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Abstract

:

We have developed novel polynomials called delta polynomials, which are, in turn, derived from the characteristic and matching polynomials of graphs associated with polycyclic aromatic compounds. Natural logarithmic aromatic indices are derived from these delta polynomials, which are shown to provide new insights into the aromaticity of polycyclic aromatic compounds, including the highly symmetric C60 buckminsterfullerene, several other fullerenes, graphene, kekulene series and other cycloarenes, such as polycyclic circumcoronaphenes and coronoids. The newly developed aromatic index yields a value of 6.77 for graphene, 6.516865 for buckminsterfullerene C60(Ih), 5.914023 for kekulene (D6h symmetry), 6.064420 for coronene (D6h), 6.137828 for circumcoronene (D6h), 6.069668 for dicronylene and so forth. Hence, the novel scaled logarithmic aromatic delta indices developed here appear to provide good quantitative measures of aromaticity, especially when they are used in conjunction with other aromatic indicators.
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1. Introduction


The concept of aromaticity has intrigued both experimental [1,2,3,4,5,6,7,8,9,10,11,12] and theoretical chemists [13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69] resulting in a plethora of publications on the topic over the decades. The landscape of aromatic compounds has dramatically metamorphosed with the advent of molecules such as the highly symmetric buckminsterfullerene [1]; various fullerenes [2]; and circumcised coronoidal polycyclic aromatics, such as kekulene [3,4,5], septulene [6], octulene [7], porous nanographenes [9,10,11,12,13,14,15,16] and so forth. Consequently, the old concepts of aromaticity that included primarily planar polycyclic compounds with 4 n + 2 π-electrons has evolved into intriguing concepts such as the 3D-aromaticity, spherical aromaticity, superaromaticity, etc., and thus encompass non-planar compounds and even compounds that do not strictly conform to the 4n + 2 π-electron rule. Circumcised coronoidal polycyclic aromatic compounds that display extended macrocyclic conjugation such as circumkekulene, non-alternant septulene [6], nanographenes [9,10,11,12,13,14,15,16] and the truncated icosahedral C60 with Ih symmetry [1,2], the cynosure of fullerenes, have all contributed to the evolution of the topics of aromaticity and superaromaticity to encompass such a large array of varied compounds in striking contrast to planar polycyclics with 4n + 2 π-electrons [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69]. Consequently, the aromaticity concept continues to challenge our understanding owing to the enhanced thermodynamic stability of several of these polycyclic compounds that can only be explained through the generalization of these concepts to encompass the phenomenon of superaromaticity and spherical aromaticity. Yet aromaticity continues to be an elusive concept, defying our established conceptual platforms and pointing to the compelling requirement for the development of novel ideas to encompass such a varied platform of polycyclic compounds that exhibit enhanced thermodynamic or kinetic stabilities.



The advent of kekulene [3,4,5], a circumcised coronene with D6h symmetry, demonstrates the existence of a structure with a cavity made possible by an assembly of angularly annulated benzene rings which arises from a combination of two interacting [4n + 2]annulenes. The enhanced thermodynamic stability of kekulene is experimentally demonstrated with the synthesis of this molecule and the observed proton NMR chemical shifts and magnetic properties—all of which suggest that the extended ring currents arise from individual benzene rings [3,4,5], as opposed to overly extended delocalizations around the entire structure. Furthermore, sister polyarene molecules with cavities such as septulene and octulene have been synthesized over the years [6,7], although septulene, with a seven-fold symmetry exhibiting the D7h point group, does not conform to the traditional notion of an alternant polycyclic aromatic compound. Notwithstanding the fact that septulene [6] is not alternant and does not conform to the typical [4n + 2] rule, it exhibits electronic and magnetic properties that are reminiscent of kekulene, provoking us to revisit our conventional notions of aromatic compounds.



Topological, group theoretical and graph theoretical techniques [13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70] have been developed and applied to a large number of polycyclic aromatic compounds, organic polymers, fullerenes, circumcised coronoidal structures with cavities, nanographenes and so forth with the objective of shedding light on their structures, spectra, combinatorial chemistry, properties, magnetic and electronic features, aromaticity and toxicity. One such technique that has enjoyed considerable success is the conjugated circuit theory [42,43,44,65], which relies on the combinatorial enumeration of inherent conjugated circuits and Clar’s aromatic sextets [19,28,40]. The technique has facilitated a reliable platform for understanding the relative stabilities, aromaticity and magnetic and electronic properties of polycyclic aromatics. Furthermore, such combinatorial and graph theoretical methods have provided significant new insights into intriguing phenomena such as superaromaticity, which is a form of macrocyclic aromaticity. These techniques have revealed that the macrocyclic conjugation inherent to these structures is the primary cause of their enhanced thermodynamic stability. Combinatorics and graph theory have been applied to the enumeration of conjugated circuits, isomers of polycyclic aromatics and their derivatives, spectral polynomials, matching polynomials, distance polynomials and a number of polycyclic aromatics and fullerene cages [13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76]. An intriguing feature of such applications is that some of these symmetry-based techniques involve such novel group theoretical techniques, such as Euler’s totient functions, Polya’s theory of enumeration, etc., to predict their polysubstituted isomers and spectra [77]. Many of these polysubstituted aromatics, macrocyclic arenes, heteropolycyclic arenes and related halocarbons have been studied owing to their significant importance as environmental pollutants, carcinogens, hepatotoxins, industrial chemicals and petroleum products. Furthermore, macrocyclic compounds find applications in the environmental remediation through the selective sequestration of metal ions, and consequently, they find important applications in the sequestration of toxic metal ions, for example, in high-level nuclear wastes. Hosoya [21] has carried out pioneering studies connecting symmetry and matchings of graphs and extensive work has been carried out by Hosoya [18,19,20,21,22,23,24], Aihara [13,23,25,26,29,30,31,32,33,35,40,49,50,51,52,53,54,55], Dias [34,35,36,37,38,39,53,56,57,58] and the author and coworkers [16,66,67,68,69,70,71,72,73,74,75,76] connecting such polynomials, graph theoretical concepts, resonance energies and so forth to gain insights into aromaticity.



The above survey of experimental and theoretical interest in aromaticity and polycyclic compounds clearly demonstrates significant interest in the topic and the somewhat elusive nature of aromaticity. Despite all these developments, aromaticity continues to baffle researchers in this field due to the varied complexity of compounds that belong to this class. Stimulated by several pioneering conceptual studies that we have cited herein, the present work extends several of these ideas to encompass both characteristic and matching polynomials to evolve into novel aromatic scaled delta and zeta indices together with delta polynomials. We have knitted many of these concepts into a novel fabric of aromaticity in order to apply these concepts to a vast array of polycyclics, including three-dimensional fullerenes and polycyclic structures containing cavities as well as conventional polycyclic aromatics. We demonstrate the utility of delta polynomials and the novel indices that we propose in this study for a variety of such compounds.




2. Delta Polynomials: Mathematical and Computational Methods


We start with the definition of the adjacency matrix of a graph:


    A   i j   =       1   i f   v e r t i c e s   i   a n d   j   a r e   c o n n e c t e d       0   o t h e r w i s e        











An important graph–theoretical invariant, although not unique, is the characteristic polynomial of the graph, denoted by PG. The characteristic or the spectral polynomial of a graph is given by:


    P   G     x   =        x I − A      =   C   n     x   n   +   C   n − 1     x   n − 1   + ⋯ +   C   1   x +   C   0    








where Ck, is the kth coefficient in the characteristic polynomial, which can be interpreted combinatorically through Sachs’ theorem:


    C   k   =   ∑  g ∈   G   i        ( − 1 )   c ( g )     2   r ( g )      











Gis is Sachs’ subgraph of G containing k vertices; c(g) is the disconnected components in g; and r(g) is the number of cycles in the subgraph g. The related matching polynomial or the acyclic polynomial of a graph G can be defined with p(G, k), which is the number of ways to place k disjoint dimers on the graph G:


    M   G     x   =   ∑  k = 0   [   n   2   ]        − 1     k     p   G , k     x   n − 2 k    








where [n/2] is the greatest integer contained in n/2. For any graph containing an even number of vertices, the coefficients of the odd terms are zero, and consequently, they are not included in the above definition of the matching polynomials. We also note that the constant coefficient in the matching polynomial enumerates the number of Kekulé structures or full coverings with matching for any graph G. Another way to express the matching polynomial that would include zero alternating coefficients is:


    M   G     x   =   ∑  k = 0   n        − 1     k       a   k     x   n − k    








where ak is zero for odd terms while it is the number of dimers for even terms. Hence, ak is sometimes called the acyclic coefficient, while MG(x) is also referred to as the acyclic polynomial as it contains the acyclic components of Sachs’ subgraphs in G. The above definition is more convenient to compare the matching polynomial and the characteristic polynomial of a graph.



The spectra of a graph G are simply the eigenvalues of the adjacency matrix or the roots of the characteristic polynomial as defined above. Likewise, the roots of the matching polynomial constitute the matching spectra of G. For several graphs, the present author [74] showed that the matching spectra are the eigenvalues of complex-edge-weighted graph derived from G by assigning complex weights so that the overall adjacency matrix is hermitian. Moreover, Hosoya and the author [78,79] have shown that the matching polynomials of a number of graphs can be obtained as the characteristic polynomials of complex-edge weighted graphs, although these techniques are restricted to a few graphs and the weighting scheme becomes more complicated for larger graphs containing multiple fused cycles. As shown by Aihara [33], an important insight can be obtained into aromaticity through the concept of topological resonance energy, which is obtained as the weighted algebraic sum of the difference between graph spectral eigenvalues and the matching spectral values. Although this is an important measure of aromaticity, it is a difficult quantity to deal with as the matching spectra of graphs containing a large number of vertices with several fused cycles as in polycyclic aromatic compounds are difficult to obtain, although the graph spectra can be more readily obtained by diagonalizing the adjacency matrix by invoking symmetry or by the standard Givens–Householder tri-diagonalization technique. Even for graphs containing a very large number of vertices, it has been shown that the Hadamard transform technique can be employed to extract all eigenvalues of the adjacency matrix [80].



Consequently, the bottleneck of the topological resonance energy computation lies in the computation of matching spectra for highly clustered graphs containing large numbers of vertices. Although Aihara [33] suggested the use of bond resonance energy and circuit resonance energy to circumvent this difficulty, the quantitative measures of aromaticity continue to pose challenges for graphs containing multiple fused cycles with a large number of vertices.



Stimulated by the works of Hosoya [18,19,20,21,22,23,24] as well as Hosoya and the current author [78,79], we propose here novel polynomials which we call delta polynomials and derive natural logarithmic aromatic indices from the coefficients of delta polynomials. The delta polynomial for any graph is defined as follows:


    δ   G     x   =   ∑  k = 0   n      |   C   k   −   a   k   |     x   n − k     =   ∑  k = 0   n      δ   k       x   n − k    








where Ck and ak are the coefficients from the characteristic polynomial and matching polynomial, respectively. We note that the coefficients in the delta polynomial are always non-negative, and the first few terms of the delta polynomial tend to be zero. Moreover, for trees or acyclic polyenes, all coefficients in the delta polynomials are identically zero because the matching and characteristic polynomials become identical for trees. As seen from Sachs’ theorem, the coefficients of the characteristic polynomials contain both cyclic and acyclic components while the coefficients of the matching polynomials contain purely acyclic components. Consequently, delta polynomials contain all important cyclic components of various lengths together with some dimeric components, and thus include several important measures required to provide quantitative measures of aromaticity. However, as these coefficients tend to increase in magnitude sharply for larger graphs, we define two aromatic indices based on the coefficients of delta polynomials.
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where the sum is taken over all non-zero coefficients of the delta polynomial and n is the number of vertices in the graph. The second aromatic index is considered a weighted index, as it includes the lengths of various components that are purely non-acyclic. Note that for comparison, Hosoya’s Z index [18,21,22] and the related Zc index are obtained from the coefficients of the matching and characteristic polynomials as defined by:
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As both Z and Zc grow astronomically, and in order to make them comparable to our delta aromatic indices, we introduce two indices using the scaled natural logarithmic functions as follows:


    ζ   M   =   1   n     ln  ⁡     ∑    | a   k   |        
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where the first zeta-index is obtained using the coefficients of the matching polynomial, while the second zeta-index is obtained from the coefficients of the characteristic polynomials. Consequently, we have four measures that can be computed and compared for different graphs. Among these, we have found that both regular and weighted delta indices are good predictors of aromaticity and the relative order of aromaticity among a variety of compounds that we compare here.



The characteristic polynomials of all structures were computed using the Frame method developed previously [71,72,73,74] while the matching polynomials were computed using a recursive pruning algorithm described in detail in previous studies [71,72,73,74]. We note that the philosophy behind the delta index in comparison to the zeta indices is that the zeta index derived from the matching polynomial includes only acyclic contributions while the zeta index obtained from the characteristic polynomial includes both cyclic and acyclic contributions without any differentiation. Therefore, the delta indices offer a compromise as they completely eliminate purely acyclic components. The other advantage of the delta indices is that unlike the topological resonance energy or bond energy or circuit energy computations that require the eigenvalues, the delta indices are easier to compute as they involve only the coefficients of the matching and characteristic polynomials. This is an advantage because for larger systems, the computations of all roots of the matching polynomials with reasonable accuracy could pose problems. It appears that the delta indices offer a reasonable comprise and yet they seem to closely mimic the aromaticity trends. It should be noted that the delta polynomials go to zero for trees or purely acyclic molecules, which is consistent with the fact that such compounds are not aromatic, and hence the delta indices are not defined for such purely acyclic molecules that are not aromatic. The next section describes the results of our computations and comparison of a number of polycyclic compounds with varied complexity, including three-dimensional structures such as fullerenes C60 and C70.




3. Results and Discussion


We considered a number of structures with varied complexities for the study of delta polynomials and the zeta and delta aromatic indices of these structures. Figure 1 shows a compilation of such structures that were considered in this study. As seen from Figure 1, we included planar polycyclic compounds and three-dimensional spherical structures such as C60, C70 and C72, as well as polycyclic structures with holes, such as kekulene, septulene and a zigzag macrocycle containing 21 rings. Consequently, these structures offer quite a varied platform for the comparison of relative aromaticity on the basis of the various computed indices.



Table 1 illustrates the computation of various aromatic indices; we have included the characteristic and matching polynomials of isomers of very simple structures with three benzene rings, that is, phenanthrene and anthracene. As can be seen from Table 1, as both are purely alternant benzenoids, as characterized by their bipartite graphs, the coefficients of the odd terms are zeroes. The constant term of the matching polynomial is simply the number of resonance structures, which is five for phenanthrene and four for anthracene, a well-known result, indicating that phenanthrene is more aromatic than anthracene. Herndon’s [81] resonance energy is simply formulated as a scaled log of the number of resonance structures multiplied with a constant. However, we note that the constant term in the matching polynomial alone does not correlate with aromaticity or the stability of a structure. One needs to consider the contributions from various circuits, which are included in the other coefficients. The coefficients of other terms in the two polynomials yield the combinatorial numbers for other Sachs’ subgraphs. The delta polynomials thus contain only non-acyclic terms enumerated among the Sachs’ subgraphs, although some of the terms contain both disjoint circuits and dimers. The last but one row in Table 1 shows the sum of the coefficients of the characteristic polynomial, the sum of the coefficients of the matching polynomial, the well-known Hosoya’s [18,22] Z index and, finally, the corresponding sums of delta polynomial coefficients. We also introduced a new weighted index concept that we designate as    ∑  k   δ   k      , which weighs over different components of the Sachs’ non-acyclic graphs. The philosophy behind this is that not all Sachs’ circuits contained in different coefficients make the same contribution, and hence one needs to introduce weights as given by the total number of vertices in these disjointed circuits or simply k. For example, k = 8 would designate a circuit of length 8, a circuit of length 6 + a dimer, and so forth. Thus, by weighting the coefficients with k, we have taken this important factor into account, that is, not all coefficients have the same circuit lengths, and thus, the weighting method provides a means for contrasting their contributions. The last row shows the scaled natural logarithmic indices derived from these sums. First, the natural logarithmic functions reduces the astronomically large combinatorial numbers for the sums of these coefficients for large polycyclics. This, combined with a scaling method, in which we divide the natural logarithm by the number of vertices, eliminates the size dependency. Thus, the scaled logarithmic index provides a uniform basis to compare and contrast the aromaticity of a large number of polycyclic compounds with varied sizes and complexities. Therefore, as can be seen from Table 1, phenanthrene has scaled zeta and delta indices of ζC: 0.5218471, ζM: 0.5083718, Δ:0.3960841 and Δw: 0.5642518, while the corresponding indices for anthracene are ζC: 0.5194570, ζM: 0.5069087, Δ: 0.3890527 and ΔW: 0.5559446. It was noted that the indices reveal a contrast between phenanthrene and anthracene and predict a correct trend of aromaticity. However, in general cases, as the Hosoya index is derived from purely acyclic or dimer terms, while aromaticity involves circuits, delta indices, especially in the weighted forms, offer a good measure of aromaticity. This is especially true when a comparison needs to be made for compounds of varied sizes and complexities. All techniques lead to the same conclusion that phenanthrene is more aromatic than anthracene, as expected. We also obtained the delta polynomials of a number of zigzag and linear polyacenes of larger sizes. The general trend is that the weighted delta index is larger for the zigzag structures compared to linear polyacenes, which is consistent with the trend that the zigzag polyacenes are more aromatic than linear polyacenes. This arises from a Fibonacci increase in the resonance count for each kink in the structure of a zigzag polyacene. This in turn translates into a larger weighted delta index for a zigzag polycyclic as compared with a linear polyacene.



The two simple cases are considered for illustrative purposes only, as we demonstrate the power of the techniques with more complex polycyclics starting with coronene and circumcoronene. The computed results for these two structures are shown in Table 2 and Table 3, respectively. As seen from these tables, the first several terms of the delta polynomials are zeroes, as these terms contain only purely acyclic contributions. For coronene, the first non-zero term in the delta polynomial corresponds to the seventh term, which contains the contributions of from a hexagon in the structure, and since there are no four-membered rings in the structure, only hexagons make contributions to this term. Starting with this term, all other subsequent terms contain various other types of circuits in the structure together with contributions from some disjoint dimers. Consequently, the unweighted delta indices computed from the coefficients of the delta polynomial are 0.4897992 and 0.5482407, respectively, clearly suggesting that circumscribing coronene results in considerably enhanced aromaticity. The constant coefficients of the two matching polynomials are given by 20 and 980, respectively, which are also the well-known Kekulé counts of the two structures. As these are purely alternant benzenoid polycyclic aromatic compounds, the square of the constant coefficients in the matching polynomials yields the constant coefficients in the characteristic polynomial. We shall discuss in a subsequent paragraph the weighted delta index together with the other indices of all polycyclics considered in this study. Table 4 shows the various polynomials obtained for kekulene together with the corresponding unweighted zeta and delta indices. Kekulene can be generated by the circumcision of the central hexagon of the coronene structure. Consequently, when one compares the unweighted delta indices of the two structures, one can infer that circumcision results in a lower delta index for kekulene compared to coronene. That is, circumcision disrupts the various circuits that were present in coronene, resulting in a lower π-electronic ring current or lower aromaticity in kekulene compared to coronene. This feature is mirrored by the delta indices of the two structures.



Table 5 and Table 6 consider three polycyclic isomers of C22H12 and the corresponding circumscribed structures of the three isomers, respectively. The three isomers have been enumerated in the handbook by Dias [57] on polycyclic aromatic compounds. The three isomers, namely, triangulene, anthanthrene and benzo[ghi]perylene, represent interesting cases for our study. Among these, triangulene exhibits a triplet electronic ground state and it is thus a diradical. We note that this is directly inferred by the zero coefficient of the constant term of the characteristic polynomial of triangulene, consistent with a doubly degenerate set of HOMOs, resulting in a triplet ground state. As seen from Table 5, the delta indices of the three structures indicate that bezo[ghi]pyrelene is the most aromatic of the three structures with triangulene being the least aromatic. Although the combinatorial numbers in Table 6 become more complex due to a greater number of various circuits in the corresponding circumscribed structures, the final delta indices are much more amenable to critical comparison and thus shed light on the potential aromaticity of these compounds. Again, comparing the delta indices of the primitive and circumscribed counterparts in Table 5 and Table 6 reveals that circumscribing results in greater aromaticity compared to the uncircumscribed structure. The gaps relative to aromaticity among the isomers are narrowed somewhat when one compares the circumscribed structures to their uncircumscribed counterparts. In particular, triangulenes obtain a greater aromaticity upon circumscribing. However, we note that better measures are obtained using the weighted delta indices which we compare in a subsequent Table and paragraph. Furthermore, as seen from Table 6, the constant coefficient of the circumscribed triangulene continues to be zero for the characteristic polynomial suggesting that circumtriangulene continues to exhibit a triplet diradical ground state although its aromaticity is enhanced relative to the primitive triangulene structure. This trend is repeated by a number of structures that we have tested and are not shown here. The general trend is that circumscribing a given structure results in enhanced aromaticity while circumcision results in lower aromaticity.



Next, we consider three-dimensional and other structures that appear to exhibit aromatic characters or unusual stabilities. The celebrated buckminsterfullerene with the icosahedral Ih group has been the cynosure of fullerenes. Table 7 displays all three polynomials of C60 together with the sums of the columns and the scaled natural log indices. There are several differences that should be noted in the polynomials for the C60 structure compared to the other polycyclics that we have considered thus far. None of the coefficients of the odd terms except the first two odd terms is zero for the characteristic and delta polynomials of C60. For example, the sixth or fifth coefficient, not counting the first term, is twenty-four for the delta polynomial and is consistent with the twelve pentagons present in the structure. Likewise, all other odd terms are non-zeroes and contribute toward the delta polynomial. This is a striking contrast compared to alternant benzenoid hydrocarbons. Furthermore, the square of the constant term in the matching polynomial does not yield the constant term of the characteristic polynomial. These features, together with several non-zero odd terms in the delta polynomials, provide C60 with some unique features. Although the sum of all the coefficients of the delta polynomial is 2508935631291784, a large number, the scaled log of the corresponding result is 0.5909773, suggesting that its unweighted delta aromaticity is much higher than the circumcoronene value of 0.5482407 and even circumcircumcoronene, circumkekulene and so forth. The weighted delta aromatic indices yield further insights, as we will now discuss. These results of C60 can also be compared with the corresponding indices of other fullerenes, such as C70(D5h) and C72(C2v), as shown below.



These computations can be extended to large macrocycles, such as the one shown in Figure 1 containing 21 hexagons arranged in a zigzag fashion with a large internal cavity. The various polynomials for such a macrocycle are shown in Table 8. As this is an alternant benzenoid hydrocarbon, we show only the coefficients of the even terms as all odd terms have zero coefficients for all three polynomials. This macrocycle with a zigzag structure has a delta index of 0.5352335, making it comparable to circumcoronene, which has a delta index of 0.5482407. This implies that the zigzag macrocycle with 21 rings less aromatic compared to circumcoronene but more aromatic compared to kekulene with a delta index of 0.5203879. We note that the weighted delta index appears to provide yet another reliable way to compare different structures, although any of these indices should be used in conjunction with other parameters, such as the HOMO-LUMO gap or electronic or magnetic parameters derived from quantum chemical computations.



Table 9 shows a cumulative across-board comparison of all four indices of all structures that are considered in the present study. As both delta and zeta indices are derived from scaled natural log values, we uniformly multiplied the indices by a factor of 10 in Table 9 for comparison. It can be seen from Table 9 that the weighted delta index appears to provide one of the best measures of aromaticity and stability. For example, the weighted delta index of buckminsterfullerene stands out as 6.516865, a maximum among all structures considered here with the exception of graphene. In fact, while the weighted delta index of buckminsterfullerene is higher than both C70(D5h) and C72(C2v), this trend is not reproduced by any of the other indices shown in Table 9. We note that both C72(C2v) and C72(D6d) structures have been found to be stable isomers [82,83]. Moreover, we note that as the weighted delta indices do not vary in large magnitude, and small changes should be considered important as the weighted indices are subtle in their variations. As seen from Table 9, circumcoronene is more aromatic than coronene as well as hexbenzcoronene. Polycyclic structures with cavities, such as coronaphene, circumcoronaphene, kekulene, etc., are less aromatic compared to their parent structures prior to circumcision. On the other hand, kekulene and septulene have a remarkably similar aromaticity, as inferred from their weighted delta indices of 5.914023 and 5.884901, respectively. Of the three C22H12 isomers, triangulene exhibits the least aromaticity while benzo[ghi]perylene exhibits the greatest aromaticity. We also note a few variations in trends, for example, ovalene is predicted to be much less aromatic compared to circumovalene on the basis of zeta and unweighted delta index but the weighted delta index exhibits the same trend but with a smaller contrast. While circumpyrene is predicted to be less aromatic compared to circumovalene on the basis of the zeta and unweighted delta indices, the weighted delta index predicts the opposite trend with a smaller contrast.



Kekulene and septulene are virtually identical relative to the zeta indices, as can be seen from Table 9. The identical values of the scaled Hosoya index require further inquiry. Moreover, the delta index suggests an opposite trend, in that it predicts septulene to be slightly more aromatic compared to kekulene, although the weighted delta index predicts kekulene to be slightly more aromatic than septulene. The sum of the coefficients of the three polynomials and the weighted sum for kekulene are given as 170396692000, 99914817684, 70481874316 and 2130357387264, respectively. The corresponding values for septulene are 12686887009024, 6806150529706, 5880736479318 and 205289991176192, respectively. Consequently, although these numbers are quite different for kekulene and septulene, when they are scaled by the number of vertices after taking log of these values, accidental degeneracy is reached for kekulene relative to Hosoya’s Z index while the Zc index is almost the same. Thus, these two indices fail to differentiate septulene and kekulene while the weighted delta index appears to provide the correct trend.



We were able to obtain an estimate of the aromaticity delta index for graphene using an extrapolation scheme by using the results of coronene, circumcoronene and circumcircumcoronene. A previous study on the degree-based topological indices of series of polycyclic aromatics [69] has revealed that if one extrapolates the results of known circumcoronene series with the order of circumscribing as n~6.4, one obtains the results converging to graphene. By using the same extrapolation scheme with the results obtained for coronene, circumcoronene and circumcircumcoronene, we obtain the weighted and unweighted delta indices for graphene converging to 6.77. Consequently, one can compare this value to C60 value of 6.5116865 and conclude that the correct trend is predicted by the newly formulated delta aromatic indices and delta polynomials. Indeed, the highly symmetric buckminsterfullerene is confirmed to be the most stable species among small molecules, fullerenes, and clusters, which corroborates with experimental observations. Furthermore, we note that other topological indices have been applied to different forms of carbon and other complex networks such as diamond and other metal organic frameworks [84,85].




4. Conclusions


In this study, we proposed hybrid polynomials called delta polynomials and created two scaled logarithmic indices, which we called delta aromatic indices. These indices combined with the zeta indices, which are also scaled versions, were evaluated for a number of polycyclic structures, including fullerenes, kekulenes, septulene, circumcoronene, circumcoronaphene, dicronylene, macrocycles and different isomers of polycyclic compounds. It was shown that the delta indices, especially the weighted delta indices, appear to conform closely with the aromaticity trends of the investigated compounds. We suggest that these newly proposed delta indices can be used in conjunction with other topological, electronic, magnetic and quantum chemical parameters to gain considerable insights into the longstanding phenomenon of aromaticity, superaromaticity and spherical aromaticity.
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Figure 1. Structures of polycyclic compounds considered in this study. Not all displayed structures are meant to show any particular resonance/Clar’s structure; the structures simply show the relationships and connectivities of various hexagonal rings. 






Figure 1. Structures of polycyclic compounds considered in this study. Not all displayed structures are meant to show any particular resonance/Clar’s structure; the structures simply show the relationships and connectivities of various hexagonal rings.



[image: Symmetry 16 00391 g001a][image: Symmetry 16 00391 g001b][image: Symmetry 16 00391 g001c][image: Symmetry 16 00391 g001d][image: Symmetry 16 00391 g001e]







 





Table 1. Characteristic, matching and delta polynomials of phenanthrene and the derived Z, zeta and delta indices.
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Phenanthrene




	
n − k

	
Characteristic

Polynomial

	
Matching

Polynomial

	
Delta

Polynomial




	
14

	
1.0

	
1.0

	
0.0




	
13

	
0.0

	
0.0

	
0.0




	
12

	
−16.0

	
−16.0

	
0.0




	
11

	
0.0

	
0.0

	
0.0




	
10

	
98.0

	
98.0

	
0.0




	
9

	
0.0

	
0.0

	
0.0




	
8

	
−297.0

	
−291.0

	
6.0




	
7

	
0.0

	
0.0

	
0.0




	
6

	
479.0

	
435.0

	
44.0




	
5

	
0.0

	
0.0

	
0.0




	
4

	
−407.0

	
−305.0

	
102.0




	
3

	
0.0

	
0.0

	
0.0




	
2

	
166.0

	
82.0

	
84.0




	
1

	
0.0

	
0.0

	
0.0




	
0

	
−25.0

	
−5.0

	
20.0




	
ZC: 1489

	
Z: 1233

	
   ∑    δ   k       = 256

	
   ∑  k   δ   k       = 2696




	
ζC: 0.5218471

	
ζM: 0.5083718

	
Δ: 0.3960841

	
ΔW: 0.5642518




	

	
Anthracene




	
n − k

	
Characteristic

Polynomial

	
Matching

Polynomial

	
Delta

Polynomial




	
14

	
1

	
1

	
0




	
13

	
0

	
0

	
0




	
12

	
−16

	
−16

	
0




	
11

	
0

	
0

	
0




	
10

	
98

	
98

	
0




	
9

	
0

	
0

	
0




	
8

	
−296

	
−290

	
6




	
7

	
0

	
0

	
0




	
6

	
473

	
429

	
44




	
5

	
0

	
0

	
0




	
4

	
−392

	
−294

	
98




	
3

	
0

	
0

	
0




	
2

	
148

	
76

	
72




	
1

	
0

	
0

	
0




	
0

	
−16

	
−4

	
12




	
ZC: 1440

	
Z: 1208

	
   ∑    δ   k       = 232

	
   ∑  k   δ   k       = 2400




	
ζC: 0.5194570

	
ζM: 0.5069087

	
Δ: 0.3890527

	
ΔW: 0.5559446











 





Table 2. Characteristic, matching and delta polynomials of coronene.
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	n − k
	Char.

Poly.
	Match.

Poly.
	Delta

Poly.





	24
	1
	1
	0



	23
	0
	0
	0



	22
	−30
	−30
	0



	21
	0
	0
	0



	20
	387
	387
	0



	19
	0
	0
	0



	18
	−2832
	−2818
	14



	17
	0
	0
	0



	16
	13059
	12783
	276



	15
	0
	0
	0



	14
	−39858
	−37620
	2238



	13
	0
	0
	0



	12
	82281
	72585
	9696



	11
	0
	0
	0



	10
	−115272
	−90792
	24480



	9
	0
	0
	0



	8
	108192
	71256
	36936



	7
	0
	0
	0



	6
	−65864
	−32968
	32896



	5
	0
	0
	0



	4
	24432
	8016
	16416



	3
	0
	0
	0



	2
	−4896
	−816
	4080



	1
	0
	0
	0



	0
	400
	20
	380



	   ∑    | x   k   |     a
	457504
	330092
	127412



	     1   n   ln ⁡ (  ∑    | x   k   |   )   
	0.5430642
	0.5294636
	0.4897992







a xk designates the coefficient in the respective polynomial (characteristic or matching or delta polynomial) of the corresponding column.













 





Table 3. Characteristic, matching and delta polynomials of circumcoronene.
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	n − k
	Char. Poly.
	Match. Poly.
	Delta Poly.





	54
	1
	1
	0



	53
	0
	0
	0



	52
	−72
	−72
	0



	51
	0
	0
	0



	50
	2430
	2430
	0



	49
	0
	0
	0



	48
	−51152
	−51114
	38



	47
	0
	0
	0



	46
	753867
	751551
	2316



	45
	0
	0
	0



	44
	−8277552
	−8211876
	65676



	43
	0
	0
	0



	42
	70356380
	69204580
	1151800



	41
	0
	0
	0



	40
	−474823692
	−460817112
	14006580



	39
	0
	0
	0



	38
	2589615333
	2464100913
	125514420



	37
	0
	0
	0



	36
	−11556300564
	−10696440044
	859860520



	35
	0
	0
	0



	34
	42569538372
	37958165700
	4611372672



	33
	0
	0
	0



	32
	−130222965528
	−110557089534
	19665875994



	31
	0
	0
	0



	30
	332069146453
	264687311485
	67381834968



	29
	0
	0
	0



	28
	−707192500956
	−520523395944
	186669105012



	27
	0
	0
	0



	26
	1257989920284
	838506886932
	419483033352



	25
	0
	0
	0



	24
	−1866287443412
	−1101123547848
	765163895564



	23
	0
	0
	0



	22
	2301545596335
	1170542244231
	1131003352104



	21
	0
	0
	0



	20
	−2347222219224
	−997848645108
	1349373574116



	19
	0
	0
	0



	18
	1965105336102
	673809199342
	1291296136760



	17
	0
	0
	0



	16
	−1337106330756
	−354768478638
	982337852118



	15
	0
	0
	0



	14
	729597602706
	142707108690
	586890494016



	13
	0
	0
	0



	12
	−313604239964
	−42704574172
	270899665792



	11
	0
	0
	0



	10
	103654073940
	9173052348
	94481021592



	9
	0
	0
	0



	8
	−25479629340
	−1345586058
	24134043282



	7
	0
	0
	0



	6
	4438832481
	125224733
	4313607748



	5
	0
	0
	0



	4
	−508728588
	−6568740
	502159848



	3
	0
	0
	0



	2
	33696516
	156144
	33540372



	1
	0
	0
	0



	0
	−960400
	−980
	959420



	    ∑    | x   k   |     
	13479328942400
	6280086816320
	7199242126080



	     1   n   ln ⁡ (  ∑    | x   k   |   )   
	0.5598552
	0.5457112
	0.5482407










 





Table 4. Characteristic, matching and delta polynomials of kekulene.
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	n − k
	Char. Poly.
	Match. Poly.
	Delta Poly.





	48
	1
	1
	0



	47
	0
	0
	0



	46
	−60
	−60
	0



	45
	0
	0
	0



	44
	1674
	1674
	0



	43
	0
	0
	0



	42
	−28874
	−28850
	−24



	41
	0
	0
	0



	40
	345327
	344127
	1200



	39
	0
	0
	0



	38
	−3044574
	−3016998
	27576



	37
	0
	0
	0



	36
	20538689
	20152013
	386676



	35
	0
	0
	0



	34
	−108618240
	−104913492
	3704748



	33
	0
	0
	0



	32
	457707249
	431969433
	25737816



	31
	0
	0
	0



	30
	−1553676412
	−1419382254
	134294158



	29
	0
	0
	0



	28
	4277976000
	3740060904
	537915096



	27
	0
	0
	0



	26
	−9591327648
	−7914718788
	1676608860



	25
	0
	0
	0



	24
	17529851809
	13431639205
	4098212604



	23
	0
	0
	0



	22
	−26083608096
	−18200982024
	7882626072



	21
	0
	0
	0



	20
	31479717969
	19552772649
	11926945320



	19
	0
	0
	0



	18
	−30623699358
	−16479660654
	14144038704



	17
	0
	0
	0



	16
	23797431375
	10743316299
	13054115076



	15
	0
	0
	0



	14
	−14592392910
	−5315219724
	9277173186



	13
	0
	0
	0



	12
	6947150082
	1945680262
	5001469820



	11
	0
	0
	0



	10
	−2513544072
	−509172702
	2004371370



	9
	0
	0
	0



	8
	671549841
	90806961
	580742880



	7
	0
	0
	0



	6
	−127206956
	−10292946
	116914010



	5
	0
	0
	0



	4
	16035984
	665136
	15370848



	3
	0
	0
	0



	2
	−1198800
	−20328
	1178472



	1
	0
	0
	0



	0
	40000
	200
	39800



	    ∑    | x   k   |     
	170396692000
	99914817684
	70481874316



	     1   n   ln ⁡ (  ∑    | x   k   |   )   
	0.5387791
	0.5276580
	0.5203879










 





Table 5. Characteristic, matching and delta polynomials of three polycyclic isomers of C22H12.






Table 5. Characteristic, matching and delta polynomials of three polycyclic isomers of C22H12.





	

	
Characteristic Polynomials

	
Matching Polynomials

	
Delta Polynomials




	
n − k

	
Triangulene

	
Anthanthrene

	
Bezo[ghi] Perylene

	
Triangulene

	
Anthanthrene

	
Bezo[ghi] Perylene

	
Triangulene

	
Anthanthrene

	
Bezo[ghi] Perylene






	
22

	
1

	
1

	
1

	
1

	
1

	
1

	
0

	
0

	
0




	
21

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
20

	
−27

	
−27

	
−27

	
−27

	
−27

	
27

	
0

	
0

	
0




	
19

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
18

	
309

	
309

	
309

	
309

	
309

	
309

	
0

	
0

	
0




	
17

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
16

	
−1973

	
−1973

	
−1974

	
−1961

	
−1961

	
1962

	
12

	
12

	
−12




	
15

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
14

	
7782

	
7783

	
7800

	
7578

	
7579

	
7596

	
204

	
204

	
204




	
13

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
12

	
−19818

	
−19831

	
−19953

	
−18426

	
−18441

	
18557

	
1392

	
1390

	
−1396




	
11

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
10

	
33027

	
33110

	
33580

	
28127

	
28218

	
28624

	
4900

	
4892

	
4956




	
9

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
8

	
−35619

	
−35902

	
−36968

	
−26079

	
−26354

	
27126

	
9540

	
9548

	
−9842




	
7

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
6

	
23853

	
24400

	
25864

	
13659

	
14086

	
14866

	
10194

	
10314

	
10998




	
5

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
4

	
−8987

	
−9609

	
−10796

	
−3491

	
−3817

	
4202

	
5496

	
5792

	
−6594




	
3

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
2

	
1452

	
1840

	
2360

	
306

	
414

	
490

	
1146

	
1426

	
1870




	
1

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
0

	
0

	
−100

	
−196

	
0

	
−10

	
14

	
0

	
90

	
−182




	
    ∑    | x   k   |     

	
132848

	
134885

	
139828

	
99964

	
101217

	
103774

	
32884

	
33668

	
36054




	
     1   n   ln ⁡ (  ∑    | x   k   |   )   

	
0.5362255

	
0.5369172

	
0.5385531

	
0.5232984

	
0.5238646

	
0.5249987

	
0.4727610

	
0.4738320

	
0.4769442











 





Table 6. Characteristic, matching and delta polynomials of three circumscribed isomers: C52H17, circumtriangulene, circumanthanthrene and Circumbezo[ghi] perylene.






Table 6. Characteristic, matching and delta polynomials of three circumscribed isomers: C52H17, circumtriangulene, circumanthanthrene and Circumbezo[ghi] perylene.





	

	
Circumtriangulene

	

	
Circumanthanthrene

	

	
Circumbezo[ghi] Perylene




	
n − k

	
Characteristic

Polynomial

	
Matching

Polynomial

	
Delta

Polynomial

	
n − k

	
Characteristic

Polynomial

	
Matching

Polynomial

	
Delta

Polynomial

	
n − k

	
Characteristic

Polynomial

	
Matching

Polynomial

	
Delta

Polynomial






	
52

	
1

	
1

	
0

	
52

	
1

	
1

	
0

	
52

	
1

	
1

	
0




	
51

	
0

	
0

	
0

	
51

	
0

	
0

	
0

	
51

	
0

	
0

	
0




	
50

	
−69

	
−69

	
0

	
50

	
−69

	
−69

	
0

	
50

	
−69

	
−69

	
0




	
49

	
0

	
0

	
0

	
49

	
0

	
0

	
0

	
49

	
0

	
0

	
0




	
48

	
2226

	
2226

	
0

	
48

	
2226

	
2226

	
0

	
48

	
2226

	
2226

	
0




	
47

	
0

	
0

	
0

	
47

	
0

	
0

	
0

	
47

	
0

	
0

	
0




	
46

	
−44668

	
−44632

	
36

	
46

	
−44668

	
−44632

	
36

	
46

	
−44669

	
−44633

	
36




	
45

	
0

	
0

	
0

	
45

	
0

	
0

	
0

	
45

	
0

	
0

	
0




	
44

	
625713

	
623625

	
2088

	
44

	
625713

	
623625

	
2088

	
44

	
625772

	
623684

	
2088




	
43

	
0

	
0

	
0

	
43

	
0

	
0

	
0

	
43

	
0

	
0

	
0




	
42

	
−6509829

	
−6453663

	
56166

	
42

	
−6509829

	
−6453663

	
56166

	
42

	
−6511448

	
−6455276

	
56172




	
41

	
0

	
0

	
0

	
41

	
0

	
0

	
0

	
41

	
0

	
0

	
0




	
40

	
52251216

	
51320120

	
931096

	
40

	
52251217

	
51320121

	
931096

	
40

	
52278690

	
51347258

	
931432




	
39

	
0

	
0

	
0

	
39

	
0

	
0

	
0

	
39

	
0

	
0

	
0




	
38

	
−331796412

	
−321134574

	
10661838

	
38

	
−331796457

	
−321134625

	
10661832

	
38

	
−332119812

	
−321449318

	
10670494




	
37

	
0

	
0

	
0

	
37

	
0

	
0

	
0

	
37

	
0

	
0

	
0




	
36

	
1695928914

	
1606342218

	
89586696

	
36

	
1695929871

	
1606343417

	
89586454

	
36

	
1698736514

	
1609013576

	
89722938




	
35

	
0

	
0

	
0

	
35

	
0

	
0

	
0

	
35

	
0

	
0

	
0




	
34

	
−7062439782

	
−6489636480

	
572803302

	
34

	
−7062452491

	
−6489653683

	
572798808

	
34

	
−7081100003

	
−6506829077

	
574270926




	
33

	
0

	
0

	
0

	
33

	
0

	
0

	
0

	
33

	
0

	
0

	
0




	
32

	
24162689001

	
21310401549

	
2852287452

	
32

	
24162806822

	
21310569758

	
2852237064

	
32

	
24259975217

	
21396200135

	
2863775082




	
31

	
0

	
0

	
0

	
31

	
0

	
0

	
0

	
31

	
0

	
0

	
0




	
30

	
−68292453531

	
−57062874051

	
11229579480

	
30

	
−68293262612

	
−57064060212

	
11229202400

	
30

	
−68696889063

	
−57399597701

	
11297291362




	
29

	
0

	
0

	
0

	
29

	
0

	
0

	
0

	
29

	
0

	
0

	
0




	
28

	
159962255377

	
124669968135

	
35292287242

	
28

	
159966519220

	
124676198180

	
35290321040

	
28

	
161317740165

	
125718050333

	
35599689832




	
27

	
0

	
0

	
0

	
27

	
0

	
0

	
0

	
27

	
0

	
0

	
0




	
26

	
−310866022785

	
−221836072383

	
89029950402

	
26

	
−310883651811

	
−221860905503

	
89022746308

	
26

	
−314554717782

	
−224434299008

	
90120418774




	
25

	
0

	
0

	
0

	
25

	
0

	
0

	
0

	
25

	
0

	
0

	
0




	
24

	
500842466118

	
320162665770

	
180679800348

	
24

	
500900434871

	
320238551209

	
180661883662

	
24

	
509025810275

	
325296517073

	
183729293202




	
23

	
0

	
0

	
0

	
23

	
0

	
0

	
0

	
23

	
0

	
0

	
0




	
22

	
−667151021522

	
−372336242084

	
294814779438

	
22

	
−667303817619

	
−372514716699

	
294789100920

	
22

	
−681972062692

	
−380402520082

	
301569542610




	
21

	
0

	
0

	
0

	
21

	
0

	
0

	
0

	
21

	
0

	
0

	
0




	
20

	
731241744267

	
345720833133

	
385520911134

	
20

	
731565732441

	
346043561601

	
385522170840

	
20

	
753133601175

	
355744657295

	
397388943880




	
19

	
0

	
0

	
0

	
19

	
0

	
0

	
0

	
19

	
0

	
0

	
0




	
18

	
−654769892103

	
−253153062357

	
401616829746

	
18

	
−655322555267

	
−253599322123

	
401723233144

	
18

	
−681052897827

	
−262920853285

	
418132044542




	
17

	
0

	
0

	
0

	
17

	
0

	
0

	
0

	
17

	
0

	
0

	
0




	
16

	
474141118603

	
143835845437

	
330305273166

	
16

	
474897139634

	
144303164122

	
330593975512

	
16

	
499638000612

	
151208688842

	
348429311770




	
15

	
0

	
0

	
0

	
15

	
0

	
0

	
0

	
15

	
0

	
0

	
0




	
14

	
−273813286767

	
−62077156797

	
211736129970

	
14

	
−274637349199

	
−62442496421

	
212194852778

	
14

	
−293623626123

	
−66316204751

	
227307421372




	
13

	
0

	
0

	
0

	
13

	
0

	
0

	
0

	
13

	
0

	
0

	
0




	
12

	
123696211872

	
19781999232

	
103914212640

	
12

	
124404621068

	
19991050046

	
104413571022

	
12

	
135872791533

	
21597079779

	
114275711754




	
11

	
0

	
0

	
0

	
11

	
0

	
0

	
0

	
11

	
0

	
0

	
0




	
10

	
−42539488824

	
−4477460040

	
38062028784

	
10

	
−43012391338

	
−4562686358

	
38449704980

	
10

	
−48360491101

	
−5038874031

	
43321617070




	
9

	
0

	
0

	
0

	
9

	
0

	
0

	
0

	
9

	
0

	
0

	
0




	
8

	
10698149700

	
680855244

	
10017294456

	
8

	
10937560349

	
704696745

	
10232863604

	
8

	
12811571672

	
801125198

	
12010446474




	
7

	
0

	
0

	
0

	
7

	
0

	
0

	
0

	
7

	
0

	
0

	
0




	
6

	
−1845219852

	
−63837084

	
1781382768

	
6

	
−1933743487

	
−68166823

	
1865576664

	
6

	
−2408005299

	
−80628339

	
2327376960




	
5

	
0

	
0

	
0

	
5

	
0

	
0

	
0

	
5

	
0

	
0

	
0




	
4

	
194068224

	
3177510

	
190890714

	
4

	
216497569

	
3644565

	
212853004

	
4

	
297960317

	
4566433

	
293393884




	
3

	
0

	
0

	
0

	
3

	
0

	
0

	
0

	
3

	
0

	
0

	
0




	
2

	
−9335088

	
−59886

	
9275202

	
2

	
−12786256

	
−85352

	
12700904

	
2

	
−21276306

	
−117326

	
21158980




	
1

	
0

	
0

	
0

	
1

	
0

	
0

	
0

	
1

	
0

	
0

	
0




	
0

	
0

	
0

	
0

	
0

	
240100

	
490

	
239610

	
0

	
648025

	
805

	
647220




	
    ∑    | x   k   |     

	
4053375022464

	
1955648068300

	
2097726954164

	
    ∑    | x   k   |     

	
4057600722205

	
1957859452269

	
2099741269936

	
    ∑    | x   k   |     

	
4196219484388

	
2006855745534

	
2189363738854




	
     1   n   ln ⁡ (  ∑    | x   k   |   )   

	
0.5582802

	
0.5442643

	
0.5456130

	
     1   n   ln ⁡ (  ∑    | x   k   |   )   

	
0.5583002

	
0.5442860

	
0.5456314

	
     1   n   ln ⁡ (  ∑    | x   k   |   )   

	
0.5589463

	
0.5447614

	
0.5464352











 





Table 7. Characteristic, matching and delta polynomials of C60 buckminsterfullerene.






Table 7. Characteristic, matching and delta polynomials of C60 buckminsterfullerene.





	n − k
	Characteristic

Polynomial
	Matching

Polynomial
	Delta

Polynomial





	60
	1
	1
	0



	59
	−0
	0
	0



	58
	−90
	−90
	0



	57
	−0
	0
	0



	56
	3825
	3825
	0



	55
	−24
	0
	24



	54
	−102160
	−102120
	40



	53
	1920
	0
	1920



	52
	1925160
	1922040
	3120



	51
	−72240
	0
	72240



	50
	−27244512
	−27130596
	113916



	49
	1700640
	0
	1700640



	48
	300906380
	298317860
	2588520



	47
	−28113600
	0
	28113600



	46
	−2661033600
	−2619980460
	41053140



	45
	347208896
	0
	347208896



	44
	19180834020
	18697786680
	483047340



	43
	−3327625680
	0
	3327625680



	42
	−114118295000
	−109742831260
	4375463740



	41
	25376437920
	0
	25376437920



	40
	565407465144
	534162544380
	31244920764



	39
	−156652575440
	0
	156652575440



	38
	−2346799508400
	−2168137517940
	178661990460



	37
	792175427520
	0
	792175427520



	36
	8189116955350
	7362904561730
	826212393620



	35
	−3308173115904
	0
	3308173115904



	34
	−24056403184260
	−20949286202160
	3107116982100



	33
	11466942645600
	0
	11466942645600



	32
	59443188508110
	49924889888850
	9518298619260



	31
	−33076275953760
	0
	33076275953760



	30
	−123163094844616
	−99463457244844
	23699637599772



	29
	79417625268960
	0
	79417625268960



	28
	212712221820840
	165074851632300
	47637370188540



	27
	−158412719276240
	0
	158412719276240



	26
	−303315997028160
	−227043126274260
	76272870753900



	25
	261359090670624
	0
	261359090670624



	24
	351861389316780
	256967614454320
	94893774862460



	23
	−354145195147200
	0
	354145195147200



	22
	−324375523213200
	−237135867688980
	87239655524220



	21
	390055074762240
	0
	390055074762240



	20
	228227031040884
	176345540119296
	51881490921588



	19
	−344185906596720
	0
	344185906596720



	18
	−112654402736360
	−104113567937140
	8540834799220



	17
	238553091055200
	0
	238553091055200



	16
	29617003666920
	47883826976580
	18266823309660



	15
	−126428882536240
	0
	126428882536240



	14
	4679380503120
	−16742486291340
	12063105788220



	13
	49433493646080
	0
	49433493646080



	12
	−8131429397135
	4310718227685
	3820711169450



	11
	−13627897407360
	0
	13627897407360



	10
	3576552321006
	−783047312406
	2793505008600



	9
	2527365617120
	0
	2527365617120



	8
	−831616531095
	94541532165
	737074998930



	7
	−310065067080
	0
	310065067080



	6
	108565938200
	−6946574300
	101619363900



	5
	26034025632
	0
	26034025632



	4
	−7440712560
	269272620
	7171439940



	3
	−1566501120
	0
	1566501120



	2
	186416640
	−4202760
	182213880



	1
	54743040
	0
	54743040



	0
	2985984
	12500
	2973484



	    ∑    | x   k   |     
	3865312407639512
	1417036634543488
	2508935631291784



	     1   n   ln ⁡ (  ∑    | x   k   |   )   
	0.5981803
	0.5814557
	0.5909773










 





Table 8. Characteristic, matching and delta polynomials of the zigzag macrocycle-21 together with their indices.






Table 8. Characteristic, matching and delta polynomials of the zigzag macrocycle-21 together with their indices.





	n − k
	Ck
	Mk
	δk





	84
	1
	1
	0



	82
	−105
	−105
	0



	80
	5292
	5292
	0



	78
	−170552
	−170510
	42



	76
	3950629
	3946639
	3990



	74
	−70093203
	−69911859
	181344



	72
	991282749
	986031143
	5251606



	70
	−11482348005
	−11373459253
	108888752



	68
	111090087176
	109367937824
	1722149352



	66
	−910947963808
	−889334531796
	21613432012



	64
	6402925439287
	6181826617949
	221098821338



	62
	−38919293230683
	−37040011262025
	1879281968658



	60
	206013904397115
	192551488336995
	13462416060120



	58
	−955002794104467
	−872839129452669
	82163664651798



	56
	3894336217341121
	3463521386236771
	430814831104350



	54
	−14019373614031827
	−12066034271467827
	1953339342564000



	52
	44678801369930336
	36981548810147848
	7697252559782488



	50
	−126321154074068661
	−99857114193811115
	26464039880257546



	48
	317338685795324123
	237720042560254363
	79618643235069760



	46
	−709062372660591571
	−499006339626984227
	210056033033607344



	44
	1409909022006755539
	923239449763670729
	486669572243084810



	42
	−2495016469484972200
	−1504059185145959400
	990957284339012800



	40
	3927963303866069473
	2154224942879036951
	1773738360987032522



	38
	−5496873577643855036
	−2706936481872745914
	2789937095771109122



	36
	6829111016615764029
	2976116960372998897
	3852994056242765132



	34
	−7518883235006766618
	−2853311058653127710
	4665572176353638908



	32
	7319902384178141972
	2375786868595946840
	4944115515582195132



	30
	−6283532923932044803
	−1709655914472694895
	4573877009459349908



	28
	4739885867813791187
	1057153335134041467
	3682732532679749720



	26
	−3129063398676383265
	−557849001975167171
	2571214396701216094



	24
	1798911321678387099
	249182267286144541
	1549729054392242558



	22
	−895371948756710388
	−93314898694188010
	802057050062522378



	20
	383122049845443519
	28961471055606009
	354160578789837510



	18
	−139739031770502510
	−7347157054733772
	132391874715768738



	16
	42996786829876846
	1498155252911156
	41498631576965690



	14
	−11017873944937905
	−240532059951131
	10777341884986774



	12
	2313181667668728
	29633110868332
	2283548556800396



	10
	−389499119207522
	−2710827868354
	386788291339168



	8
	51095415744876
	176380210708
	50919035534168



	6
	−5008008625962
	−7697442472
	5000311183490



	4
	343396584009
	206946163
	343189637846



	2
	−14620716108
	−2982916
	14617733192



	0
	289340100
	17014
	289323086



	    ∑    | x   k   |     
	53640581451802650405
	20089114432935826763
	33551467018866823642



	     1   n   ln ⁡ (  ∑    | x   k   |   )   
	0.5408195
	0.5291275
	0.5352335










 





Table 9. Computed zeta and delta aromatic indices of polycyclic compounds.
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	System
	ζC × 10−1
	ζM × 10−1
	Δ × 10−1
	ΔW × 10−1





	Coronene
	5.430642
	5.294636
	4.897992
	6.064420



	Circumcoronene
	5.598552
	5.457112
	5.482407
	6.137828



	Hexbencoronene
	5.520197
	5.375805
	5.332557
	6.120283



	Ovalene
	5.489804
	5.353347
	5.165118
	6.119007



	Circumovalene
	5.630656
	5.487418
	5.556126
	6.121432



	Circumpyrene
	5.547669
	5.408986
	5.352999
	6.139214



	Circumcircumpyrene
	5.661399
	5.516115
	5.614513
	6.104184



	Coronaphene
	5.394510
	5.281798
	5.089506
	5.963508



	Circumcoronaphene
	5.513583
	5.452279
	5.371723
	5.903852



	C60 (Ih)
	5.981803
	5.814557
	5.909773
	6.516865



	C70 (D5h)
	5.985028
	5.814903
	5.934508
	6.476662



	C72 (C2v)
	5.986215
	5.814966
	5.939604
	6.470739



	Kekulene
	5.387791
	5.276580
	5.203879
	5.914023



	Septulene
	5.387784
	5.276580
	5.250483
	5.884901



	Dicronylene
	5.510041
	5.374743
	5.356110
	6.069668



	Triangulene (C22H12)
	5.362255
	5.232984
	4.727610
	5.958243



	Anthanthrene (C22H12)
	5.369172
	5.238646
	4.738320
	5.971711



	Bezo[ghi]perylene (C22H12)
	5.385531
	5.249987
	4.769442
	6.007196



	Circumtriangulene (C52H18)
	5.582802
	5.442643
	5.456130
	6.129567



	Circumanthanthrene (C52H18)
	5.583002
	5.442860
	5.456314
	6.129790



	Circumbezo[ghi]perylene (C52H18)
	5.589463
	5.447614
	5.464352
	6.138383



	Macro-zig-21
	5.408195
	5.291275
	5.352335
	5.822065



	Graphene
	
	
	[6.771]
	[6.77]
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