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Abstract: We have developed novel polynomials called delta polynomials, which are, in turn, derived
from the characteristic and matching polynomials of graphs associated with polycyclic aromatic
compounds. Natural logarithmic aromatic indices are derived from these delta polynomials, which
are shown to provide new insights into the aromaticity of polycyclic aromatic compounds, including
the highly symmetric C60 buckminsterfullerene, several other fullerenes, graphene, kekulene series
and other cycloarenes, such as polycyclic circumcoronaphenes and coronoids. The newly devel-
oped aromatic index yields a value of 6.77 for graphene, 6.516865 for buckminsterfullerene C60(Ih),
5.914023 for kekulene (D6h symmetry), 6.064420 for coronene (D6h), 6.137828 for circumcoronene
(D6h), 6.069668 for dicronylene and so forth. Hence, the novel scaled logarithmic aromatic delta
indices developed here appear to provide good quantitative measures of aromaticity, especially when
they are used in conjunction with other aromatic indicators.

Keywords: aromaticity; delta polynomials; delta aromatic indices; characteristic; matching polyno-
mials; aromaticity measures; topological aromatic measures

1. Introduction

The concept of aromaticity has intrigued both experimental [1–12] and theoretical
chemists [13–69] resulting in a plethora of publications on the topic over the decades. The
landscape of aromatic compounds has dramatically metamorphosed with the advent of
molecules such as the highly symmetric buckminsterfullerene [1]; various fullerenes [2];
and circumcised coronoidal polycyclic aromatics, such as kekulene [3–5], septulene [6],
octulene [7], porous nanographenes [9–16] and so forth. Consequently, the old concepts of
aromaticity that included primarily planar polycyclic compounds with 4 n + 2 π-electrons
has evolved into intriguing concepts such as the 3D-aromaticity, spherical aromaticity,
superaromaticity, etc., and thus encompass non-planar compounds and even compounds
that do not strictly conform to the 4n + 2 π-electron rule. Circumcised coronoidal polycyclic
aromatic compounds that display extended macrocyclic conjugation such as circumkeku-
lene, non-alternant septulene [6], nanographenes [9–16] and the truncated icosahedral C60
with Ih symmetry [1,2], the cynosure of fullerenes, have all contributed to the evolution of
the topics of aromaticity and superaromaticity to encompass such a large array of varied
compounds in striking contrast to planar polycyclics with 4n + 2 π-electrons [1–69]. Conse-
quently, the aromaticity concept continues to challenge our understanding owing to the
enhanced thermodynamic stability of several of these polycyclic compounds that can only
be explained through the generalization of these concepts to encompass the phenomenon
of superaromaticity and spherical aromaticity. Yet aromaticity continues to be an elusive
concept, defying our established conceptual platforms and pointing to the compelling
requirement for the development of novel ideas to encompass such a varied platform of
polycyclic compounds that exhibit enhanced thermodynamic or kinetic stabilities.

The advent of kekulene [3–5], a circumcised coronene with D6h symmetry, demon-
strates the existence of a structure with a cavity made possible by an assembly of angularly
annulated benzene rings which arises from a combination of two interacting [4n + 2]annu-
lenes. The enhanced thermodynamic stability of kekulene is experimentally demonstrated
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with the synthesis of this molecule and the observed proton NMR chemical shifts and
magnetic properties—all of which suggest that the extended ring currents arise from indi-
vidual benzene rings [3–5], as opposed to overly extended delocalizations around the entire
structure. Furthermore, sister polyarene molecules with cavities such as septulene and
octulene have been synthesized over the years [6,7], although septulene, with a seven-fold
symmetry exhibiting the D7h point group, does not conform to the traditional notion of
an alternant polycyclic aromatic compound. Notwithstanding the fact that septulene [6]
is not alternant and does not conform to the typical [4n + 2] rule, it exhibits electronic
and magnetic properties that are reminiscent of kekulene, provoking us to revisit our
conventional notions of aromatic compounds.

Topological, group theoretical and graph theoretical techniques [13–70] have been
developed and applied to a large number of polycyclic aromatic compounds, organic
polymers, fullerenes, circumcised coronoidal structures with cavities, nanographenes and
so forth with the objective of shedding light on their structures, spectra, combinatorial
chemistry, properties, magnetic and electronic features, aromaticity and toxicity. One such
technique that has enjoyed considerable success is the conjugated circuit theory [42–44,65],
which relies on the combinatorial enumeration of inherent conjugated circuits and Clar’s
aromatic sextets [19,28,40]. The technique has facilitated a reliable platform for understand-
ing the relative stabilities, aromaticity and magnetic and electronic properties of polycyclic
aromatics. Furthermore, such combinatorial and graph theoretical methods have provided
significant new insights into intriguing phenomena such as superaromaticity, which is
a form of macrocyclic aromaticity. These techniques have revealed that the macrocyclic
conjugation inherent to these structures is the primary cause of their enhanced thermody-
namic stability. Combinatorics and graph theory have been applied to the enumeration of
conjugated circuits, isomers of polycyclic aromatics and their derivatives, spectral polyno-
mials, matching polynomials, distance polynomials and a number of polycyclic aromatics
and fullerene cages [13–76]. An intriguing feature of such applications is that some of
these symmetry-based techniques involve such novel group theoretical techniques, such
as Euler’s totient functions, Polya’s theory of enumeration, etc., to predict their polysub-
stituted isomers and spectra [77]. Many of these polysubstituted aromatics, macrocyclic
arenes, heteropolycyclic arenes and related halocarbons have been studied owing to their
significant importance as environmental pollutants, carcinogens, hepatotoxins, industrial
chemicals and petroleum products. Furthermore, macrocyclic compounds find applications
in the environmental remediation through the selective sequestration of metal ions, and
consequently, they find important applications in the sequestration of toxic metal ions,
for example, in high-level nuclear wastes. Hosoya [21] has carried out pioneering studies
connecting symmetry and matchings of graphs and extensive work has been carried out
by Hosoya [18–24], Aihara [13,23,25,26,29–33,35,40,49–55], Dias [34–39,53,56–58] and the
author and coworkers [16,66–76] connecting such polynomials, graph theoretical concepts,
resonance energies and so forth to gain insights into aromaticity.

The above survey of experimental and theoretical interest in aromaticity and polycyclic
compounds clearly demonstrates significant interest in the topic and the somewhat elusive
nature of aromaticity. Despite all these developments, aromaticity continues to baffle
researchers in this field due to the varied complexity of compounds that belong to this
class. Stimulated by several pioneering conceptual studies that we have cited herein, the
present work extends several of these ideas to encompass both characteristic and matching
polynomials to evolve into novel aromatic scaled delta and zeta indices together with delta
polynomials. We have knitted many of these concepts into a novel fabric of aromaticity in
order to apply these concepts to a vast array of polycyclics, including three-dimensional
fullerenes and polycyclic structures containing cavities as well as conventional polycyclic
aromatics. We demonstrate the utility of delta polynomials and the novel indices that we
propose in this study for a variety of such compounds.
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2. Delta Polynomials: Mathematical and Computational Methods

We start with the definition of the adjacency matrix of a graph:

Aij =

{
1 i f vertices i and j are connected

0 otherwise

An important graph–theoretical invariant, although not unique, is the characteristic
polynomial of the graph, denoted by PG. The characteristic or the spectral polynomial of a
graph is given by:

PG(x) =
∣∣xI − A

∣∣ = Cnxn + Cn−1xn−1 + · · ·+ C1x + C0

where Ck, is the kth coefficient in the characteristic polynomial, which can be interpreted
combinatorically through Sachs’ theorem:

Ck = ∑g∈Gi
(−1)c(g)2r(g)

Gis is Sachs’ subgraph of G containing k vertices; c(g) is the disconnected components
in g; and r(g) is the number of cycles in the subgraph g. The related matching polynomial
or the acyclic polynomial of a graph G can be defined with p(G, k), which is the number of
ways to place k disjoint dimers on the graph G:

MG(x) = ∑[ n
2 ]

k=0(−1)k p(G, k)xn−2k

where [n/2] is the greatest integer contained in n/2. For any graph containing an even
number of vertices, the coefficients of the odd terms are zero, and consequently, they
are not included in the above definition of the matching polynomials. We also note that
the constant coefficient in the matching polynomial enumerates the number of Kekulé
structures or full coverings with matching for any graph G. Another way to express the
matching polynomial that would include zero alternating coefficients is:

MG(x) = ∑n
k=0(−1)kakxn−k

where ak is zero for odd terms while it is the number of dimers for even terms. Hence, ak
is sometimes called the acyclic coefficient, while MG(x) is also referred to as the acyclic
polynomial as it contains the acyclic components of Sachs’ subgraphs in G. The above
definition is more convenient to compare the matching polynomial and the characteristic
polynomial of a graph.

The spectra of a graph G are simply the eigenvalues of the adjacency matrix or the
roots of the characteristic polynomial as defined above. Likewise, the roots of the matching
polynomial constitute the matching spectra of G. For several graphs, the present author [74]
showed that the matching spectra are the eigenvalues of complex-edge-weighted graph
derived from G by assigning complex weights so that the overall adjacency matrix is hermi-
tian. Moreover, Hosoya and the author [78,79] have shown that the matching polynomials
of a number of graphs can be obtained as the characteristic polynomials of complex-edge
weighted graphs, although these techniques are restricted to a few graphs and the weight-
ing scheme becomes more complicated for larger graphs containing multiple fused cycles.
As shown by Aihara [33], an important insight can be obtained into aromaticity through
the concept of topological resonance energy, which is obtained as the weighted algebraic
sum of the difference between graph spectral eigenvalues and the matching spectral values.
Although this is an important measure of aromaticity, it is a difficult quantity to deal with
as the matching spectra of graphs containing a large number of vertices with several fused
cycles as in polycyclic aromatic compounds are difficult to obtain, although the graph
spectra can be more readily obtained by diagonalizing the adjacency matrix by invoking
symmetry or by the standard Givens–Householder tri-diagonalization technique. Even for
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graphs containing a very large number of vertices, it has been shown that the Hadamard
transform technique can be employed to extract all eigenvalues of the adjacency matrix [80].

Consequently, the bottleneck of the topological resonance energy computation lies in
the computation of matching spectra for highly clustered graphs containing large numbers
of vertices. Although Aihara [33] suggested the use of bond resonance energy and circuit
resonance energy to circumvent this difficulty, the quantitative measures of aromaticity
continue to pose challenges for graphs containing multiple fused cycles with a large number
of vertices.

Stimulated by the works of Hosoya [18–24] as well as Hosoya and the current au-
thor [78,79], we propose here novel polynomials which we call delta polynomials and
derive natural logarithmic aromatic indices from the coefficients of delta polynomials. The
delta polynomial for any graph is defined as follows:

δG(x) = ∑n
k=0 |Ck − a k

∣∣∣ xn−k = ∑n
k=0 δkxn−k

where Ck and ak are the coefficients from the characteristic polynomial and matching
polynomial, respectively. We note that the coefficients in the delta polynomial are always
non-negative, and the first few terms of the delta polynomial tend to be zero. Moreover, for
trees or acyclic polyenes, all coefficients in the delta polynomials are identically zero because
the matching and characteristic polynomials become identical for trees. As seen from Sachs’
theorem, the coefficients of the characteristic polynomials contain both cyclic and acyclic
components while the coefficients of the matching polynomials contain purely acyclic
components. Consequently, delta polynomials contain all important cyclic components
of various lengths together with some dimeric components, and thus include several
important measures required to provide quantitative measures of aromaticity. However, as
these coefficients tend to increase in magnitude sharply for larger graphs, we define two
aromatic indices based on the coefficients of delta polynomials.

∆a =
1
n

ln
(
∑ |δ k|

)
,

∆w =
1
n

ln
(
∑ k|δ k|

)
,

where the sum is taken over all non-zero coefficients of the delta polynomial and n is the
number of vertices in the graph. The second aromatic index is considered a weighted index,
as it includes the lengths of various components that are purely non-acyclic. Note that for
comparison, Hosoya’s Z index [18,21,22] and the related Zc index are obtained from the
coefficients of the matching and characteristic polynomials as defined by:

Z =
(
∑ |a k|

)
Zc =

(
∑ |C k|

)
As both Z and Zc grow astronomically, and in order to make them comparable to

our delta aromatic indices, we introduce two indices using the scaled natural logarithmic
functions as follows:

ζM =
1
n

ln
(
∑ |a k|

)
ζC =

1
n

ln
(
∑ |C k|

)
where the first zeta-index is obtained using the coefficients of the matching polynomial,
while the second zeta-index is obtained from the coefficients of the characteristic polynomi-
als. Consequently, we have four measures that can be computed and compared for different
graphs. Among these, we have found that both regular and weighted delta indices are
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good predictors of aromaticity and the relative order of aromaticity among a variety of
compounds that we compare here.

The characteristic polynomials of all structures were computed using the Frame
method developed previously [71–74] while the matching polynomials were computed
using a recursive pruning algorithm described in detail in previous studies [71–74]. We
note that the philosophy behind the delta index in comparison to the zeta indices is that
the zeta index derived from the matching polynomial includes only acyclic contributions
while the zeta index obtained from the characteristic polynomial includes both cyclic
and acyclic contributions without any differentiation. Therefore, the delta indices offer a
compromise as they completely eliminate purely acyclic components. The other advantage
of the delta indices is that unlike the topological resonance energy or bond energy or circuit
energy computations that require the eigenvalues, the delta indices are easier to compute
as they involve only the coefficients of the matching and characteristic polynomials. This
is an advantage because for larger systems, the computations of all roots of the matching
polynomials with reasonable accuracy could pose problems. It appears that the delta indices
offer a reasonable comprise and yet they seem to closely mimic the aromaticity trends. It
should be noted that the delta polynomials go to zero for trees or purely acyclic molecules,
which is consistent with the fact that such compounds are not aromatic, and hence the
delta indices are not defined for such purely acyclic molecules that are not aromatic. The
next section describes the results of our computations and comparison of a number of
polycyclic compounds with varied complexity, including three-dimensional structures such
as fullerenes C60 and C70.

3. Results and Discussion

We considered a number of structures with varied complexities for the study of delta
polynomials and the zeta and delta aromatic indices of these structures. Figure 1 shows a
compilation of such structures that were considered in this study. As seen from Figure 1,
we included planar polycyclic compounds and three-dimensional spherical structures such
as C60, C70 and C72, as well as polycyclic structures with holes, such as kekulene, septulene
and a zigzag macrocycle containing 21 rings. Consequently, these structures offer quite
a varied platform for the comparison of relative aromaticity on the basis of the various
computed indices.
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Table 1 illustrates the computation of various aromatic indices; we have included
the characteristic and matching polynomials of isomers of very simple structures with
three benzene rings, that is, phenanthrene and anthracene. As can be seen from Table 1,
as both are purely alternant benzenoids, as characterized by their bipartite graphs, the
coefficients of the odd terms are zeroes. The constant term of the matching polynomial
is simply the number of resonance structures, which is five for phenanthrene and four
for anthracene, a well-known result, indicating that phenanthrene is more aromatic than
anthracene. Herndon’s [81] resonance energy is simply formulated as a scaled log of the
number of resonance structures multiplied with a constant. However, we note that the
constant term in the matching polynomial alone does not correlate with aromaticity or the
stability of a structure. One needs to consider the contributions from various circuits, which
are included in the other coefficients. The coefficients of other terms in the two polynomials
yield the combinatorial numbers for other Sachs’ subgraphs. The delta polynomials thus
contain only non-acyclic terms enumerated among the Sachs’ subgraphs, although some of
the terms contain both disjoint circuits and dimers. The last but one row in Table 1 shows
the sum of the coefficients of the characteristic polynomial, the sum of the coefficients
of the matching polynomial, the well-known Hosoya’s [18,22] Z index and, finally, the
corresponding sums of delta polynomial coefficients. We also introduced a new weighted
index concept that we designate as ∑ kδk, which weighs over different components of
the Sachs’ non-acyclic graphs. The philosophy behind this is that not all Sachs’ circuits
contained in different coefficients make the same contribution, and hence one needs to
introduce weights as given by the total number of vertices in these disjointed circuits or
simply k. For example, k = 8 would designate a circuit of length 8, a circuit of length
6 + a dimer, and so forth. Thus, by weighting the coefficients with k, we have taken this
important factor into account, that is, not all coefficients have the same circuit lengths,
and thus, the weighting method provides a means for contrasting their contributions. The
last row shows the scaled natural logarithmic indices derived from these sums. First, the
natural logarithmic functions reduces the astronomically large combinatorial numbers for
the sums of these coefficients for large polycyclics. This, combined with a scaling method,
in which we divide the natural logarithm by the number of vertices, eliminates the size
dependency. Thus, the scaled logarithmic index provides a uniform basis to compare and
contrast the aromaticity of a large number of polycyclic compounds with varied sizes and
complexities. Therefore, as can be seen from Table 1, phenanthrene has scaled zeta and
delta indices of ζC: 0.5218471, ζM: 0.5083718, ∆:0.3960841 and ∆w: 0.5642518, while the
corresponding indices for anthracene are ζC: 0.5194570, ζM: 0.5069087, ∆: 0.3890527 and
∆W: 0.5559446. It was noted that the indices reveal a contrast between phenanthrene and
anthracene and predict a correct trend of aromaticity. However, in general cases, as the
Hosoya index is derived from purely acyclic or dimer terms, while aromaticity involves
circuits, delta indices, especially in the weighted forms, offer a good measure of aromaticity.
This is especially true when a comparison needs to be made for compounds of varied sizes
and complexities. All techniques lead to the same conclusion that phenanthrene is more
aromatic than anthracene, as expected. We also obtained the delta polynomials of a number
of zigzag and linear polyacenes of larger sizes. The general trend is that the weighted delta
index is larger for the zigzag structures compared to linear polyacenes, which is consistent
with the trend that the zigzag polyacenes are more aromatic than linear polyacenes. This
arises from a Fibonacci increase in the resonance count for each kink in the structure of a
zigzag polyacene. This in turn translates into a larger weighted delta index for a zigzag
polycyclic as compared with a linear polyacene.
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Table 1. Characteristic, matching and delta polynomials of phenanthrene and the derived Z, zeta and
delta indices.

Phenanthrene

n − k Characteristic
Polynomial

Matching
Polynomial

Delta
Polynomial

14 1.0 1.0 0.0

13 0.0 0.0 0.0

12 −16.0 −16.0 0.0

11 0.0 0.0 0.0

10 98.0 98.0 0.0

9 0.0 0.0 0.0

8 −297.0 −291.0 6.0

7 0.0 0.0 0.0

6 479.0 435.0 44.0

5 0.0 0.0 0.0

4 −407.0 −305.0 102.0

3 0.0 0.0 0.0

2 166.0 82.0 84.0

1 0.0 0.0 0.0

0 −25.0 −5.0 20.0

ZC: 1489 Z: 1233 ∑ δk = 256 ∑ kδk = 2696

ζC: 0.5218471 ζM: 0.5083718 ∆: 0.3960841 ∆W: 0.5642518

Anthracene

n − k Characteristic
Polynomial

Matching
Polynomial

Delta
Polynomial

14 1 1 0

13 0 0 0

12 −16 −16 0

11 0 0 0

10 98 98 0

9 0 0 0

8 −296 −290 6

7 0 0 0

6 473 429 44

5 0 0 0

4 −392 −294 98

3 0 0 0

2 148 76 72

1 0 0 0

0 −16 −4 12

ZC: 1440 Z: 1208 ∑ δk = 232 ∑ kδk = 2400

ζC: 0.5194570 ζM: 0.5069087 ∆: 0.3890527 ∆W: 0.5559446



Symmetry 2024, 16, 391 12 of 26

The two simple cases are considered for illustrative purposes only, as we demonstrate
the power of the techniques with more complex polycyclics starting with coronene and
circumcoronene. The computed results for these two structures are shown in Tables 2 and 3,
respectively. As seen from these tables, the first several terms of the delta polynomials are
zeroes, as these terms contain only purely acyclic contributions. For coronene, the first
non-zero term in the delta polynomial corresponds to the seventh term, which contains the
contributions of from a hexagon in the structure, and since there are no four-membered
rings in the structure, only hexagons make contributions to this term. Starting with this
term, all other subsequent terms contain various other types of circuits in the structure
together with contributions from some disjoint dimers. Consequently, the unweighted delta
indices computed from the coefficients of the delta polynomial are 0.4897992 and 0.5482407,
respectively, clearly suggesting that circumscribing coronene results in considerably en-
hanced aromaticity. The constant coefficients of the two matching polynomials are given by
20 and 980, respectively, which are also the well-known Kekulé counts of the two structures.
As these are purely alternant benzenoid polycyclic aromatic compounds, the square of the
constant coefficients in the matching polynomials yields the constant coefficients in the
characteristic polynomial. We shall discuss in a subsequent paragraph the weighted delta
index together with the other indices of all polycyclics considered in this study. Table 4
shows the various polynomials obtained for kekulene together with the corresponding
unweighted zeta and delta indices. Kekulene can be generated by the circumcision of
the central hexagon of the coronene structure. Consequently, when one compares the
unweighted delta indices of the two structures, one can infer that circumcision results in a
lower delta index for kekulene compared to coronene. That is, circumcision disrupts the
various circuits that were present in coronene, resulting in a lower π-electronic ring current
or lower aromaticity in kekulene compared to coronene. This feature is mirrored by the
delta indices of the two structures.

Tables 5 and 6 consider three polycyclic isomers of C22H12 and the corresponding
circumscribed structures of the three isomers, respectively. The three isomers have been
enumerated in the handbook by Dias [57] on polycyclic aromatic compounds. The three
isomers, namely, triangulene, anthanthrene and benzo[ghi]perylene, represent interesting
cases for our study. Among these, triangulene exhibits a triplet electronic ground state
and it is thus a diradical. We note that this is directly inferred by the zero coefficient of
the constant term of the characteristic polynomial of triangulene, consistent with a doubly
degenerate set of HOMOs, resulting in a triplet ground state. As seen from Table 5, the
delta indices of the three structures indicate that bezo[ghi]pyrelene is the most aromatic
of the three structures with triangulene being the least aromatic. Although the combi-
natorial numbers in Table 6 become more complex due to a greater number of various
circuits in the corresponding circumscribed structures, the final delta indices are much
more amenable to critical comparison and thus shed light on the potential aromaticity of
these compounds. Again, comparing the delta indices of the primitive and circumscribed
counterparts in Tables 5 and 6 reveals that circumscribing results in greater aromaticity
compared to the uncircumscribed structure. The gaps relative to aromaticity among the
isomers are narrowed somewhat when one compares the circumscribed structures to their
uncircumscribed counterparts. In particular, triangulenes obtain a greater aromaticity upon
circumscribing. However, we note that better measures are obtained using the weighted
delta indices which we compare in a subsequent Table and paragraph. Furthermore, as
seen from Table 6, the constant coefficient of the circumscribed triangulene continues to
be zero for the characteristic polynomial suggesting that circumtriangulene continues to
exhibit a triplet diradical ground state although its aromaticity is enhanced relative to
the primitive triangulene structure. This trend is repeated by a number of structures that
we have tested and are not shown here. The general trend is that circumscribing a given
structure results in enhanced aromaticity while circumcision results in lower aromaticity.
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Table 2. Characteristic, matching and delta polynomials of coronene.

n − k Char.
Poly.

Match.
Poly.

Delta
Poly.

24 1 1 0

23 0 0 0

22 −30 −30 0

21 0 0 0

20 387 387 0

19 0 0 0

18 −2832 −2818 14

17 0 0 0

16 13059 12783 276

15 0 0 0

14 −39858 −37620 2238

13 0 0 0

12 82281 72585 9696

11 0 0 0

10 −115272 −90792 24480

9 0 0 0

8 108192 71256 36936

7 0 0 0

6 −65864 −32968 32896

5 0 0 0

4 24432 8016 16416

3 0 0 0

2 −4896 −816 4080

1 0 0 0

0 400 20 380

∑ |x k| a 457504 330092 127412
1
n ln(∑ |x k|) 0.5430642 0.5294636 0.4897992

a xk designates the coefficient in the respective polynomial (characteristic or matching or delta polynomial) of the
corresponding column.

Table 3. Characteristic, matching and delta polynomials of circumcoronene.

n − k Char. Poly. Match. Poly. Delta Poly.

54 1 1 0

53 0 0 0

52 −72 −72 0

51 0 0 0

50 2430 2430 0

49 0 0 0

48 −51152 −51114 38

47 0 0 0
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Table 3. Cont.

n − k Char. Poly. Match. Poly. Delta Poly.

46 753867 751551 2316

45 0 0 0

44 −8277552 −8211876 65676

43 0 0 0

42 70356380 69204580 1151800

41 0 0 0

40 −474823692 −460817112 14006580

39 0 0 0

38 2589615333 2464100913 125514420

37 0 0 0

36 −11556300564 −10696440044 859860520

35 0 0 0

34 42569538372 37958165700 4611372672

33 0 0 0

32 −130222965528 −110557089534 19665875994

31 0 0 0

30 332069146453 264687311485 67381834968

29 0 0 0

28 −707192500956 −520523395944 186669105012

27 0 0 0

26 1257989920284 838506886932 419483033352

25 0 0 0

24 −1866287443412 −1101123547848 765163895564

23 0 0 0

22 2301545596335 1170542244231 1131003352104

21 0 0 0

20 −2347222219224 −997848645108 1349373574116

19 0 0 0

18 1965105336102 673809199342 1291296136760

17 0 0 0

16 −1337106330756 −354768478638 982337852118

15 0 0 0

14 729597602706 142707108690 586890494016

13 0 0 0

12 −313604239964 −42704574172 270899665792

11 0 0 0

10 103654073940 9173052348 94481021592

9 0 0 0

8 −25479629340 −1345586058 24134043282

7 0 0 0
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Table 3. Cont.

n − k Char. Poly. Match. Poly. Delta Poly.

6 4438832481 125224733 4313607748

5 0 0 0

4 −508728588 −6568740 502159848

3 0 0 0

2 33696516 156144 33540372

1 0 0 0

0 −960400 −980 959420

∑ |x k| 13479328942400 6280086816320 7199242126080
1
n ln(∑ |x k|) 0.5598552 0.5457112 0.5482407

Table 4. Characteristic, matching and delta polynomials of kekulene.

n − k Char. Poly. Match. Poly. Delta Poly.

48 1 1 0

47 0 0 0

46 −60 −60 0

45 0 0 0

44 1674 1674 0

43 0 0 0

42 −28874 −28850 −24

41 0 0 0

40 345327 344127 1200

39 0 0 0

38 −3044574 −3016998 27576

37 0 0 0

36 20538689 20152013 386676

35 0 0 0

34 −108618240 −104913492 3704748

33 0 0 0

32 457707249 431969433 25737816

31 0 0 0

30 −1553676412 −1419382254 134294158

29 0 0 0

28 4277976000 3740060904 537915096

27 0 0 0

26 −9591327648 −7914718788 1676608860

25 0 0 0

24 17529851809 13431639205 4098212604

23 0 0 0

22 −26083608096 −18200982024 7882626072
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Table 4. Cont.

n − k Char. Poly. Match. Poly. Delta Poly.

21 0 0 0

20 31479717969 19552772649 11926945320

19 0 0 0

18 −30623699358 −16479660654 14144038704

17 0 0 0

16 23797431375 10743316299 13054115076

15 0 0 0

14 −14592392910 −5315219724 9277173186

13 0 0 0

12 6947150082 1945680262 5001469820

11 0 0 0

10 −2513544072 −509172702 2004371370

9 0 0 0

8 671549841 90806961 580742880

7 0 0 0

6 −127206956 −10292946 116914010

5 0 0 0

4 16035984 665136 15370848

3 0 0 0

2 −1198800 −20328 1178472

1 0 0 0

0 40000 200 39800

∑ |x k| 170396692000 99914817684 70481874316
1
n ln(∑ |x k|) 0.5387791 0.5276580 0.5203879

Table 5. Characteristic, matching and delta polynomials of three polycyclic isomers of C22H12.

Characteristic Polynomials Matching Polynomials Delta Polynomials

n − k Triangulene Anthanthrene Bezo[ghi]
Perylene Triangulene Anthanthrene Bezo[ghi]

Perylene Triangulene Anthanthrene Bezo[ghi]
Perylene

22 1 1 1 1 1 1 0 0 0

21 0 0 0 0 0 0 0 0 0

20 −27 −27 −27 −27 −27 27 0 0 0

19 0 0 0 0 0 0 0 0 0

18 309 309 309 309 309 309 0 0 0

17 0 0 0 0 0 0 0 0 0

16 −1973 −1973 −1974 −1961 −1961 1962 12 12 −12

15 0 0 0 0 0 0 0 0 0

14 7782 7783 7800 7578 7579 7596 204 204 204

13 0 0 0 0 0 0 0 0 0

12 −19818 −19831 −19953 −18426 −18441 18557 1392 1390 −1396

11 0 0 0 0 0 0 0 0 0

10 33027 33110 33580 28127 28218 28624 4900 4892 4956

9 0 0 0 0 0 0 0 0 0

8 −35619 −35902 −36968 −26079 −26354 27126 9540 9548 −9842
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Table 5. Cont.

Characteristic Polynomials Matching Polynomials Delta Polynomials

n − k Triangulene Anthanthrene Bezo[ghi]
Perylene Triangulene Anthanthrene Bezo[ghi]

Perylene Triangulene Anthanthrene Bezo[ghi]
Perylene

7 0 0 0 0 0 0 0 0 0

6 23853 24400 25864 13659 14086 14866 10194 10314 10998

5 0 0 0 0 0 0 0 0 0

4 −8987 −9609 −10796 −3491 −3817 4202 5496 5792 −6594

3 0 0 0 0 0 0 0 0 0

2 1452 1840 2360 306 414 490 1146 1426 1870

1 0 0 0 0 0 0 0 0 0

0 0 −100 −196 0 −10 14 0 90 −182

∑ |x k | 132848 134885 139828 99964 101217 103774 32884 33668 36054
1
n ln(∑ |x k |) 0.5362255 0.5369172 0.5385531 0.5232984 0.5238646 0.5249987 0.4727610 0.4738320 0.4769442

Table 6. Characteristic, matching and delta polynomials of three circumscribed isomers: C52H17,
circumtriangulene, circumanthanthrene and Circumbezo[ghi] perylene.

Circumtriangulene Circumanthanthrene Circumbezo[ghi] Perylene

n − k Characteristic
Polynomial

Matching
Polynomial

Delta
Polynomial n − k Characteristic

Polynomial
Matching
Polynomial

Delta
Polynomial n − k Characteristic

Polynomial
Matching
Polynomial

Delta
Polynomial

52 1 1 0 52 1 1 0 52 1 1 0

51 0 0 0 51 0 0 0 51 0 0 0

50 −69 −69 0 50 −69 −69 0 50 −69 −69 0

49 0 0 0 49 0 0 0 49 0 0 0

48 2226 2226 0 48 2226 2226 0 48 2226 2226 0

47 0 0 0 47 0 0 0 47 0 0 0

46 −44668 −44632 36 46 −44668 −44632 36 46 −44669 −44633 36

45 0 0 0 45 0 0 0 45 0 0 0

44 625713 623625 2088 44 625713 623625 2088 44 625772 623684 2088

43 0 0 0 43 0 0 0 43 0 0 0

42 −6509829 −6453663 56166 42 −6509829 −6453663 56166 42 −6511448 −6455276 56172

41 0 0 0 41 0 0 0 41 0 0 0

40 52251216 51320120 931096 40 52251217 51320121 931096 40 52278690 51347258 931432

39 0 0 0 39 0 0 0 39 0 0 0

38 −331796412 −321134574 10661838 38 −331796457 −321134625 10661832 38 −332119812 −321449318 10670494

37 0 0 0 37 0 0 0 37 0 0 0

36 1695928914 1606342218 89586696 36 1695929871 1606343417 89586454 36 1698736514 1609013576 89722938

35 0 0 0 35 0 0 0 35 0 0 0

34 −7062439782 −6489636480 572803302 34 −7062452491 −6489653683 572798808 34 −7081100003 −6506829077 574270926

33 0 0 0 33 0 0 0 33 0 0 0

32 24162689001 21310401549 2852287452 32 24162806822 21310569758 2852237064 32 24259975217 21396200135 2863775082

31 0 0 0 31 0 0 0 31 0 0 0

30 −68292453531 −57062874051 11229579480 30 −68293262612 −57064060212 11229202400 30 −68696889063 −57399597701 11297291362

29 0 0 0 29 0 0 0 29 0 0 0

28 159962255377 124669968135 35292287242 28 159966519220 124676198180 35290321040 28 161317740165 125718050333 35599689832

27 0 0 0 27 0 0 0 27 0 0 0

26 −310866022785 −221836072383 89029950402 26 −310883651811 −221860905503 89022746308 26 −314554717782 −224434299008 90120418774

25 0 0 0 25 0 0 0 25 0 0 0

24 500842466118 320162665770 180679800348 24 500900434871 320238551209 180661883662 24 509025810275 325296517073 183729293202

23 0 0 0 23 0 0 0 23 0 0 0

22 −667151021522 −372336242084 294814779438 22 −667303817619 −372514716699 294789100920 22 −681972062692 −380402520082 301569542610

21 0 0 0 21 0 0 0 21 0 0 0

20 731241744267 345720833133 385520911134 20 731565732441 346043561601 385522170840 20 753133601175 355744657295 397388943880

19 0 0 0 19 0 0 0 19 0 0 0

18 −654769892103 −253153062357 401616829746 18 −655322555267 −253599322123 401723233144 18 −681052897827 −262920853285 418132044542

17 0 0 0 17 0 0 0 17 0 0 0

16 474141118603 143835845437 330305273166 16 474897139634 144303164122 330593975512 16 499638000612 151208688842 348429311770
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Table 6. Cont.

Circumtriangulene Circumanthanthrene Circumbezo[ghi] Perylene

n − k Characteristic
Polynomial

Matching
Polynomial

Delta
Polynomial n − k Characteristic

Polynomial
Matching
Polynomial

Delta
Polynomial n − k Characteristic

Polynomial
Matching
Polynomial

Delta
Polynomial

15 0 0 0 15 0 0 0 15 0 0 0

14 −273813286767 −62077156797 211736129970 14 −274637349199 −62442496421 212194852778 14 −293623626123 −66316204751 227307421372

13 0 0 0 13 0 0 0 13 0 0 0

12 123696211872 19781999232 103914212640 12 124404621068 19991050046 104413571022 12 135872791533 21597079779 114275711754

11 0 0 0 11 0 0 0 11 0 0 0

10 −42539488824 −4477460040 38062028784 10 −43012391338 −4562686358 38449704980 10 −48360491101 −5038874031 43321617070

9 0 0 0 9 0 0 0 9 0 0 0

8 10698149700 680855244 10017294456 8 10937560349 704696745 10232863604 8 12811571672 801125198 12010446474

7 0 0 0 7 0 0 0 7 0 0 0

6 −1845219852 −63837084 1781382768 6 −1933743487 −68166823 1865576664 6 −2408005299 −80628339 2327376960

5 0 0 0 5 0 0 0 5 0 0 0

4 194068224 3177510 190890714 4 216497569 3644565 212853004 4 297960317 4566433 293393884

3 0 0 0 3 0 0 0 3 0 0 0

2 −9335088 −59886 9275202 2 −12786256 −85352 12700904 2 −21276306 −117326 21158980

1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 240100 490 239610 0 648025 805 647220

∑ |x k
∣∣ 4053375022464 1955648068300 2097726954164 ∑ |x k

∣∣ 4057600722205 1957859452269 2099741269936 ∑ |x k
∣∣ 4196219484388 2006855745534 2189363738854

1
n ln

(
∑ |x k

∣∣) 0.5582802 0.5442643 0.5456130 1
n ln

(
∑ |x k

∣∣) 0.5583002 0.5442860 0.5456314 1
n ln

(
∑ |x k

∣∣) 0.5589463 0.5447614 0.5464352

Next, we consider three-dimensional and other structures that appear to exhibit aro-
matic characters or unusual stabilities. The celebrated buckminsterfullerene with the icosa-
hedral Ih group has been the cynosure of fullerenes. Table 7 displays all three polynomials
of C60 together with the sums of the columns and the scaled natural log indices. There are
several differences that should be noted in the polynomials for the C60 structure compared
to the other polycyclics that we have considered thus far. None of the coefficients of the odd
terms except the first two odd terms is zero for the characteristic and delta polynomials of
C60. For example, the sixth or fifth coefficient, not counting the first term, is twenty-four for
the delta polynomial and is consistent with the twelve pentagons present in the structure.
Likewise, all other odd terms are non-zeroes and contribute toward the delta polynomial.
This is a striking contrast compared to alternant benzenoid hydrocarbons. Furthermore, the
square of the constant term in the matching polynomial does not yield the constant term of
the characteristic polynomial. These features, together with several non-zero odd terms in
the delta polynomials, provide C60 with some unique features. Although the sum of all the
coefficients of the delta polynomial is 2508935631291784, a large number, the scaled log of
the corresponding result is 0.5909773, suggesting that its unweighted delta aromaticity is
much higher than the circumcoronene value of 0.5482407 and even circumcircumcoronene,
circumkekulene and so forth. The weighted delta aromatic indices yield further insights, as
we will now discuss. These results of C60 can also be compared with the corresponding
indices of other fullerenes, such as C70(D5h) and C72(C2v), as shown below.

Table 7. Characteristic, matching and delta polynomials of C60 buckminsterfullerene.

n − k Characteristic
Polynomial

Matching
Polynomial

Delta
Polynomial

60 1 1 0

59 −0 0 0

58 −90 −90 0

57 −0 0 0

56 3825 3825 0
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Table 7. Cont.

n − k Characteristic
Polynomial

Matching
Polynomial

Delta
Polynomial

55 −24 0 24

54 −102160 −102120 40

53 1920 0 1920

52 1925160 1922040 3120

51 −72240 0 72240

50 −27244512 −27130596 113916

49 1700640 0 1700640

48 300906380 298317860 2588520

47 −28113600 0 28113600

46 −2661033600 −2619980460 41053140

45 347208896 0 347208896

44 19180834020 18697786680 483047340

43 −3327625680 0 3327625680

42 −114118295000 −109742831260 4375463740

41 25376437920 0 25376437920

40 565407465144 534162544380 31244920764

39 −156652575440 0 156652575440

38 −2346799508400 −2168137517940 178661990460

37 792175427520 0 792175427520

36 8189116955350 7362904561730 826212393620

35 −3308173115904 0 3308173115904

34 −24056403184260 −20949286202160 3107116982100

33 11466942645600 0 11466942645600

32 59443188508110 49924889888850 9518298619260

31 −33076275953760 0 33076275953760

30 −123163094844616 −99463457244844 23699637599772

29 79417625268960 0 79417625268960

28 212712221820840 165074851632300 47637370188540

27 −158412719276240 0 158412719276240

26 −303315997028160 −227043126274260 76272870753900

25 261359090670624 0 261359090670624

24 351861389316780 256967614454320 94893774862460

23 −354145195147200 0 354145195147200

22 −324375523213200 −237135867688980 87239655524220

21 390055074762240 0 390055074762240

20 228227031040884 176345540119296 51881490921588

19 −344185906596720 0 344185906596720

18 −112654402736360 −104113567937140 8540834799220
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Table 7. Cont.

n − k Characteristic
Polynomial

Matching
Polynomial

Delta
Polynomial

17 238553091055200 0 238553091055200

16 29617003666920 47883826976580 18266823309660

15 −126428882536240 0 126428882536240

14 4679380503120 −16742486291340 12063105788220

13 49433493646080 0 49433493646080

12 −8131429397135 4310718227685 3820711169450

11 −13627897407360 0 13627897407360

10 3576552321006 −783047312406 2793505008600

9 2527365617120 0 2527365617120

8 −831616531095 94541532165 737074998930

7 −310065067080 0 310065067080

6 108565938200 −6946574300 101619363900

5 26034025632 0 26034025632

4 −7440712560 269272620 7171439940

3 −1566501120 0 1566501120

2 186416640 −4202760 182213880

1 54743040 0 54743040

0 2985984 12500 2973484

∑ |x k| 3865312407639512 1417036634543488 2508935631291784
1
n ln(∑ |x k|) 0.5981803 0.5814557 0.5909773

These computations can be extended to large macrocycles, such as the one shown
in Figure 1 containing 21 hexagons arranged in a zigzag fashion with a large internal
cavity. The various polynomials for such a macrocycle are shown in Table 8. As this is an
alternant benzenoid hydrocarbon, we show only the coefficients of the even terms as all
odd terms have zero coefficients for all three polynomials. This macrocycle with a zigzag
structure has a delta index of 0.5352335, making it comparable to circumcoronene, which
has a delta index of 0.5482407. This implies that the zigzag macrocycle with 21 rings less
aromatic compared to circumcoronene but more aromatic compared to kekulene with a
delta index of 0.5203879. We note that the weighted delta index appears to provide yet
another reliable way to compare different structures, although any of these indices should
be used in conjunction with other parameters, such as the HOMO-LUMO gap or electronic
or magnetic parameters derived from quantum chemical computations.

Table 8. Characteristic, matching and delta polynomials of the zigzag macrocycle-21 together with
their indices.

n − k Ck Mk δk

84 1 1 0

82 −105 −105 0

80 5292 5292 0

78 −170552 −170510 42

76 3950629 3946639 3990
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Table 8. Cont.

n − k Ck Mk δk

74 −70093203 −69911859 181344

72 991282749 986031143 5251606

70 −11482348005 −11373459253 108888752

68 111090087176 109367937824 1722149352

66 −910947963808 −889334531796 21613432012

64 6402925439287 6181826617949 221098821338

62 −38919293230683 −37040011262025 1879281968658

60 206013904397115 192551488336995 13462416060120

58 −955002794104467 −872839129452669 82163664651798

56 3894336217341121 3463521386236771 430814831104350

54 −14019373614031827 −12066034271467827 1953339342564000

52 44678801369930336 36981548810147848 7697252559782488

50 −126321154074068661 −99857114193811115 26464039880257546

48 317338685795324123 237720042560254363 79618643235069760

46 −709062372660591571 −499006339626984227 210056033033607344

44 1409909022006755539 923239449763670729 486669572243084810

42 −2495016469484972200 −1504059185145959400 990957284339012800

40 3927963303866069473 2154224942879036951 1773738360987032522

38 −5496873577643855036 −2706936481872745914 2789937095771109122

36 6829111016615764029 2976116960372998897 3852994056242765132

34 −7518883235006766618 −2853311058653127710 4665572176353638908

32 7319902384178141972 2375786868595946840 4944115515582195132

30 −6283532923932044803 −1709655914472694895 4573877009459349908

28 4739885867813791187 1057153335134041467 3682732532679749720

26 −3129063398676383265 −557849001975167171 2571214396701216094

24 1798911321678387099 249182267286144541 1549729054392242558

22 −895371948756710388 −93314898694188010 802057050062522378

20 383122049845443519 28961471055606009 354160578789837510

18 −139739031770502510 −7347157054733772 132391874715768738

16 42996786829876846 1498155252911156 41498631576965690

14 −11017873944937905 −240532059951131 10777341884986774

12 2313181667668728 29633110868332 2283548556800396

10 −389499119207522 −2710827868354 386788291339168

8 51095415744876 176380210708 50919035534168

6 −5008008625962 −7697442472 5000311183490

4 343396584009 206946163 343189637846

2 −14620716108 −2982916 14617733192

0 289340100 17014 289323086

∑ |x k| 53640581451802650405 20089114432935826763 33551467018866823642
1
n ln(∑ |x k|) 0.5408195 0.5291275 0.5352335
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Table 9 shows a cumulative across-board comparison of all four indices of all struc-
tures that are considered in the present study. As both delta and zeta indices are derived
from scaled natural log values, we uniformly multiplied the indices by a factor of 10 in
Table 9 for comparison. It can be seen from Table 9 that the weighted delta index appears
to provide one of the best measures of aromaticity and stability. For example, the weighted
delta index of buckminsterfullerene stands out as 6.516865, a maximum among all struc-
tures considered here with the exception of graphene. In fact, while the weighted delta
index of buckminsterfullerene is higher than both C70(D5h) and C72(C2v), this trend is not
reproduced by any of the other indices shown in Table 9. We note that both C72(C2v) and
C72(D6d) structures have been found to be stable isomers [82,83]. Moreover, we note that
as the weighted delta indices do not vary in large magnitude, and small changes should
be considered important as the weighted indices are subtle in their variations. As seen
from Table 9, circumcoronene is more aromatic than coronene as well as hexbenzcoronene.
Polycyclic structures with cavities, such as coronaphene, circumcoronaphene, kekulene, etc.,
are less aromatic compared to their parent structures prior to circumcision. On the other
hand, kekulene and septulene have a remarkably similar aromaticity, as inferred from their
weighted delta indices of 5.914023 and 5.884901, respectively. Of the three C22H12 isomers,
triangulene exhibits the least aromaticity while benzo[ghi]perylene exhibits the greatest
aromaticity. We also note a few variations in trends, for example, ovalene is predicted to be
much less aromatic compared to circumovalene on the basis of zeta and unweighted delta
index but the weighted delta index exhibits the same trend but with a smaller contrast.
While circumpyrene is predicted to be less aromatic compared to circumovalene on the
basis of the zeta and unweighted delta indices, the weighted delta index predicts the
opposite trend with a smaller contrast.

Kekulene and septulene are virtually identical relative to the zeta indices, as can
be seen from Table 9. The identical values of the scaled Hosoya index require further
inquiry. Moreover, the delta index suggests an opposite trend, in that it predicts septulene
to be slightly more aromatic compared to kekulene, although the weighted delta index
predicts kekulene to be slightly more aromatic than septulene. The sum of the coefficients
of the three polynomials and the weighted sum for kekulene are given as 170396692000,
99914817684, 70481874316 and 2130357387264, respectively. The corresponding values
for septulene are 12686887009024, 6806150529706, 5880736479318 and 205289991176192,
respectively. Consequently, although these numbers are quite different for kekulene and
septulene, when they are scaled by the number of vertices after taking log of these values,
accidental degeneracy is reached for kekulene relative to Hosoya’s Z index while the
Zc index is almost the same. Thus, these two indices fail to differentiate septulene and
kekulene while the weighted delta index appears to provide the correct trend.

We were able to obtain an estimate of the aromaticity delta index for graphene using an
extrapolation scheme by using the results of coronene, circumcoronene and circumcircum-
coronene. A previous study on the degree-based topological indices of series of polycyclic
aromatics [69] has revealed that if one extrapolates the results of known circumcoronene
series with the order of circumscribing as n~6.4, one obtains the results converging to
graphene. By using the same extrapolation scheme with the results obtained for coronene,
circumcoronene and circumcircumcoronene, we obtain the weighted and unweighted
delta indices for graphene converging to 6.77. Consequently, one can compare this value
to C60 value of 6.5116865 and conclude that the correct trend is predicted by the newly
formulated delta aromatic indices and delta polynomials. Indeed, the highly symmetric
buckminsterfullerene is confirmed to be the most stable species among small molecules,
fullerenes, and clusters, which corroborates with experimental observations. Furthermore,
we note that other topological indices have been applied to different forms of carbon and
other complex networks such as diamond and other metal organic frameworks [84,85].
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Table 9. Computed zeta and delta aromatic indices of polycyclic compounds.

System ζC × 10−1 ζM × 10−1 ∆ × 10−1 ∆W × 10−1

Coronene 5.430642 5.294636 4.897992 6.064420

Circumcoronene 5.598552 5.457112 5.482407 6.137828

Hexbencoronene 5.520197 5.375805 5.332557 6.120283

Ovalene 5.489804 5.353347 5.165118 6.119007

Circumovalene 5.630656 5.487418 5.556126 6.121432

Circumpyrene 5.547669 5.408986 5.352999 6.139214

Circumcircumpyrene 5.661399 5.516115 5.614513 6.104184

Coronaphene 5.394510 5.281798 5.089506 5.963508

Circumcoronaphene 5.513583 5.452279 5.371723 5.903852

C60 (Ih) 5.981803 5.814557 5.909773 6.516865

C70 (D5h) 5.985028 5.814903 5.934508 6.476662

C72 (C2v) 5.986215 5.814966 5.939604 6.470739

Kekulene 5.387791 5.276580 5.203879 5.914023

Septulene 5.387784 5.276580 5.250483 5.884901

Dicronylene 5.510041 5.374743 5.356110 6.069668

Triangulene (C22H12) 5.362255 5.232984 4.727610 5.958243

Anthanthrene (C22H12) 5.369172 5.238646 4.738320 5.971711

Bezo[ghi]perylene (C22H12) 5.385531 5.249987 4.769442 6.007196

Circumtriangulene (C52H18) 5.582802 5.442643 5.456130 6.129567

Circumanthanthrene (C52H18) 5.583002 5.442860 5.456314 6.129790

Circumbezo[ghi]perylene (C52H18) 5.589463 5.447614 5.464352 6.138383

Macro-zig-21 5.408195 5.291275 5.352335 5.822065

Graphene [6.771] [6.77]

4. Conclusions

In this study, we proposed hybrid polynomials called delta polynomials and created
two scaled logarithmic indices, which we called delta aromatic indices. These indices
combined with the zeta indices, which are also scaled versions, were evaluated for a num-
ber of polycyclic structures, including fullerenes, kekulenes, septulene, circumcoronene,
circumcoronaphene, dicronylene, macrocycles and different isomers of polycyclic com-
pounds. It was shown that the delta indices, especially the weighted delta indices, appear
to conform closely with the aromaticity trends of the investigated compounds. We suggest
that these newly proposed delta indices can be used in conjunction with other topological,
electronic, magnetic and quantum chemical parameters to gain considerable insights into
the longstanding phenomenon of aromaticity, superaromaticity and spherical aromaticity.
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