparative analysis with existing works, as shown in Table 1.

Table 1. Comparative analysis with existing GPS datasets.

Datasets FM Size
Comparative Metrics

FW BW IS AS NT PT ET VC SS

GEOS [31] FL 186 ✓ ✓ ✓
GEOS++ [20] FL 1406 ✓ ✓ ✓

Geometry3K [15] FL 3002 ✓ ✓ ✓
GeoQA [16] P 5010 ✓ ✓ ✓

GeometryQA [51] P 1398 ✓ ✓ ✓
GeoQA+ [53] P 7528 (5010 from [16]) ✓ ✓ ✓
UniGeo [54] P 14,541 (4998 from [16]) ✓ ✓ ✓ ✓
PGPS9K [55] P 9022 (2891 from [15]) ✓ ✓ ✓
formalgeo7k FL 6981 (DA to 133,818) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

formalgeo-imo FL 18 (DA to 2627) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓indicates that the dataset and its formal system have such features. FM denotes formalized methods, FL denotes
formal language, P denotes program, and DA denotes data augmentation. The 9 comparative metrics are forward
solving method, backward solving method, interactive solving, automatic solving, numerical target, proving
target, extensible, validity check, and structured solution.

Our data are collected from various sources, including Geometry3k [15], GeoQA [16],
GeoQA+ [53], and online resources. We carefully curated, classified, deduplicated, and stan-
dardized the problem statements. The creation of the formalgeo7k involved 16 trained
master’s students over a period of around 13 weeks. The creation of the formalgeo-imo
involved four trained master’s students over a period of around 1 week. Excluding the
time spent on collaboration and dataset allocation, annotating datasets took approximately
1000 person-hours.

formalgeo7k comprises 6981 geometric problems that are accompanied by natural
language descriptions, geometric diagrams, formal language annotations, and solution
theorem sequence annotations. An annotated problem is illustrated in in Figure 1 (omitting
the theorem annotations). The problem-solving process can be represented as a hypertree
with conditions as hypernodes and theorems as hyperedges. The solution theorem sequence
is a path from the root node (known conditions) to a leaf node (the problem-solving
objective). By selecting any intermediate node along this path as the problem-solving
objective, we can generate new problems, allowing us to expand the problem number to
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133,818. formalgeo-imo is constructed with the same standards but with more challenging
problem difficulty.

We used the length of theorem sequences required for problem solving as a rough
metric for assessing problem difficulty. All annotated and expanded problems have been
verified by the solver, and their average solution times varying with problem difficulty are
also show in Figure 4. The number of questions with a difficulty level of 15 or higher in
formalgeo7k is quite small, leading to significant fluctuations. After data augmentation,
datasets exhibited a larger scale of data and a smoother difficulty curve. In general, more
challenging problems require longer solving time.

0 5 10 15 20 25
Problem Level

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fr
eq

ue
nc

y 
(%

)

 
formalgeo7k

0 5 10 15 20 25
Problem Level

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y 
(%

)

 
formalgeo7k(DA)

10 20 30 40 50 60
Problem Level

0.06

0.07

0.08

0.09

0.10

0.11

Fr
eq

ue
nc

y 
(%

)

 
formalgeo-imo

0 10 20 30 40 50 60
Problem Level

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
eq

ue
nc

y 
(%

)

 
formalgeo-imo(DA)

0 5 10 15 20 25
Problem Level

0

200

400

600

800

1,000

Av
er

ag
e 

Ti
m

e 
(m

s)

 
formalgeo7k

0 5 10 15 20 25
Problem Level

200

400

600

800

Av
er

ag
e 

Ti
m

e 
(m

s)

 
formalgeo7k(DA)

10 20 30 40 50 60
Problem Level

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Av
er

ag
e 

Ti
m

e 
(m

s)

 
formalgeo-imo

0 10 20 30 40 50 60
Problem Level

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Av
er

ag
e 

Ti
m

e 
(m

s)

 
formalgeo-imo(DA)

Figure 4. Distributionof problem (the top 4). Average time of interactive verification (the bottom 4).
DA represents data augmentation.

5. Experiments

We conducted experiments on the formalgeo7k, comparing different search methods
and strategies in terms of problem-solving success rate, solution time, and the number of
steps required for problem solving.

Forward search (FW) starts from the known conditions of the problem and contin-
uously applies theorems to derive new conditions until the goal is achieved. Backward
search (BW), on the other hand, begins with the problem-solving goal, expands it into
multiple sub-goals, and repeats this process until all sub-goals are resolved.

The search-based methods construct a search tree during the problem-solving process.
We have the flexibility to choose various strategies to traverse the search tree and reach the
goal. Breadth-first search (BFS) begins by expanding the top-level nodes of the search tree
and then proceeds layer by layer into the depth. Depth-first search (DFS) recursively selects
nodes from the search tree from shallow to deep and continues this process. Random search
(RS) randomly selects an expandable node at each stage of expansion. Beam search (BS)
selects k nodes in each stage of expansion and can be viewed as a trade-off between BFS
and RS.

We conducted experiments on two Intel i9-10900X, one AMD Ryzen 9 5900X, and one
AMD Ryzen 9 7950X (The Intel processors were sourced from Intel Corporation, Santa
Clara, California, USA. The AMD processors were sourced from Advanced Micro Devices,
Inc., Sunny vale, California, USA.), running the search algorithms using multiple processes
while maintaining a CPU utilization rate of 80%. The maximum search depth was set to 15,
and the beam size was set to 20. The total duration of the experiments was approximately
3 days. When the timeout for each problem was 300 s, the best success rate for problem
solving was approximately 30%. When the timeout for each problem was increased to
600 s, the specific results are as follows.
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An overview of search-based automated problem-solving results is presented in
Table 2. The highest problem-solving success rate was achieved by forward random search,
reaching 39.708%. Most of the remaining problems were due to timeouts. As timeout
settings are extended and computational resources increase, the proportion of timeout
problems is expected to decrease. The number of unsolved problems using beam search
was significantly higher compared to other strategies. This is because when selecting k
branches, beam search occasionally discards the correct branch. Other contributing factors
may include code bugs, equation solving timeouts, and the omission of theorems related
to trigonometry.

Table 2. An overview of search results.

Method Strategy
Result (%)

Solved Unsolved Timeout

FW BFS 38.86 7.42 53.72
FW DFS 36.16 9.80 54.05
FW RS 39.71 9.07 51.22
FW BS 25.28 38.72 36.00
BW BFS 35.44 2.68 61.88
BW DFS 33.73 2.42 63.84
BW RS 34.05 2.65 63.30
BW BS 34.39 12.86 52.74

The bold data indicates the best results in the FW or BW methods.

In accordance with the length of the theorems required for problem solving, we
roughly categorized the difficulty of the questions into six levels, denoted as l1(length < 3),
l2(3 ≤ length ≤ 4), l3(5 ≤ length ≤ 6), l4(7 ≤ length ≤ 8), l5(9 ≤ length ≤ 10), and
l6(length > 10), with corresponding problem numbers of 2407, 1898, 1247, 824, 313, and
292. The success rates for solving geometric problems of varying difficulty are presented in
Table 3. As the problem difficulty increases, the success rate of problem solving rapidly
declines. This phenomenon can be attributed to the fact that search-based problem-solving
methods exhibit exponential growth in solving time as the length of the theorem sequence
increases, often resulting in timeouts before achieving the goal. For problems of lower
difficulty, backward search demonstrate a relatively higher success rate, while forward
search outperforms in the case of more challenging problems.

Table 3. Results of success rates.

Method Strategy
Success Rates (%)

Total l1 l2 l3 l4 l5 l6

FW BFS 38.86 59.95 38.62 28.55 17.35 8.63 3.77
FW DFS 36.16 55.75 40.04 22.94 12.38 7.03 4.11
FW RS 39.71 59.24 40.04 33.68 16.38 5.43 4.79
FW BS 25.28 46.12 22.60 13.47 5.83 2.88 0.34
BW BFS 35.44 67.22 33.72 11.15 6.67 6.07 1.03
BW DFS 33.73 65.93 30.82 8.90 6.55 5.11 0.68
BW RS 34.05 66.64 31.66 8.66 5.83 4.47 0.68
BW BS 34.39 67.10 31.35 9.46 6.31 5.75 1.03

The bold data indicates the best results in the FW and BW methods.

The efficiency of the problem-solving algorithm can be measured by the search time
and step. The experimental results of search-based automated problem-solving algorithms
on the formalgeo7k are presented in Figure 5.

In terms of average search time, backward search is slightly better than forward search
overall. For solved problems, the search time is roughly proportional to the difficulty of
the problems when problems are of low difficulty. However, as the difficulty increases,
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the search time for both forward search and backward search decreases. On the one hand,
this is because there are very few successfully solved high-difficulty problems, leading to
significant statistical errors. On the other hand, when dividing the difficulty of problems,
we only consider the length of the solution theorem sequence but do not consider the time
required for each theorem execution. The solved high-difficulty problems are precisely
those that require less solution time. For unsolved problems, the search time is roughly
proportional to the difficulty of the problems.

Comparing different search strategies, it can be observed that in the forward search,
BFS has a slightly lower success rate compared to the RS, but it takes the most time. BS
has the lowest success rate but the least time consumption. For forward search, RS is the
optimal strategy as it has the highest success rate and only slightly higher time consumption
than BS that has the lowest success rate. In backward search, BFS is the optimal strategy,
with the highest success rate and only slightly higher time consumption than DFS.

We observe a significant difference in the solution time of the BS strategy in backward
search for solved and unsolved problems. This difference may be due to the characteristics
of the backward search, where even if possible solution branches were discarded in previous
steps, they may be reconstructed in later search steps. Therefore, as for BS strategy in
backward search, discarding potential solution branches does not lead to solution failure
but takes longer search time.
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Figure 5. Average search time (the top 4). Average search step (the bottom 4).

Regarding the search step, forward search statistics are based on the number of nodes,
while backward search statistics are based on the number of super nodes. Hence, they can-
not be directly compared. The search step length in forward search is positively correlated
with the difficulty of problems, while in backward search, it is negatively correlated with
problem difficulty. The results of backward search are counterintuitive, and this could be
because, for higher difficulty problems, the super nodes in backward search may contain
more nodes, leading to increased time spent traversing a single super node and a reduction
in the total number of traversed super nodes. Additionally, it can be observed that the
search step length for unsolved problems in backward search is significantly higher than
the average step length for solved problems. This is because, compared to forward search,
backward search is less likely to halt, and it continues searching even if it misses a potential
solution branch.

Comparing different strategies, DFS has the highest search step length, BS has the
lowest search step length, and RS and BFS strategies have approximately the same average
step length. For forward search, RS strategy is still the optimal strategy because it has the
highest success rate and its search step length is only slightly higher than BS. Backward
search does not exhibit a significantly superior strategy.
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6. Conclusions

Based on the Geometry Formalization Theory and the FormalGeo geometric formal
system, we constructed FGPS, which can serve as an interactive assistant for verifying
problem-solving processes and as an automated problem solver that utilizes variable search-
based methods and strategies. Moreover, we explored the symmetry phenomena inherent
in basic geometric transformations, geometric constructions, geometric problem solving,
and the design of the solving system, and utilize these symmetries to further refine the
system’s design. We annotated GPS datasets formalgeo7k and formalgeo-imo, the former
contains 6981 geometry problems with detailed formal language descriptions and solutions.
Experiments have demonstrated the correctness and efficiency of FGPS. In the future, we
plan to further refine the formal system to annotate geometry problems at the IMO-level.
We also plan to apply deep learning techniques to search tree pruning for the automatic
solving of IMO-level geometric problems.
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