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Abstract

:

In the Set Orienteering Problem, a single vehicle, leaving from and returning to a depot, has to serve some customers, each one associated with a given spacial location. Customers are grouped in clusters and a given prize is collected once a customer in a cluster is visited. The prize associated with a cluster can be collected at most once. Travel times among locations are provided, together with a maximum available mission time, which normally makes it impossible to visit all the clusters. The target is to design a route for the vehicle that maximizes the total prize collected within the given time limit. In this study, building on the recent literature, we present new preprocessing rules and a new constraint programming model for the problem. Thanks to the symmetry exploitation carried out by the constraint programming solver, new state-of-the-art results are established.
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1. Introduction


The Orienteering Problem (OP) was introduced in [1]. In the problem, a single vehicle, leaving from and returning to a depot, serves a set of customers, each one associated with a spacial location and a prize, which is collected upon visit. Travel times among locations are provided. Not all the customers can typically be serviced, since the vehicle mission cannot be longer than a given maximum time. The aim is to maximize the total profit collected by the vehicle in the given available time. The problem has attracted a lot of attention due to its practical implications, and many variations of the original problem have been introduced over the years. We refer the interested reader to [2] for an exhaustive review of the literature on these problems.



The problem addressed in the present study is the Set Orienteering Problem (SOP), which was introduced in [3], where customers are grouped in (non-overlapping) clusters and a profit is associated with each cluster. Such a profit is collected if at least one customer in the cluster is visited. The problem is not to be confused with the Sequential Ordering Problem [4], which has been abbreviated with the same acronym for much longer.



The SOP has several real applications. It can be used to model situations where a carrier delivers goods to a company with multiple warehouses, and the delivery can be carried out to one of them. Another important application that emerged recently is in last-mile delivery: when the delivery to a customer can be made in different locations (for example, home, work, pickup station, or delivery locker), the carrier can choose the most convenient one. There is a flourishing body of literature for these applications, where the most disparate realistic constraints are added to the basic problem (see, for example, [5,6]).



Heuristic methods for the SOP, targeting instances of any practical size, were introduced in [7,8]. The former method is based on variable neighbour search, while the latter implements a biased random-key genetic algorithm. Exact methods, targeting small-/medium-size instances only, but with the advantage of providing upper bounds in addition to feasible solutions, were proposed in [3,7]. Very recently, a more elaborate Branch-and-Cut method, representing the current state of the art for exact algorithms, was discussed in [9].



The present work provides three main contributions. First, a new effective preprocessing rule is introduced, able to substantially reduce the size of the instances by identifying and removing vertices that cannot be part of any feasible solution. Second, a new constraint programming (CP) model, following the same approach recently proposed for other problems [10], is introduced. Third, by combining the previous two contributions, new state-of-the-art results are obtained. A main factor that led to such an achievement is the heavy symmetry exploitation carried out by the CP solver adopted (see [11,12,13,14]).




2. Problem Description


Let    G = ( V , A )    be a complete digraph, where    V = { 0 } ∪ C   . The depot (starting and ending point of the route) is vertex 0, while C is the set of customers. Customers in C are partitioned into clusters     C 0  ,  C 1  , … ,  C m    . A profit    p g    is associated to each cluster    C g    and such a profit is collected if at least one customer    i ∈  C g     is visited. Cluster    C 0    contains only the depot 0 and has a null profit. A travel time    c  i j     is associated with each arc    ( i , j ) ∈ A   , and a maximum time    T  m a x     is given. The Set Orienteering Problem (SOP) consists of finding a route no longer than    T  m a x     that maximizes the profit collected. A simplified example of an SOP instance and the relative solution is provided in Figure 1.



In the remainder of the paper, we assume—consistently with the previous literature—that the travel times c satisfy the triangle inequality. This implies that an optimal solution containing at most one vertex for each cluster exists. As a consequence, arcs between vertices of a single cluster can be removed from the graph.




3. Preprocessing Rules


Some preprocessing techniques, with the function of reducing the number of variables and edges, are introduced in this section. We refer the interested reader to [8] for a more detailed explanation of Theorems 1 and 2 and for their proofs.



Theorem 1 

(Carrabs [8]). Given a cluster    C g   , let S be the set of the shortest paths from every    u ∈  C h     to every    v ∈  C k     passing through    C g   , with    h ≠ k ≠ g   . Moreover, let    A S    be the set of arcs incident to the vertices in    C g    that do not belong to any shortest path of S. An optimal solution not containing arcs in    A S    always exists. The arcs in    A S    can be removed from the graph.





Theorem 2 

(Carrabs [8]). Given a cluster    C g   , let S be the set of the shortest paths from every    u ∈  C h     to every    v ∈  C k     passing through    C g   , with    h ≠ k ≠ g   . Moreover, let    V S    be the set of vertices in    C g    that do not belong to any shortest path of S. An optimal solution of the SOP not containing vertices in    V S    always exists. The vertices in    V S    can be removed from the graph.





Theorem 3. 

Let    S P ( i , j )    be the cost of the shortest path from vertex    i ∈ G    to vertex    j ∈ G   . Given    k ∈ V   , if    S P  ( 0 , k )  + S P  ( k , 0 )  >  T  m a x     , then the vertex k cannot be part of any feasible solution and can be removed from the graph.





Proof. 

If vertex k is only part of vehicle routes longer than    T  m a x    , then no feasible solution with k exists and it can be eliminated from the graph. □





Remark 1. 

In case the arc    ( i , j )    exists in the graph,    S P  ( i , j )  =  d  i j      due to triangle inequalities. Otherwise, an alternative path might exist, and it needs to be calculated explicitly.





In our implementation, the three theorems are applied sequentially within a loop, which is executed until no further reduction is possible.




4. A Constraint Programming Model


The SOP can be described through the following constraint programming model, designed according to the syntax of the Google OR-Tools CP-SAT solver [14]. Given a vertex    i ∈ V   , we will indicate with    c l ( i )    the unique cluster containing i. A binary variable    x  i j    , with    i , j ∈ V   , takes value 1 if vertex i is visited right before vertex j in the solution tour, and value 0 otherwise. In case a customer    i ∈ C    is not visited, then    x  i i     is set to 1, and 0 otherwise.


                    max  ∑  i ∈ V    p  c l ( i )    ∑  j ∈ V , j ≠ i    x  i j        



(1)






      s . t .      A d d C i r c u i t (  x  i j   ; i , j ∈ V ; i ≠ 0 ∨ j ≠ 0 )      



(2)






          ∑  i ∈ V    ∑  j ∈ V , j ≠ i    c  i j    x  i j   ≤  T  m a x        



(3)






          x  i j   ∈  { 0 ; 1 }                                        i , j ∈ V      



(4)







The objective function (1) maximizes the profit collected in the tour. Constraint (2) imposes that the tour associated with the active x variables forms a feasible circuit. This is imposed by the CP-SAT statement AddCircuit that also ensures that     x  i i   = 1    for each variable    i ∈ C    not touched by the circuit itself. The constraints will ensure that only solutions in the shape of a tour will be considered, and, combined with the objective function (1) and the following constraints (3), will guarantee that only feasible solutions are generated. Constraint (3) is a budget constraint requiring that the length of the tour described by the active x variables has a length of at most    T  m a x    . Notice that the critical values of    T  m a x     that will make the optimization harder are those in the medium range: small values would lead to an easy problem because just a few vertices could be selected and, conversely, large values would take the problem closer to a traditional Traveling Salesman Problem, with the selection of just a few vertices to be left out. Constraints (4) finally define the domain of the variables.



The following constraints are added to tighten the model, although they would not be required:


         A d d A t M o s t O n e ( ¬  x  i i   ; i ∈  C g  )                 g ∈ { 1 , 2 , … , l }      



(5)




Constraints (5) impose that for each cluster g at most one customer is selected, since every optimal solution will respect this property due to the distances fulfilling triangle inequalities. The constraints are based on the use of the AddAtMostOne of CP-SAT and the negation operator “¬” (Not in CP-SAT). These constraints are included for all the experiments reported in Section 5, since they contribute to speeding up the solving process.




5. Computational Experiments


The computational tests were carried out on the instances previously adopted in the literature on exact algorithms. Two sets of instances were introduced in [3], for a total of 228 instances. Set1 is composed of instances with a number of vertices between 52 and 198. The parameter   ω  , taking values 0.4, 0.6, and 0.8, regulates the value of    T  m a x    . Two different rules,    g 1    and    g 2   , are finally used to assign the profit to the clusters. The instances of Set2 contain the same vertices and the same number of clusters as those in Set1, but the vertices are assigned in a different way to the clusters. We refer the interested reader to [3] for the full details of these instances.



In Table 1, we report statistics about the preprocessing procedures used in [8]—employing Theorems 1 and 2 only—and the full methodology we propose, which also uses Theorem 3. All the procedures were implemented from scratch in Python and the results reported were obtained on a computer equipped with an Intel Core i7 12700F processor and 32 GB of RAM. For each procedure, we considered the percentage of dominated nodes, the percentage of dominated arcs, and the computation time required. For each of these indicators, we report the minimum, maximum, and average values over the 228 instances considered.



When Theorem 3 is considered, the percentage of dominated nodes increases substantially, together with the percentage of dominated arcs (although in a weaker form). In particular, looking at the Min and Max values, it appears that some instances benefit substantially from the new reduction. Looking at the computation times required by preprocessing, a remarkable reduction is associated with the use of Theorem 3, which eventually leads to an early identification of dominated elements. Also in this case, the impressive gain in the Max row suggests that there are instances very sensitive to Theorem 3. The success of Theorem 3 as a preprocessing method can be explained by observing that it is the first method to take into account    T  m a x    , the maximum travel time allowed for the tour of the truck, and travel times. In the economy of the problem, this is an important factor, since the results often show the existence of several vertices that cannot simply be visited in the given time. Moreover, it must be observed how Theorem 3 builds on the results on the other theorems, and in turns boost them back. However, the results remain dependent on the characteristics of each instances, and this explains the fluctuations in the results achieved.



In Table 2, Table 3, Table 4 and Table 5, we compare the method proposed in this paper with the existing approaches from the literature. We consider the Mixed Integer Program (MIP) from [3] (clucut), solved as described in [9], and the Branch-and-Cut method introduced in [9] (BC). For these methods, we report the results published in the literature, with Theorem 1 and 2 used for preprocessing. Conversely, the constraint programming model discussed in Section 4 (CP) uses all the results discussed in Section 3 for preprocessing. For each of the three methods, the cost of the best solution found in the time allowed, the time required to eventually prove optimality and the eventual optimality gap (calculated as    ( U B − L B ) / L B   , where    U B    and    L B    are the best upper and lower bounds returned by the solver, respectively), are reported for each instance. The maximum time allowed (also considering preprocessing) is 3600 s on an Intel Core i9-10910 3.6 GHz processor with 64 GB of RAM for clucut and BC, and 36,000 s on a Intel Core i7 2.1 GHz processor with 32 GB of RAM for CP. We decided to extend the time allowed to CP in the hope of closing more instances. CP-SAT 9.8 [14] with standard settings has previously been adopted as a solver for constraint programming models.



The results are clearly in favour of the CP method (combined with the use of Theorem 3) for all the instances considered, both in terms of average computation times and solution quality. Only two instances remain open, namely, 22pr107 with    ω = 0.8   and Set1 for both profit rules    g 1    and    g 2   . The dominating results depend both on the new preprocessing rule described in Theorem 3 and on the effectiveness of the solver for the constraint programming model discussed in Section 4, which—as observed in Section 1—depends strongly on symmetry exploitation carried out by the solver itself, as documented in [14]. Some tests not reported—as the aim of this report is mainly to present the new state-of-the-art results—indicated that the new preprocessing rule and the efficiency of the constraint programming model on the new model both contributed to the results obtained. Notice in particular that CP-SAT models being faster to solve than traditional MIPs is consistent with results recently presented for other similar vehicle routing-like problems [10].




6. Conclusions


The Set Orienteering Problem, where the tour of a single vehicle has to be calculated in order to collect the maximum possible profit from visiting clusters in the given available time, is the subject of the present report. We presented a new preprocessing rule, exploiting for the first time the limited available time, and a new constraint programming model to formally describe the problem. From an empirical point of view, the effectiveness of the new preprocessing rule is shown. Moreover, through solving the new constraint programming model with modern solvers, and therefore exploiting the high symmetry characterising the model, new state-of-the-art results for the instances commonly adopted in the literature for exact algorithms that improve on those of very recent publications are disclosed.
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Figure 1. Example of an SOP instance. Node 0 is the depot, while the other nodes are customers. Clusters are represented as coloured rectangles, with the associated prize depicted in a corner. Travel times are omitted for the sake of simplicity, together with the threshold    T  m a x    . A tour with a total prize of 90 is drawn in black. 
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Table 1. Preprocessing performance. Statistics over the 228 instances considered.
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Theorems 1 and 2 (Carrabs [8])

	
Theorems 1–3






	
Dominated nodes (%)

	
Min

	
0.00

	
0.00




	
Max

	
13.00

	
65.66




	
Avg

	
2.46

	
20.18




	
Dominated arcs (%)

	
Min

	
19.02

	
22.98




	
Max

	
68.93

	
93.71




	
Avg

	
40.76

	
57.88




	
Computation time (s)

	
Min

	
0.26

	
0.05




	
Max

	
153.15

	
23.04




	
Avg

	
11.26

	
3.61











 





Table 2. Experimental results on the instances from Set1 with    ω = 0.4  .
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Instance

	
g1

	
g2




	
clucut (Archetti et al. [9])

	
BC (Archetti et al. [9])

	
CP

	
clucut (Archetti et al. [9])

	
BC (Archetti et al. [9])

	
CP




	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap






	
Set1

	
11berlin52

	
37

	
0.6

	
0.0

	
37

	
0.5

	
0.0

	
37

	
0.7

	
0.0

	
1829

	
0.6

	
0.0

	
1829

	
0.5

	
0.0

	
1829

	
0.6

	
0.0




	
11eil51

	
24

	
0.1

	
0.0

	
24

	
0.2

	
0.0

	
24

	
1.1

	
0.0

	
1279

	
0.3

	
0.0

	
1279

	
1.2

	
0.0

	
1279

	
1.0

	
0.0




	
14st70

	
33

	
0.5

	
0.0

	
33

	
0.5

	
0.0

	
33

	
1.4

	
0.0

	
1672

	
0.6

	
0.0

	
1672

	
0.5

	
0.0

	
1672

	
1.7

	
0.0




	
16eil76

	
40

	
3.9

	
0.0

	
40

	
2.6

	
0.0

	
40

	
6.2

	
0.0

	
2223

	
3.8

	
0.0

	
2223

	
1.8

	
0.0

	
2223

	
9.0

	
0.0




	
16pr76

	
47

	
5.0

	
0.0

	
47

	
5.2

	
0.0

	
47

	
11.7

	
0.0

	
2449

	
15.3

	
0.0

	
2449

	
4.0

	
0.0

	
2449

	
13.3

	
0.0




	
20kroA100

	
42

	
49.1

	
0.0

	
42

	
29.0

	
0.0

	
42

	
75.3

	
0.0

	
2151

	
84.6

	
0.0

	
2151

	
32.6

	
0.0

	
2151

	
160.6

	
0.0




	
20kroB100

	
49

	
15.8

	
0.0

	
49

	
8.9

	
0.0

	
49

	
26.1

	
0.0

	
2431

	
28.0

	
0.0

	
2431

	
16.1

	
0.0

	
2431

	
30.0

	
0.0




	
20kroC100

	
42

	
3.1

	
0.0

	
42

	
2.1

	
0.0

	
42

	
6.9

	
0.0

	
2174

	
3.1

	
0.0

	
2174

	
4.6

	
0.0

	
2174

	
11.8

	
0.0




	
20kroD100

	
39

	
3.4

	
0.0

	
39

	
3.1

	
0.0

	
39

	
7.1

	
0.0

	
1740

	
9.6

	
0.0

	
1740

	
8.5

	
0.0

	
1740

	
40.0

	
0.0




	
20kroE100

	
52

	
3.7

	
0.0

	
52

	
3.9

	
0.0

	
52

	
8.0

	
0.0

	
2415

	
2.6

	
0.0

	
2415

	
5.3

	
0.0

	
2415

	
17.4

	
0.0




	
20rat99

	
37

	
0.9

	
0.0

	
37

	
1.7

	
0.0

	
37

	
2.0

	
0.0

	
1905

	
0.8

	
0.0

	
1905

	
0.6

	
0.0

	
1905

	
2.0

	
0.0




	
20rd100

	
45

	
6.6

	
0.0

	
45

	
7.9

	
0.0

	
45

	
19.3

	
0.0

	
2228

	
13.6

	
0.0

	
2228

	
7.4

	
0.0

	
2228

	
49.1

	
0.0




	
21eil101

	
67

	
48.9

	
0.0

	
67

	
12.6

	
0.0

	
67

	
62.2

	
0.0

	
3365

	
61.4

	
0.0

	
3365

	
15.9

	
0.0

	
3365

	
152.9

	
0.0




	
21lin105

	
50

	
16.9

	
0.0

	
50

	
32.5

	
0.0

	
50

	
6.8

	
0.0

	
2489

	
13.3

	
0.0

	
2489

	
13.5

	
0.0

	
2489

	
11.5

	
0.0




	
22pr107

	
41

	
0.0

	
0.0

	
41

	
0.0

	
0.0

	
41

	
0.2

	
0.0

	
2123

	
0.1

	
0.0

	
2123

	
0.1

	
0.0

	
2123

	
0.2

	
0.0




	
25pr124

	
46

	
2375.0

	
0.0

	
46

	
114.7

	
0.0

	
46

	
494.7

	
0.0

	
2302

	
3635.9

	
32.8

	
2302

	
182.2

	
0.0

	
2302

	
1328.2

	
0.0




	
26bier127

	
109

	
3761.2

	
8.6

	
110

	
1002.4

	
0.0

	
110

	
257.6

	
0.0

	
5069

	
3686.8

	
15.5

	
5420

	
2991.9

	
0.0

	
5420

	
860.5

	
0.0




	
26ch130

	
67

	
3752.9

	
28.5

	
70

	
371.6

	
0.0

	
70

	
2638.8

	
0.0

	
3320

	
3747.8

	
26.5

	
3423

	
820.3

	
0.0

	
3423

	
6863.9

	
0.0




	
28pr136

	
53

	
286.1

	
0.0

	
53

	
33.2

	
0.0

	
53

	
5938.8

	
0.0

	
2699

	
449.7

	
0.0

	
2699

	
327.5

	
0.0

	
2699

	
4506.2

	
0.0




	
29pr144

	
6

	
3663.4

	
94.1

	
60

	
1739.5

	
0.0

	
60

	
2690.1

	
0.0

	
3055

	
3774.9

	
39.2

	
3055

	
1707.9

	
0.0

	
3055

	
2231.4

	
0.0




	
30ch150

	
61

	
3741.8

	
21.0

	
61

	
536.1

	
0.0

	
61

	
5113.6

	
0.0

	
3078 *

	
3527.5

	
0.0

	
3078 *

	
749.8

	
0.0

	
3131

	
7300.5

	
0.0




	
30kroA150

	
58

	
3748.0

	
30.9

	
58

	
654.2

	
0.0

	
58

	
2919.2

	
0.0

	
3026

	
3739.4

	
18.2

	
3039

	
779.7

	
0.0

	
3039

	
2316.5

	
0.0




	
30kroB150

	
66

	
3722.5

	
16.8

	
66

	
354.7

	
0.0

	
66

	
8119.6

	
0.0

	
3172

	
3731.6

	
24.7

	
3172

	
2081.3

	
0.0

	
3172

	
10,963.6

	
0.0




	
31pr152

	
9

	
3653.2

	
91.4

	
57

	
949.2

	
0.0

	
57

	
2841.2

	
0.0

	
2440

	
3651.9

	
54.7

	
2915

	
1574.6

	
0.0

	
2915

	
3000.1

	
0.0




	
32u159

	
76

	
1791.0

	
0.0

	
76

	
1429.4

	
0.0

	
76

	
2336.9

	
0.0

	
4002

	
2568.6

	
0.0

	
4002

	
584.4

	
0.0

	
4002

	
2838.6

	
0.0




	
39rat195

	
71

	
1354.3

	
0.0

	
71

	
311.4

	
0.0

	
71

	
2850.2

	
0.0

	
3656

	
1034.4

	
0.0

	
3656

	
287.2

	
0.0

	
3656

	
3416.1

	
0.0




	
40d198

	
67 *

	
181.3

	
0.0

	
67 *

	
85.9

	
0.0

	
70

	
502.2

	
0.0

	
3400 *

	
229.7

	
0.0

	
3400 *

	
49.0

	
0.0

	
3595

	
929.5

	
0.0




	
Average

	
49.4

	
1192.2

	
10.8

	
53.3

	
284.9

	
0.0

	
53.4

	
1368.1

	
0.0

	
2655.3

	
1259.8

	
7.8

	
2690.1

	
453.6

	
0.0

	
2699.3

	
1742.8

	
0.0








[*] This cost is not consistent with the results of CP or with the results reported in [7,8] for some heuristic approaches. As a consequence, the entry in the table of [9] requires recalculation and update [15].













 





Table 3. Experimental results on the instances from Set2 with    ω = 0.4  .






Table 3. Experimental results on the instances from Set2 with    ω = 0.4  .





	

	
Instance

	
g1

	
g2




	
clucut (Archetti et al. [9])

	
BC (Archetti et al. [9])

	
CP

	
clucut (Archetti et al. [9])

	
BC (Archetti et al. [9])

	
CP




	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap






	
Set2

	
11berlin52

	
50

	
1.0

	
0.0

	
50

	
1.0

	
0.0

	
50

	
0.5

	
0.0

	
2584

	
0.8

	
0.0

	
2584

	
0.9

	
0.0

	
2584

	
0.6

	
0.0




	
11eil51

	
37

	
0.3

	
0.0

	
37

	
2.5

	
0.0

	
37

	
1.3

	
0.0

	
1929

	
0.2

	
0.0

	
1929

	
0.6

	
0.0

	
1929

	
3.7

	
0.0




	
14st70

	
56

	
2.0

	
0.0

	
56

	
0.8

	
0.0

	
56

	
5.3

	
0.0

	
2736

	
1.8

	
0.0

	
2736

	
0.9

	
0.0

	
2736

	
7.5

	
0.0




	
16eil76

	
51

	
4.1

	
0.0

	
51

	
2.7

	
0.0

	
51

	
19.2

	
0.0

	
2518

	
6.8

	
0.0

	
2518

	
11.8

	
0.0

	
2518

	
44.6

	
0.0




	
16pr76

	
70

	
161.9

	
0.0

	
70

	
156.1

	
0.0

	
70

	
29.4

	
0.0

	
3550

	
146.1

	
0.0

	
3550

	
33.1

	
0.0

	
3550

	
19.3

	
0.0




	
20kroA100

	
80

	
1478.1

	
0.0

	
80

	
42.4

	
0.0

	
80

	
139.3

	
0.0

	
3894

	
848.4

	
0.0

	
3894

	
56.7

	
0.0

	
3894

	
205.5

	
0.0




	
20kroB100

	
86

	
664.7

	
0.0

	
86

	
52.4

	
0.0

	
86

	
46.3

	
0.0

	
4357

	
678.8

	
0.0

	
4357

	
433.0

	
0.0

	
4357

	
56.0

	
0.0




	
20kroC100

	
72

	
132.1

	
0.0

	
72

	
28.2

	
0.0

	
72

	
169.8

	
0.0

	
3586

	
206.2

	
0.0

	
3586

	
99.6

	
0.0

	
3586

	
398.8

	
0.0




	
20kroD100

	
78

	
28.3

	
0.0

	
78

	
11.0

	
0.0

	
78

	
51.2

	
0.0

	
3799

	
112.8

	
0.0

	
3799

	
33.4

	
0.0

	
3799

	
51.7

	
0.0




	
20kroE100

	
90

	
191.2

	
0.0

	
90

	
8.0

	
0.0

	
90

	
19.7

	
0.0

	
4614

	
25.4

	
0.0

	
4614

	
28.7

	
0.0

	
4614

	
19.3

	
0.0




	
20rat99

	
73

	
0.3

	
0.0

	
73

	
1.7

	
0.0

	
73

	
2.9

	
0.0

	
3624

	
1.1

	
0.0

	
3624

	
43.5

	
0.0

	
3624

	
8.2

	
0.0




	
20rd100

	
80 *

	
44.4

	
0.0

	
80 *

	
26.6

	
0.0

	
82

	
89.4

	
0.0

	
4038 *

	
34.1

	
0.0

	
4038 *

	
47.1

	
0.0

	
4181

	
163.3

	
0.0




	
21eil101

	
83

	
47.7

	
0.0

	
83

	
31.1

	
0.0

	
83

	
245.1

	
0.0

	
4264

	
72.8

	
0.0

	
4264

	
48.0

	
0.0

	
4264

	
451.2

	
0.0




	
21lin105

	
95

	
753.1

	
0.0

	
95

	
378.5

	
0.0

	
95

	
117.8

	
0.0

	
4814

	
879.2

	
0.0

	
4814

	
403.0

	
0.0

	
4814

	
156.5

	
0.0




	
22pr107

	
94

	
10.6

	
0.0

	
94

	
14.3

	
0.0

	
94

	
7.6

	
0.0

	
4740

	
76.3

	
0.0

	
4740

	
20.2

	
0.0

	
4740

	
4.4

	
0.0




	
25pr124

	
90

	
3625.7

	
25.6

	
101

	
832.8

	
0.0

	
101

	
1831.8

	
0.0

	
4334

	
3622.9

	
28.4

	
3859

	
3625.2

	
36.3

	
5035

	
3501.1

	
0.0




	
26bier127

	
11

	
3656.2

	
91.3

	
124

	
3656.5

	
1.6

	
125

	
78.5

	
0.0

	
6236

	
3673.1

	
1.5

	
6004

	
3637.1

	
5.2

	
6329

	
176.0

	
0.0




	
26ch130

	
9

	
3622.2

	
93.0

	
9

	
3632.6

	
92.9

	
111

	
3193.2

	
0.0

	
153

	
3625.7

	
97.6

	
4833

	
3633.2

	
24.4

	
5630

	
20,566.6

	
0.0




	
28pr136

	
120

	
2524.2

	
0.0

	
120

	
37.8

	
0.0

	
120

	
134.7

	
0.0

	
6106

	
1789.0

	
0.0

	
6106

	
157.3

	
0.0

	
6106

	
367.4

	
0.0




	
29pr144

	
4

	
3637.3

	
97.2

	
4

	
3630.0

	
97.2

	
137

	
754.9

	
0.0

	
166

	
3628.3

	
97.7

	
166

	
3626.4

	
97.7

	
6848

	
1591.4

	
0.0




	
30ch150

	
90

	
3627.8

	
39.6

	
111 *

	
1524.7

	
0.0

	
114

	
2501.2

	
0.0

	
4361

	
3633.8

	
42.1

	
5896 *

	
2552.9

	
0.0

	
6025

	
1155.1

	
0.0




	
30kroA150

	
11

	
3626.8

	
92.6

	
99

	
3634.2

	
33.6

	
110

	
10,533.2

	
0.0

	
141

	
3626.6

	
98.1

	
4478

	
3636.8

	
39.9

	
5450

	
12,838.2

	
0.0




	
30kroB150

	
9

	
3631.1

	
93.9

	
115

	
3630.1

	
22.0

	
120

	
13,969.2

	
0.0

	
171

	
3627.9

	
97.7

	
6190

	
3624.8

	
17.7

	
6255

	
15,700.5

	
0.0




	
31pr152

	
89

	
3632.4

	
40.7

	
9

	
3629.2

	
94.0

	
136

	
30,240.8

	
0.0

	
431

	
3636.3

	
94.3

	
431

	
3630.9

	
94.3

	
6928

	
8101.4

	
0.0




	
32u159

	
143

	
3627.6

	
7.1

	
143

	
428.1

	
0.0

	
143

	
565.1

	
0.0

	
7507

	
3620.3

	
4.4

	
7507

	
913.5

	
0.0

	
7507

	
464.2

	
0.0




	
39rat195

	
135

	
740.9

	
0.0

	
135

	
467.6

	
0.0

	
135

	
244.0

	
0.0

	
6813

	
1190.8

	
0.0

	
6813

	
288.8

	
0.0

	
6813

	
485.7

	
0.0




	
40d198

	
148 *

	
844.7

	
0.0

	
148 *

	
178.1

	
0.0

	
149

	
1192.9

	
0.0

	
7412 *

	
1082.8

	
0.0

	
7412 *

	
393.3

	
0.0

	
7480

	
2082.2

	
0.0




	
Average

	
72.4

	
1493.2

	
21.5

	
82.0

	
964.4

	
12.6

	
96.2

	
2451.3

	
0.0

	
3662.1

	
1475.9

	
20.8

	
4249.7

	
1147.4

	
11.7

	
4873.9

	
2541.5

	
0.0








[*] This cost is not consistent with the results of CP or with the results reported in [7,8] for some heuristic approaches. As a consequence, the entry in the table of [9] requires recalculation and update [15].













 





Table 4. Experimental results on the instances with    ω = 0.6  .






Table 4. Experimental results on the instances with    ω = 0.6  .





	

	
Instance

	
g1

	
g2




	
clucut (Archetti et al. [9])

	
BC (Archetti et al. [9])

	
CP

	
clucut (Archetti et al. [9])

	
BC (Archetti et al. [9])

	
CP




	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap






	
Set1

	
11berlin52

	
43

	
3.7

	
0.0

	
43

	
4.1

	
0.0

	
43

	
2.4

	
0.0

	
2190

	
2.2

	
0.0

	
2190

	
4.0

	
0.0

	
2190

	
4.0

	
0.0




	
11eil51

	
39

	
0.6

	
0.0

	
39

	
1.9

	
0.0

	
39

	
1.3

	
0.0

	
1911

	
0.6

	
0.0

	
1911

	
1.2

	
0.0

	
1911

	
4.1

	
0.0




	
14st70

	
50

	
101.2

	
0.0

	
50

	
21.7

	
0.0

	
50

	
63.8

	
0.0

	
2589

	
39.2

	
0.0

	
2589

	
20.7

	
0.0

	
2589

	
112.1

	
0.0




	
16eil76

	
59

	
76.9

	
0.0

	
59

	
8.9

	
0.0

	
59

	
10.1

	
0.0

	
3119

	
82.0

	
0.0

	
3119

	
21.5

	
0.0

	
3119

	
24.0

	
0.0




	
16pr76

	
65

	
69.8

	
0.0

	
65

	
133.8

	
0.0

	
65

	
207.4

	
0.0

	
3275

	
1496.7

	
0.0

	
3275

	
190.7

	
0.0

	
3275

	
2286.2

	
0.0




	
20kroA100

	
65

	
1979.6

	
0.0

	
65

	
110.0

	
0.0

	
65

	
177.0

	
0.0

	
3192

	
1740.7

	
0.0

	
3192

	
140.0

	
0.0

	
3192

	
1088.5

	
0.0




	
20kroB100

	
59

	
3628.8

	
39.8

	
66

	
100.8

	
0.0

	
66

	
1161.2

	
0.0

	
3203

	
1966.9

	
0.0

	
3203

	
167.7

	
0.0

	
3203

	
1713.8

	
0.0




	
20kroC100

	
62

	
521.3

	
0.0

	
62

	
74.9

	
0.0

	
62

	
575.0

	
0.0

	
3110

	
1700.9

	
0.0

	
3110

	
255.1

	
0.0

	
3110

	
876.1

	
0.0




	
20kroD100

	
64

	
2517.9

	
0.0

	
64

	
78.3

	
0.0

	
64

	
438.6

	
0.0

	
3133

	
2324.2

	
0.0

	
3133

	
84.4

	
0.0

	
3133

	
473.8

	
0.0




	
20kroE100

	
63

	
107.7

	
0.0

	
63

	
190.1

	
0.0

	
63

	
146.9

	
0.0

	
2950

	
318.5

	
0.0

	
2950

	
89.8

	
0.0

	
2950

	
324.5

	
0.0




	
20rat99

	
52

	
130.3

	
0.0

	
52

	
50.5

	
0.0

	
52

	
185.0

	
0.0

	
2643

	
80.6

	
0.0

	
2643

	
44.1

	
0.0

	
2643

	
383.7

	
0.0




	
20rd100

	
72

	
450.0

	
0.0

	
72

	
67.1

	
0.0

	
72

	
186.9

	
0.0

	
3585 *

	
413.5

	
0.0

	
3585 *

	
278.7

	
0.0

	
3591

	
901.9

	
0.0




	
21eil101

	
82

	
913.4

	
0.0

	
82

	
85.7

	
0.0

	
82

	
261.5

	
0.0

	
4187

	
720.2

	
0.0

	
4187

	
447.3

	
0.0

	
4187

	
1657.9

	
0.0




	
21lin105

	
78

	
504.6

	
0.0

	
78

	
137.8

	
0.0

	
78

	
82.9

	
0.0

	
3955

	
1178.4

	
0.0

	
3955

	
171.1

	
0.0

	
3955

	
197.2

	
0.0




	
22pr107

	
53

	
3623.0

	
36.1

	
53

	
3624.2

	
31.2

	
53

	
30.6

	
0.0

	
2697

	
3626.8

	
34.7

	
2697

	
3627.4

	
30.4

	
2697

	
127.9

	
0.0




	
Average

	
60.4

	
975.2

	
5.1

	
60.9

	
312.7

	
2.1

	
60.9

	
235.4

	
0.0

	
3049.3

	
1046.1

	
2.3

	
3049.3

	
369.6

	
2.0

	
3049.7

	
678.4

	
0.0




	
Set2

	
11berlin52

	
51

	
0.1

	
0.0

	
51

	
0.1

	
0.0

	
51

	
0.5

	
0.0

	
2608

	
0.1

	
0.0

	
2608

	
0.2

	
0.0

	
2608

	
0.5

	
0.0




	
11eil51

	
50

	
0.6

	
0.0

	
50

	
3.8

	
0.0

	
50

	
0.9

	
0.0

	
2575

	
0.6

	
0.0

	
2575

	
0.6

	
0.0

	
2575

	
0.9

	
0.0




	
14st70

	
64

	
2152.4

	
0.0

	
64

	
341.9

	
0.0

	
64

	
979.2

	
0.0

	
3218

	
3619.3

	
8.4

	
3218

	
569.4

	
0.0

	
3218

	
815.3

	
0.0




	
16eil76

	
74

	
526.1

	
0.0

	
74

	
193.9

	
0.0

	
74

	
8.2

	
0.0

	
3728

	
117.1

	
0.0

	
3728

	
108.6

	
0.0

	
3728

	
26.7

	
0.0




	
16pr76

	
74

	
3619.8

	
1.3

	
74

	
2088.3

	
0.0

	
74

	
12.5

	
0.0

	
3729

	
3621.3

	
1.9

	
3729

	
532.5

	
0.0

	
3729

	
36.5

	
0.0




	
20kroA100

	
91

	
3624.9

	
8.1

	
95

	
3624.0

	
4.0

	
98

	
533.0

	
0.0

	
3763

	
3630.4

	
24.9

	
4554

	
3621.7

	
9.1

	
4920

	
912.6

	
0.0




	
20kroB100

	
93

	
3628.7

	
6.1

	
2

	
3621.6

	
98.0

	
98

	
2087.6

	
0.0

	
3578

	
3630.6

	
28.6

	
4668

	
3624.1

	
6.8

	
4925

	
390.7

	
0.0




	
20kroC100

	
5

	
3625.9

	
94.9

	
90

	
3620.4

	
9.1

	
93

	
11,210.5

	
0.0

	
3915

	
3622.6

	
21.8

	
4534

	
3618.5

	
9.5

	
4717

	
2482.3

	
0.0




	
20kroD100

	
4

	
3623.2

	
96.0

	
93

	
3618.9

	
6.1

	
93

	
2211.4

	
0.0

	
4394

	
3628.4

	
12.3

	
4570

	
3619.6

	
8.7

	
4695

	
2160.7

	
0.0




	
20kroE100

	
97

	
3621.6

	
2.0

	
97

	
2619.0

	
0.0

	
97

	
66.0

	
0.0

	
4910

	
3622.6

	
2.0

	
4910

	
3617.8

	
2.0

	
4910

	
93.2

	
0.0




	
20rat99

	
87

	
162.3

	
0.0

	
87

	
216.2

	
0.0

	
87

	
118.8

	
0.0

	
4516

	
76.8

	
0.0

	
4516

	
165.9

	
0.0

	
4516

	
76.6

	
0.0




	
20rd100

	
97

	
3628.6

	
2.0

	
99

	
3459.8

	
0.0

	
99

	
86.5

	
0.0

	
5008

	
1113.8

	
0.0

	
5008

	
572.6

	
0.0

	
5008

	
12.0

	
0.0




	
21eil101

	
95

	
3623.4

	
5.0

	
97

	
1111.3

	
0.0

	
97

	
221.8

	
0.0

	
4925

	
3622.6

	
2.5

	
4925

	
3623.8

	
2.5

	
4933

	
1988.6

	
0.0




	
21lin105

	
102

	
3642.8

	
1.9

	
104

	
888.4

	
0.0

	
104

	
32.1

	
0.0

	
4495

	
3631.2

	
14.0

	
5103

	
3627.8

	
2.4

	
5228

	
21.7

	
0.0




	
22pr107

	
106

	
243.7

	
0.0

	
106

	
11.2

	
0.0

	
106

	
4.8

	
0.0

	
5363

	
29.3

	
0.0

	
5363

	
139.7

	
0.0

	
5363

	
5.3

	
0.0




	
Average

	
72.7

	
2381.6

	
14.5

	
78.9

	
1694.6

	
7.8

	
85.7

	
1171.6

	
0.0

	
4048.3

	
2264.5

	
7.7

	
4267.3

	
1829.5

	
2.7

	
4338.2

	
601.6

	
0.0








[*] This cost is not consistent with the results of CP or with the results reported in [7,8] for some heuristic approaches. As a consequence, the entry in the table of [9] requires recalculation and update [15].













 





Table 5. Experimental results on the instances with    ω = 0.8  .






Table 5. Experimental results on the instances with    ω = 0.8  .





	

	
Instance

	
g1

	
g2




	
clucut (Archetti et al. [9])

	
BC (Archetti et al. [9])

	
CP

	
clucut (Archetti et al. [9])

	
BC (Archetti et al. [9])

	
CP




	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap

	
Val

	
Sec

	
Gap






	
Set1

	
11berlin52

	
47

	
59.5

	
0.0

	
47

	
6.7

	
0.0

	
47

	
2.3

	
0.0

	
2384

	
12.5

	
0.0

	
2384

	
13.1

	
0.0

	
2384

	
3.0

	
0.0




	
11eil51

	
43

	
4.3

	
0.0

	
43

	
2.2

	
0.0

	
43

	
16.6

	
0.0

	
2114

	
7.4

	
0.0

	
2114

	
7.4

	
0.0

	
2114

	
42.9

	
0.0




	
14st70

	
65

	
1110.4

	
0.0

	
65

	
445.8

	
0.0

	
65

	
26.8

	
0.0

	
3355

	
692.9

	
0.0

	
3355

	
661.5

	
0.0

	
3355

	
29.6

	
0.0




	
16eil76

	
69

	
695.4

	
0.0

	
69

	
178.5

	
0.0

	
69

	
38.9

	
0.0

	
3573

	
1852.7

	
0.0

	
3573

	
97.0

	
0.0

	
3573

	
65.5

	
0.0




	
16pr76

	
72

	
3619.4

	
2.7

	
72

	
1952.1

	
0.0

	
72

	
30.1

	
0.0

	
3611

	
3625.6

	
3.2

	
3611

	
3620.8

	
2.2

	
3611

	
632.0

	
0.0




	
20kroA100

	
68

	
3629.7

	
31.3

	
79

	
240.7

	
0.0

	
79

	
1035.2

	
0.0

	
2713

	
3632.4

	
45.8

	
4115

	
3466.8

	
0.0

	
4115

	
2456.3

	
0.0




	
20kroB100

	
77

	
3636.5

	
22.2

	
86

	
3125.6

	
0.0

	
86

	
2007.6

	
0.0

	
4188

	
3628.9

	
16.4

	
4117

	
3640.6

	
16.3

	
4188

	
3894.9

	
0.0




	
20kroC100

	
76

	
3631.9

	
23.2

	
83

	
466.7

	
0.0

	
83

	
228.6

	
0.0

	
3999

	
3625.9

	
20.1

	
3999

	
300.1

	
0.0

	
3999

	
1423.3

	
0.0




	
20kroD100

	
68

	
3635.7

	
31.3

	
85

	
480.4

	
0.0

	
85

	
219.5

	
0.0

	
3854

	
3630.9

	
23.0

	
4026

	
3626.0

	
19.6

	
4267

	
380.6

	
0.0




	
20kroE100

	
77

	
3627.7

	
22.2

	
80

	
372.3

	
0.0

	
80

	
1500.6

	
0.0

	
3887

	
3628.6

	
14.0

	
4002

	
414.4

	
0.0

	
4002

	
1281.3

	
0.0




	
20rat99

	
69

	
3634.3

	
21.6

	
79

	
2046.6

	
0.0

	
79

	
512.7

	
0.0

	
3855

	
3623.5

	
13.1

	
3992

	
3113.5

	
0.0

	
3992

	
1074.3

	
0.0




	
20rd100

	
83

	
3636.9

	
16.2

	
90

	
3629.8

	
6.3

	
91

	
96.7

	
0.0

	
4155

	
3632.6

	
17.0

	
4640

	
1982.4

	
0.0

	
4640

	
102.1

	
0.0




	
21eil101

	
89

	
3631.5

	
11.0

	
91

	
347.5

	
0.0

	
91

	
325.0

	
0.0

	
4538

	
3633.8

	
10.1

	
4717

	
1969.2

	
0.0

	
4717

	
615.4

	
0.0




	
21lin105

	
87

	
3642.1

	
16.3

	
90

	
302.2

	
0.0

	
90

	
6099.5

	
0.0

	
4245

	
3649.0

	
18.8

	
4561

	
3641.8

	
10.7

	
4561

	
1535.9

	
0.0




	
22pr107

	
6

	
3635.6

	
94.3

	
53

	
3650.2

	
50.0

	
65

	
36,000.0

	
26.2

	
2156

	
3638.3

	
59.8

	
2697

	
3636.8

	
49.7

	
3275

	
36,000.0

	
28.9




	
Average

	
66.4

	
2788.7

	
19.5

	
74.1

	
1149.8

	
3.8

	
75.0

	
3209.3

	
1.7

	
3508.5

	
2834.3

	
16.1

	
3726.9

	
2012.8

	
6.6

	
3786.2

	
3302.5

	
1.9




	
Set2

	
11berlin52

	
51

	
0.0

	
0.0

	
51

	
0.0

	
0.0

	
51

	
0.4

	
0.0

	
2608

	
0.1

	
0.0

	
2608

	
0.1

	
0.0

	
2608

	
0.4

	
0.0




	
11eil51

	
50

	
1.4

	
0.0

	
50

	
0.8

	
0.0

	
50

	
0.7

	
0.0

	
2575

	
0.6

	
0.0

	
2575

	
0.5

	
0.0

	
2575

	
0.7

	
0.0




	
14st70

	
69

	
8.9

	
0.0

	
69

	
3.7

	
0.0

	
69

	
3.4

	
0.0

	
3513

	
28.8

	
0.0

	
3513

	
14.1

	
0.0

	
3513

	
3.2

	
0.0




	
16eil76

	
75

	
14.1
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