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Abstract: Due to slash/burn agricultural activity and frequent forest fires, PM2.5 has become a
significant air pollution problem in Thailand, especially in the north and north east regions. Since its
dispersion differs both spatially and temporally, estimating PM2.5 concentrations discretely by area,
for which the inverse Gaussian distribution is suitable, can provide valuable information. Herein,
we provide derivations of the simultaneous confidence interval for the ratios of the coefficients of
variation of multiple inverse Gaussian distributions using the generalized confidence interval, the
Bayesian interval based on the Jeffreys’ rule prior, the fiducial interval, and the method of variance
estimates recovery. The efficacies of these methods were compared by considering the coverage
probability and average length obtained from simulation results of daily PM2.5 datasets. The findings
indicate that in most instances, the fiducial method with the highest posterior density demonstrated
a superior performance. However, in certain scenarios, the Bayesian approach using the Jeffreys’ rule
prior for the highest posterior density yielded favorable results.

Keywords: generalized confidence interval; Bayesian; fiducial; method of variance estimates recovery;
Jeffreys’ rule prior

1. Introduction

The inverse Gaussian (IG) distribution (also known as the Wald distribution) is a
probability distribution with widespread applications across diverse disciplines. It is
characterized by asymmetry and versatility in modeling complex real-world phenomena.
Notably, the IG distribution exhibits a skewed nature, featuring a protracted right tail,
rendering it particularly suitable for scenarios where events follow a pattern of frequent
occurrence followed by a gradual decline. A significant theoretical underpinning of the IG
distribution lies in its association with Brownian motion. Chhikara and Folk [1] proposed
its application to lifetime modeling, and it has been utilized in various fields such as biology
(Hsu et al. [2], Jerves-cobo et al. [3]), pharmacokinetics (Weiss [4]), cardiology (Chaubey [5]),
demography (Ewbanks [6]), and finance (Balakrishna [7], Punzo [8]). In addition, it has
been applied to particulate matter (PM) data conforming to an IG distribution. For example,
Karaca et al. [9] investigated the cyclic patterns in the monthly average concentrations of
PM10 (PM < 10 µm) and PM2.5 (PM < 2.5 µm). Feng et al. [10] investigated the association
between daily PM2.5 levels and the risk of illness in Beijing by utilizing a generalized
additive model. Gavriil et al. [11] examined probability distribution functions applied to
PM10 and PM2.5 concentration data gathered over two years at a central location in Athens;
based on goodness-of-fit measures, they identified the most suitable probability density
functions as Pearson types VI and V, IG, and lognormal. Confidence intervals (CIs) for
functions of the coefficient of variation (CV) of an IG distribution have been proposed.
Hsieh [12] analyzed inferences on the CV of an IG distribution by using likelihood ratio
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testing. Gupta and Akman [13] estimated the square of the CV of a weighted IG distribution.
Chaubey et al. [14] investigated the properties of variance stabilizing and symmetrizing
transformations for the CV of an IG population. Wasana et al. [15] determined the CIs
for the CV of an IG distribution by employing the generalized CI (GCI), adjusted GCI,
bootstrap percentile, fiducial CI (FCI), and highest posterior density (HPD) FCI methods.

The simultaneous CI (SCI) is a statistical tool used to estimate the CIs for multiple
instances of a distribution function simultaneously to achieve a more comprehensive
understanding of data variability. Researchers often need to analyze several parameters
simultaneously in various fields, including science, medicine, and economics. For instance,
Hannig et al. [16] utilized the notion of fiducial generalized pivotal quantities (GPQs) to
provide simultaneous fiducial GCIs for the mean ratios of lognormal distributions. Tian
et al. [17] determined the SCI for differences in the medians of multiple independent
lognormal distributions by employing the parametric bootstrap, normal approximation, the
method of variance estimates recovery (MOVER), and GCI approaches. Abdel-Karim [18]
suggested the MOVER method for constructing the SCI for the ratios of the means of
multiple lognormal distributions. Yosboonruang et al. [19] provided an SCI for all pairwise
differences among the CVs of delta-lognormal distributions by employing the fiducial GCI,
Bayesian, and MOVER methods. La-ongkaew et al. [20] constructed the SCI for differences
in the means of several Weibull distributions by utilizing the GCI, MOVER, and Bayesian
approaches. Kaewprasert et al. [21] calculated the SCI for the mean ratios of multiple
zero-inflated gamma populations based on MOVER, fiducial GCI, and Bayesian and HPD
interval methods with either the Jeffreys’ rule or uniform prior. Zhang [22] investigated the
SCI for pairwise comparisons of the means of IG distributions by utilizing fiducial GPQs
for the vector parameters.

SCIs have frequently been used to estimate differences in the parameters of various
distributions, including lognormal, delta-lognormal, Weibull, delta-gamma, and IG dis-
tributions. Moreover, since the SCI for the ratios of the CVs of multiple IG distributions,
which is important to measure non-unit data with diverse clusters, has not previously been
reported, our aim was to fill this research gap. Herein, we provide methodology involving
the GCI, Bayesian, fiducial, and MOVER methods to this end.

2. Methods

For p populations of observations, let Yi1, ..., Yini , i = 1, ..., p be random samples from

an IG distribution with mean µi and variance µ3
i

λi
. The probability density function is

given by

f (yij, µi, λi) =

(
λi

2πy2
ij

) 1
2

exp

{
−

λi
(
yij − µi

)2

2µ
2

i yij

}
, yij > 0, µi > 0, λi > 0. (1)

Moreover, the respective maximum likelihood estimators (MLEs) for µi and λi rep-
resenting the mean and shape parameters of an IG distribution can be determined as
follows:

µ̂i = ȳi, λ̂−1
i =

1
ni

ni

∑
j=1

(y−1
ij − ȳ−1

i ). (2)

Equation (2) can be rewritten as

Ȳi ∼ IG(µi, niλi), niλiλ̂
−1 ∼ χ2

ni−1, i = 1, ..., p, (3)

where χ2
ni−1 denotes a Chi-square distribution with ni − 1 degrees of freedom and µ̂i and

1/λ̂i represent comprehensively sufficient and independent statistics.
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The CV (a measure of relative variability) is the ratio of the standard deviation to the
mean. For an multiple IG distributions with parameters µ and λ, φ denoting the CV can be
calculated as

φi =

√
µi
λi

. (4)

The aim of the present study is to construct the SCI for the ratios of the CVs of multiple
IG populations as follows:

φil =
φi
φl

=

√
µi
λi

/
√

µl
λl

, (5)

where φil denotes the ratios of the CVs for i, l = 1, ..., p and i ̸= l.
By substituting µi and λi in Equations (2) and (3) with their respective MLEs, one can

establish the SCI for the ratios of the CVs of multiple IG populations as follows:

φ̂il =
φ̂i
φ̂l

=

√
µ̂i

λ̂i
/

√
µ̂l

λ̂l
, (6)

where i, l = 1, ..., p and i ̸= l.

2.1. The GCI Approach

Weeranhandi [23] was the pioneer who introduced the GCI, a specific category of
the GPQ. Let Yi = (Yi1, ...Yini ), i = 1, ..., p be a random sample from an IG distribution
with parameters (µi, λi) across p independent samples and assume that observations
yi = (yi1, ..., yini ), i = 1, ..., p. The corresponding GPQ exists if it satisfies the following two
requirements:

1. The distribution conditioned on each yi is parameter-free.
2. The observed values of R(Yi, yi, µi, λi) comprise the parameter of interest.

Using the MLEs of µi and λi in Equations (2) and (3) and in accordance with Ye
et al. [24], the respective GPQs for µi and λi become

Rλi =
niλiVi
niυi

∼
χ2

ni−1

niυi
, i = 1, ..., p, (7)

and
Rµi =

ȳi

|1 +
√

niλi(ȳi−µi)
µi
√

ȳi

√
ȳi

ni Rλi
|

d∼ ȳi∣∣∣∣1 + Zi

√
ȳi

ni Rλi

∣∣∣∣ , (8)

where ȳi are the observed values of Ȳi and d∼ denotes the approximation of the normal
distribution Zi ∼ N(0, 1) according to Theorem 2.1 in Chhikara and Folks [25]. Hence, the
GPQ for the ratio of two independent CVs can be written as

Rφil =
Rφi

Rφl
=

√
Rµi

Rλi
/

√
Rµl

Rλl
, (9)

Therefore, the 100(1 − γ)% two-sided SCI for φil based on the GCI approach can be
written as Lil ≤ φil ≤ Uil , where Lil and Uil are the γ/2 th and (1 − γ/2)th quantiles of
Rφil , respectively, leading to

SCIGCI =
[
Rφil (γ/2), Rφil (1 − γ/2)

]
. (10)

Algorithm 1 details the process of calculating the SCI using the GCI method. Per-
forming 2500 iterations is essential for validating the accuracy of the code and ensuring its
stability across different levels of functionality.
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Algorithm 1: The GCI method

1. Compute µ̂i and λ̂i for a given sample from an IG distribution.
2. Generate χ2

ni−1 and Zi from Chi-square and standard normal distributions,
respectively.

3. Compute Rλi and Rµi using Equations (7) and (8), respectively.
4. Calculate the Rφil from Equation (9).
5. Repeat Steps 2–4 2500 times.
6. Complete Rφij(γ/2) and Rφij(1 − γ/2).

2.2. The Bayesian CI (BCI) Approach

Bayesian inference is the process of updating prior beliefs based on new evidence to
obtain a posterior probability. For random samples Yi, i = 1, ..., p from IG(µi, λi), the joint
likelihood function can be written as

L(µi, λi|Yij) ∝
(

λi
2π

) ni
2 k

∏
i=1

Y
−3
2

ij exp

(
−λi

k

∑
i=1

(
Yij − µi

)2

2µ2
i Yij

)
. (11)

Using Bayes’ theorem to estimate the posterior distribution, we obtain

π(µ
i ,λi |Yij

) ∝ L(µ
i ,λi |Yij

)× π(µi)× π(λi), (12)

where π(µi) and π(λi) are the prior distributions for µi and λi, respectively. Through the
utilization of the second-order partial derivative of the log-likelihood function concern-
ing the unknown parameters, the Fisher information matrix for said parameters can be
formulated as follows:

I(µi, λi) = diag

(
λ1n1

µ3
1

1
2λ2

1
... ... ...

λpnp

µ2
p

1
2λ2

p

)
. (13)

The subsequent subsections cover the employment of the Jeffreys’ rule prior to con-
struct the SCI and simultaneous HPD intervals. The Bayesian methodology for the IG
distribution relies on parameter selection. Instead of using the mean directly, it is more
convenient to employ the reciprocal of the mean and consider (δ, λ), where δ = µ−1 serves
for the parametrization. This choice facilitates the derivation of manageable expressions
for both the joint and marginal posterior distributions. Utilizing the Jeffreys’ rule prior
generates proper posteriors when assuming both parameters are unknown. Consequently,
this approach enables a flexible comparison with the alternative fiducial approach pre-
sented by Amry [26], and eliminates the need for assuming the prior. Although opting
for a natural conjugate prior appears to be a viable alternative, this presents challenges in
selecting values for its hyperparameters. The choices made in this regard can potentially
introduce bias in the inference, thereby favoring the Bayesian perspective over the fiducial
one. Using the Jefferys’ rule prior, the marginal posterior distributions for both λi and δi
can, respectively, be derived as

f (λi|yij) ∼ Gamma(
nij

2
, βi), (14)

and

f (δi|yij) =
1

Φ(n
1
2
i λ

1
2
i ȳ

−1
2

i )(2nijλi ȳiπ)
1
2

exp

(
−

niλi ȳ−1
i

2

)
+ (ȳi)

−1, (15)

where βi =
1

2µ̂2
i

∑ni
p=1

{
(yij−µ̂i)

yij

}
; Φ is the cumulative distribution function for the standard

normal distribution; and ȳi and λ̂i are the MLEs of µi and λi, respectively, given that all
of the observations are considered in Equation (2). In the present work, we assume that
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both µi and λi are unknown. Gibbs sampling, which relies on the Monte Carlo Markov
Chain (MCMC) method, was used to determine the posterior and fiducial distributions
of the parameters [27]. It is commonly used to generate samples from the posterior distri-
bution in Bayesian methodology by sweeping through each variable to sample from its
conditional distribution with the remaining variables fixed at their current values. In the
Gibbs sampler, convergence of the sampled data is guaranteed using both numerical and
graphical summaries. Subsequently, by substituting for µi and λi, we obtain

φi(BCI) =

√
µi(BCI)
λi(BCI)

. (16)

Therefore, φil(BCI) is given

φil(BCI) =
φi(BCI)
φl(BCI)

=

√
µi(BCI)
λi(BCI)

/

√
µl(BCI)
λl(BCI)

. (17)

Therefore, the 100(1 − γ)% SCI and the simultaneous HPD intervals for φil based on
the BCI method are

SCIBCI =
[

Lφil(BCI), Uφil(BCI)

]
, (18)

where Lil(BCI) and Uil(BCI) are the lower and upper bounds of the intervals, respec-
tively. We computed Lil(HPD.BCI) and Uil(HPD.BCI) using HPDinterval in the R soft-
ware package version 4.2.2 to determine the 100(1 − γ)% simultaneous HPD intervals for
φil , defined as

SCIHPD.BCI =
[

Lφil(HPD.BCI), Uφil(HPD.BCI)

]
. (19)

The value of φil can be estimated using the following algorithm.

2.3. The FCI Approach

Fiducial inference was first introduced and studied by Fisher [28]. Under the frame-
work of fiducial inference, parameters are treated as random variables and their distri-
butions (i.e., the fiducial distributions) are produced based on the observed data without
assuming prior distributions. Furthermore, according to the fiducial distributions, random
samples are generated based on the point and interval estimations of unknown parameters
and the MLE. Although challenging, applying the fiducial method to an IG distribution,
particularly in conjunction with an MCMC, can be achieved for the parameters of an IG
distribution as follows:

µi(FCI) ∼ IG(µ̂i, niλ̂i), (20)

and

λi(FCI) ∼
(

λ̂i
ni

)
χ2

ni−1, (21)

where µ̂i and λ̂i are the MLEs of µi and λi, respectively.
The Gibbs sampler procedure detailed in Algorithm 2 was utilized to sample from the

fiducial distribution. Furthermore, a concurrent process for fiducial estimates was carried
out by replacing the Bayesian posterior with the fiducial distribution during Step 3 of the
Gibbs sampling procedure. After this, the fiducial distribution for φi(FCI) can be obtained
as follows:

φi(FCI) =

√
µi(FCI)
λi(FCI)

. (22)
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Following this, the fiducial distribution for φil(FCI) can be defined as

φil(FCI) =
φi(FCI)
φl(FCI)

=

√
µi(FCI)
λi(FCI)

/

√
µl(FCI)
λl(FCI)

. (23)

Therefore, the 100(1 − γ)% SCI and simultaneous HPD intervals for φil based on the
FCI method are

SCIFCI =
[

Lφil(FCI), Uφil(FCI)

]
, (24)

where Lil(FCI) and Uil(FCI) are the lower and upper bounds of the intervals, respec-
tively. We computed Lil(HPD.FCI) and Uil(HPD.FCI) using HPDinterval in the R soft-
ware package to determine the 100(1 − γ)% simultaneous HPD intervals for φil using the
following relationship:

SCIHPD.FCI =
[

Lφil(HPD.FCI), Uφil(HPD.FCI)

]
. (25)

Algorithm 2: The BCI and HPD.BCI methods

1. Calculate MLEs µ̂MLE and λ̂MLE from the IG distribution
and set µ̂MLE = µ0

i and λ̂MLE = λ0
i in Equation (2).

2. Generate µ1
i and λ1

i from their respective posterior distributions given in
Equations (14) and (15) with the updated sample observations.

3. Repeat Steps 2 and 3 starting with the current values of µ1
i and λ1

i for
t (t = 200,000) iterations, where t is the quantity of MCMC replications,
and conclude with the results for µt

i and λt
i .

4. Calculate the desired parameters after burning in 1000 samples.
5. Calculate the 95% SCI using the BCI method in Equation (17).
6. Compute SCIHPD.BCI using HPDinterval in the R software package.

2.4. The MOVER Approach

In this section, we briefly describe the concept of the MOVER for constructing confi-
dence intervals. The underlying principle of the MOVER involves initially deriving distinct
confidence intervals for two individual parameters, subsequently restoring the variance
estimates and finally constructing the confidence interval for the desired function of param-
eters, such as φ1 + φ2, φ1/φ2 . This methodology is based on the central limit theorem. Our
attention in this paper is specifically directed towards establishing a confidence interval
for the parameter related to the ratio function. According to Donner and Zoo [29], the
confidence interval for φ1/φ2 is formulated as follows:

L12(MOVER) =
(φ̂1 φ̂2)−

√
(φ̂1 φ̂2)

2 − l1u2(2φ̂1 − l1)(2φ̂2 − u2)

u2(2φ̂2 − u2),
(26)

and

U12(MOVER) =
(φ̂1 φ̂2) +

√
(φ̂1 φ̂2)

2 − u1l2(2φ̂1 − u1)(2φ̂2 − l2)

l2(2φ̂2 − l2),
(27)

where φ̂1 and φ̂2 are the point parameters and [l1, u1] and [l2, u2] are the confidence intervals
for φ̂1 and φ̂2. When considering p parameters, the lower and upper bounds of the
100(1 − γ)% two-sided SCI for φil , Lil(MOVER) and Uil(MOVER) can be expressed as

Lil(MOVER) =
(φ̂i φ̂l)−

√
(φ̂i φ̂l)

2 − liul(2φ̂i − li)(2φ̂l − ul)

ul(2φ̂l − ul),
(28)

and
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Uil(MOVER) =
(φ̂i φ̂l) +

√
(φ̂i φ̂l)

2 − uill(2φ̂i − ui)(2φ̂l − ll)

ll(2φ̂l − ll),
(29)

for i, l = 1, ..., p and i ̸= l. The parameters of interest in φ̂i =

√
µ̂i
λ̂i

are µi and λi, for which

constructing CIs is achievable. Based on the approach by Gulhar et al. [30], let li and ui be
the lower and upper bounds of the CIs of φi, respectively, expressed as follows:

li =
√

ni − 1 ˆ(φi)√
χ2

1−γ/2,ni−1

, (30)

and

ui =
√

ni − 1 ˆ(φi)√
χ2

γ/2,ni−1

. (31)

The 100(1 − γ)% two-sided MOVER SCI for φil is

SCIil(MOVER) = [Lil(MOVER), Uil(MOVER)], (32)

where Lil(MOVER) and Uil(MOVER) are defined in Equations (28) and (29), respectively.

Algorithm 3: The MOVER

1. Generate random samples Yi, i = 1, 2, ..., p with sample size n1, n2, ..., np from
an IG distribution and calculate φ̂i
with sample size n1, n2, ..., np from an IG distribution and calculate φ̂i.

2. Generate χ2
1−γ/2,ni−1 and χ2

γ/2,ni−1.
3. Calculate li, ui, ll , and ul for φ̂i from Equations (30) and (31).
4. Compute Lil(MOVER) and Uil(MOVER) by using Equations (28) and (29),

and calculate the 95% SCIs for φil .

2.5. The Simulation Study

We compared the efficacies of the SCI construction approaches via a Monte Carlo
simulation study based on 5000 runs. The comparison was made in terms of the coverage
probability (CP) and average length (AL). The best-performing method attains a CP equal
to or greater than the nominal confidence level of 0.95 together with the shortest AL. In the
study, 2500 GPQs were generated for the GCI method and 20,000 iterations with a burn-in
of 1000 were utilized for Gibbs sampling in conjunction with the MCMC algorithm for the
Bayesian and HPD approaches. In addition, the sample sizes utilized were n = 30, 50, or
100; the number of populations (p) was 3 or 5; µi = 0.5, 1; and λi = 1, 5, 10.

2.6. Empirical Application of the Approaches to PM2.5 Datasets from Northern Thailand

Datasets of the average daily PM2.5 concentrations from May to June 2022 in Lampang
(N1), Chiang Mai (N2), Mae Hong Son (N3), Chiang Rai (N4), and Nan (N5) in northern
Thailand were utilized to assess the effectiveness of the proposed methods in constructing
the SCI for the ratios of the CVs of multiple IG distributions, the details for which can be
found in Table 1 [31]. As the PM2.5 datasets contain positive values, they could be modeled
using a lognormal, Cauchy, exponential, Weibull, or IG distribution. Hence, the minimum
Akaike information criterion (AIC) and Bayesian information criterion (BIC) were used to
identify the best-fitting distribution for these data. The summary statistics for the PM2.5
concentration datasets from the five provinces in northern Thailand are reported in Table 2.
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Table 1. The daily PM2.5 data for May–June 2022 in northern Thailand by province.

Province Daily PM2.5

N1

15 15 14 22 24 23 13 8 9 10 9 9
12 13 15 14 7 8 9 7 5 13 16 12
13 20 19 23 18 20 16 12 17 16 7 6
6 7 8 10 13 10 10 12 10 10 7 6
5 6 5 6 5 7 5 7 9 8 6 6 5

N2

27 24 20 27 34 30 13 11 12 13 9 12
20 18 19 22 15 12 13 12 10 19 22 15
20 27 24 29 27 27 21 17 22 22 14 12
12 11 10 13 17 17 15 18 24 21 18 13
12 14 12 11 12 13 12 14 11 12 9 11 12

N3

17 24 14 25 21 18 13 8 7 6 5 8
14 11 16 13 8 6 6 7 4 12 14 8
12 18 17 20 18 17 15 13 13 11 5 4
4 4 6 11 12 11 8 11 12 12 7 5
4 4 5 3 4 4 5 5 4 5 3 3 4

N4

27 16 18 35 57 31 20 12 12 8 8 9
12 17 17 19 13 12 13 14 7 9 20 11
13 18 21 23 28 25 12 12 14 16 12 7
8 8 8 9 14 15 12 15 19 12 10 7
8 10 8 8 8 11 7 7 11 10 8 8 6

N5

25 17 22 29 36 30 20 10 12 15 11 10
13 15 17 13 10 17 19 16 9 14 21 17
20 25 28 29 26 28 17 20 27 27 15 12
12 14 14 17 18 18 18 18 21 16 11 8
10 11 12 11 13 13 12 13 13 14 12 11 6

Table 2. Parameter estimates for the five PM2.5 datasets.

Province ni Min Max Mean Variance CV

N1 61 5 24 11.1148 27.5387 0.4721
N2 61 9 24 16.9672 35.2568 0.3500
N3 61 3 25 9.9016 39.8565 0.6376
N4 61 6 57 14.1803 48.1425 0.4893
N5 61 6 36 16.8525 40.9929 0.3799

3. Results
3.1. The Simulation Study

The results for p = 3 and p = 5 are provided in Tables 3 and 4, respectively. The CPs
for the GCI, FCI, and FCI.HPD methods were above or close to the nominal confidence level
of 0.95 under all circumstances, whereas those for MOVER were slightly below it in almost
all of them. In most cases, the ALs for FCI and HPD.FCI were shorter than those of the
other methods, except when the shape parameter was 5 or 10, for which HPD.BCI provided
the shortest ALs. Based on this evidence, we recommend using HPD.FCI and HPD.BCI
to construct the SCI for the ratios between the CVs of several IG distributions. Figure 1
displays the CPs of various methods across different sample sizes. It can be observed that
the GCI, FCI, and HPD.FCI methods exhibited CPs either above or close to the nominal
confidence level. In contrast, the BCI, HPD.BCI, and MOVER methods provided CPs below
the nominal confidence level. Figure 2 illustrates the ALs for the various methods across
different sample sizes, showing a decrease in the ALs for all methods as the sample size
was increased. Consequently, the HPD.FCI method outperformed the others for various
parameter shapes displayed in Figures 3 and 4.
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Table 3. CPs and ALs for the 95% SCI for the ratios of the CVs of multiple IG distributions in the case
of p = 3.

n1, n2, n3 µ1, µ2, µ3 λ1, λ2, λ3
CPs (ALs)

GCI BCI HPD.BCI FCI HPD.FCI MOV ER

30:30:30 0.5:0.5:0.5 1:1:1 0.9812 0.9180 0.9164 0.9521 0.9500 0.9256
(0.9665) (0.7615) (0.7469) (0.8611) (0.8410) (0.7825)

5:5:5 0.9617 0.9437 0.9504 0.9536 0.9528 0.9498
(0.8168) (0.7626) (0.7481) (0.7944) (0.7782) (0.7835)

10:10:10 0.9517 0.9517 0.9550 0.9503 0.9500 0.9497
(0.7976) (0.7639) (0.7493) (0.7869) (0.7712) (0.7849)

1:5:10 0.9603 0.9277 0.9307 0.9506 0.9501 0.9337
(2.0073) (1.7257) (1.6930) (1.8516) (1.8118) (1.7736)

1:1:1 1:1:1 0.9927 0.8970 0.8953 0.9517 0.9507 0.9083
(1.1531) (0.7662) (0.7515) (0.9454) (0.9198) (0.7875)

5:5:5 0.9663 0.9320 0.9363 0.9507 0.9505 0.9387
(0.8599) (0.7652) (0.7507) (0.8151) (0.7979) (0.7864)

10:10:10 0.9640 0.9517 0.9526 0.9540 0.9563 0.9510
(0.8164) (0.7609) (0.7463) (0.7931) (0.7768) (0.7818)

1:5:10 0.9717 0.9150 0.9163 0.9641 0.9521 0.9233
(2.2465) (1.7354) (1.7023) (1.9523) (1.9064) (1.7834)

30:50:100 0.5:0.5:0.5 1:1:1 0.9793 0.9157 0.9127 0.9503 0.9501 0.9207
(0.7478) (0.5844) (0.5733) (0.6630) (0.6493) (0.5963)

5:5:5 0.9580 0.9333 0.9283 0.9501 0.9504 0.9400
(0.6292) (0.5851) (0.5739) (0.6119) (0.5997) (0.5969)

10:10:10 0.9633 0.9530 0.9527 0.9567 0.9593 0.9563
(0.6189) (0.5891) (0.5779) (0.6093) (0.5974) (0.6010)

1:5:10 0.9760 0.9383 0.9370 0.9590 0.9570 0.9430
(1.6471) (1.3658) (1.3384) (1.4984) (1.4665) (1.3948)

1:1:1 1:1:1 0.9923 0.8850 0.8840 0.9521 0.9501 0.8903
(0.8933) (0.5887) (0.5775) (0.7285) (0.7120) (0.6007)

5:5:5 0.9667 0.9393 0.9360 0.9523 0.9512 0.9423
(0.6637) (0.5886) (0.5774) (0.6294) (0.6169) (0.6007)

10:10:10 0.9633 0.9437 0.9502 0.9523 0.9550 0.9483
(0.6359) (0.5913) (0.5799) (0.6186) (0.6064) (0.6032)

1:5:10 0.9860 0.9267 0.9200 0.9560 0.9500 0.9307
(1.8813) (1.3540) (1.3270) (1.5738) (1.5386) (1.3830)

50:50:50 0.5:0.5:0.5 1:1:1 0.9834 0.9209 0.9181 0.9515 0.9507 0.9246
(0.7187) (0.5751) (0.5681) (0.6472) (0.6376) (0.5842)

5:5:5 0.9605 0.9512 0.9503 0.9507 0.9500 0.9466
(0.6104) (0.5748) (0.5677) (0.5947) (0.5870) (0.5839)

10:10:10 0.9550 0.9563 0.9548 0.9537 0.9510 0.9517
(0.5939) (0.5731) (0.5660) (0.5862) (0.5786) (0.5822)

1:5:10 0.9677 0.9313 0.9257 0.9503 0.9504 0.9363
(1.4696) (1.2920) (1.2762) (1.3776) (1.3589) (1.3126)

1:1:1 1:1:1 0.9930 0.8843 0.8843 0.9500 0.9500 0.8893
(0.8478) (0.5812) (0.5741) (0.7146) (0.7024) (0.5904)

5:5:5 0.9723 0.9347 0.9370 0.9533 0.9500 0.9393
(0.6375) (0.5740) (0.5669) (0.6072) (0.5991) (0.5831)

10:10:10 0.9607 0.9546 0.9533 0.9507 0.9507 0.9457
(0.6163) (0.5807) (0.5737) (0.6006) (0.5928) (0.5899)

1:5:10 0.9807 0.9273 0.9177 0.9530 0.9507 0.9310
(1.6256) (1.2964) (1.2807) (1.4504) (1.4289) (1.3171)
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Table 3. Cont.

n1, n2, n3 µ1, µ2, µ3 λ1, λ2, λ3
CPs(ALs)

GCI BCI HPD.BCI FCI HPD.FCI MOV ER

100:100:100 0.5:0.5:0.5 1:1:1 0.9873 0.9157 0.9187 0.9520 0.9509 0.9173
(0.4938) (0.3993) (0.3964) (0.4478) (0.4441) (0.4024)

5:5:5 0.9630 0.9523 0.9550 0.9563 0.9540 0.9533
(0.4209) (0.3982) (0.3953) (0.4099) (0.4068) (0.4012)

10:10:10 0.9553 0.9558 0.9546 0.9513 0.9563 0.9480
(0.4094) (0.3972) (0.3943) (0.4041) (0.4012) (0.3964)

1:5:10 0.9643 0.9293 0.9337 0.9516 0.9510 0.9307
(1.0200) (0.9058) (0.8992) (0.9621) (0.9546) (0.9127)

1:1:1 1:1:1 0.9933 0.8963 0.8943 0.9577 0.9570 0.8983
(0.5726) (0.3986) (0.3957) (0.4891) (0.4843) (0.4017)

5:5:5 0.9743 0.9513 0.9510 0.9637 0.9597 0.9537
(0.4402) (0.3988) (0.3960) (0.4200) (0.4168) (0.4019)

10:10:10 0.9597 0.9541 0.9523 0.9507 0.9510 0.9467
(0.4198) (0.3979) (0.3951) (0.4097) (0.4067) (0.4010)

1:5:10 0.9783 0.9187 0.9190 0.9561 0.9531 0.9213
(1.1231) (0.9086) (0.9022) (1.0144) (1.0057) (0.9156)

CPs greater than the nominal confidence level of 0.95 and the shortest ALs are in bold.

Figure 1. CPs for the 95 % SCI derived using the various methods for various sample sizes in the
cases of (A) p = 3 and (B) p = 5.

Table 4. CPs and ALs for the 95% SCI for ratios of the CVs of multiple IG distributions in the case of
p = 5.

n5
i µ5

i λ5
i

CPs (ALs)

GCI BCI HPD.BCI FCI HPD.FCI MOV ER

305 0.55 15 0.9770 0.9155 0.9163 0.9502 0.9502 0.9230
(0.9724) (0.7639) (0.7494) (0.8636) (0.8435) (0.7850)

55 0.9526 0.9365 0.9351 0.9515 0.9505 0.9447
(0.8160) (0.7615) (0.7470) (0.7935) (0.7773) (0.7825)

105 0.9535 0.9425 0.9502 0.9502 0.9482 0.9426
(0.7969) (0.7610) (0.7466) (0.7842) (0.7685) (0.7822)

12:5:102 0.9673 0.9317 0.9329 0.9511 0.9505 0.9400
(1.9387) (1.6644) (1.6327) (1.7892) (1.7508) (1.7103)

15 15 0.9915 0.8907 0.8916 0.9529 0.9511 0.8992
(1.1591) (0.7674) (0.7528) (0.9468) (0.9212) (0.7886)

55 0.9685 0.9393 0.9387 0.9550 0.9525 0.9446
(0.8531) (0.7594) (0.7449) (0.8087) (0.7917) (0.7804)

105 0.9564 0.9410 0.9509 0.9503 0.9489 0.9474
(0.8103) (0.7552) (0.7408) (0.7871) (0.7711) (0.7761)

12:5:102 0.9781 0.9197 0.9182 0.9501 0.9506 0.9281
(2.1896) (1.6669) (1.6349) (1.8817) (1.8373) (1.7124)
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Table 4. Cont.

n5
i µ5

i λ5
i

CPs(ALs)

GCI BCI HPD.BCI FCI HPD.FCI MOV ER

302:50:1002 0.55 15 0.9786 0.9224 0.9192 0.9528 0.9520 0.9268
(0.7519) (0.5899) (0.5783) (0.6693) (0.6553) (0.6015)

55 0.9584 0.9396 0.9348 0.9514 0.9509 0.9444
(0.6314) (0.5868) (0.5756) (0.6130) (0.6010) (0.5988)

105 0.9544 0.9460 0.9512 0.9524 0.9515 0.9492
(0.6170) (0.5884) (0.5733) (0.6085) (0.5965) (0.6006)

12:5:102 0.9669 0.9242 0.9266 0.9530 0.9521 0.9290
(2.2674) (1.8606) (1.8224) (2.0485) (2.0032) (1.9028)

15 15 0.9936 0.8938 0.8956 0.9574 0.9558 0.8992
(0.8959) (0.5923) (0.5811) (0.7335) (0.7169) (0.6047)

55 0.9638 0.9302 0.9262 0.9502 0.9500 0.9354
(0.6613) (0.5879) (0.5768) (0.6280) (0.6156) (0.5999)

105 0.9546 0.9358 0.9541 0.9500 0.9430 0.9388
(0.6314) (0.5867) (0.5755) (0.6133) (0.6012) (0.5988)

12:5:102 0.9789 0.9207 0.9149 0.9530 0.9522 0.9256
(2.6288) (1.8612) (1.8226) (2.1788) (2.1275) (1.9034)

505 0.55 15 0.9825 0.9201 0.9188 0.9526 0.9502 0.9239
(0.7187) (0.5747) (0.5677) (0.6467) (0.6372) (0.5839)

55 0.9592 0.9420 0.9399 0.9504 0.9503 0.9465
(0.6102) (0.5745) (0.5675) (0.5944) (0.5867) (0.5837)

105 0.9512 0.9486 0.9502 0.9435 0.9448 0.9421
(0.5962) (0.5752) (0.5682) (0.5882) (0.5808) (0.5843)

12:5:102 0.9686 0.9322 0.9319 0.9510 0.9502 0.9365
(1.4379) (1.2574) (1.2420) (1.3447) (1.3264) (1.2775)

15 15 0.9825 0.9201 0.9188 0.9526 0.9502 0.9239
(0.7187) (0.5747) (0.5677) (0.6467) (0.6372) (0.5839)

55 0.9683 0.9377 0.9390 0.9533 0.9527 0.9427
(0.6407) (0.5764) (0.5693) (0.6098) (0.6017) (0.5855)

105 0.9624 0.9473 0.9510 0.9535 0.9526 0.9505
(0.6081) (0.5727) (0.5657) (0.5927) (0.5850) (0.5819)

12:5:102 0.9762 0.9194 0.9183 0.9522 0.9512 0.9241
(1.6001) (1.2607) (1.2453) (1.4181) (1.3969) (1.2807)

1005 0.55 15 0.9808 0.9136 0.9144 0.9504 0.9502 0.9154
(0.4936) (0.3991) (0.3962) (0.4479) (0.4441) (0.4021)

55 0.9601 0.9441 0.9508 0.9503 0.9484 0.9454
(0.4209) (0.3989) (0.3960) (0.4107) (0.4076) (0.4025)

105 0.9587 0.9518 0.9514 0.9548 0.9543 0.9536
(0.4112) (0.3986) (0.3958) (0.4056) (0.4025) (0.4017)

12:5:102 0.9707 0.9358 0.9353 0.9516 0.9501 0.9379
(0.9934) (0.8765) (0.8702) (0.9339) (0.9264) (0.8831)

15 15 0.9926 0.8935 0.8936 0.9515 0.9514 0.8953
(0.5746) (0.3996) (0.3966) (0.4905) (0.4857) (0.4026)

55 0.9691 0.9518 0.9508 0.9535 0.9545 0.9427
(0.4412) (0.3997) (0.3968) (0.4210) (0.4177) (0.4027)

105 0.9618 0.9461 0.9514 0.9524 0.9508 0.9479
(0.4208) (0.3987) (0.3958) (0.4103) (0.4073) (0.4017)

12:5:102 0.9796 0.9238 0.9244 0.9529 0.9526 0.9250
(1.0932) (0.8754) (0.8690) (0.9819) (0.9735) (0.8821)

CPs greater than the nominal confidence level of 0.95 and the shortest ALs are in bold.
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Figure 2. ALs for the 95% SCI derived using the various methods for various sample sizes in the
cases of (A) p = 3 and (B) p = 5.

Figure 3. CPs for the 95% SCI derived using the various methods for various parameter shapes in the
cases of (A) p = 3 and (B) p = 5.

Figure 4. ALs for the 95% SCI using the various methods for various parameter shapes in the cases of
(A) p = 3 and (B) p = 5.

3.2. Empirical Application of the Methods to PM2.5 Datasets from Northern Thailand

The AIC and BIC results in Tables 5 and 6, respectively, indicate that the positive
values observed in the PM2.5 datasets from the five provinces adhere to the characteristics
of an IG distribution. The AIC and BIC values of the inverse Gaussian distribution and the
lognormal distribution were not significantly different because both distributions are based
on the right-skewed characteristic. In this situation, the model for the inverse Gaussian
distribution was considered to be the best due to it providing the lowest AIC and BIC
values. Furthermore, the quantile–quantile (Q-Q) plots for the IG distribution confirm this
finding in Figure 5.

Table 5. The AIC values for evaluating the distribution for the daily PM2.5 data.

Province
Distribution

Inverse Gaussian Lognormal Cauchy Exponential Weibull

N1 360.5187 361.6107 398.1535 417.8094 369.3542
N2 383.4496 384.1563 419.3525 469.4165 395.0606
N3 370.8679 372.6417 416.3720 403.7094 375.7245
N4 391.3827 391.526 415.1157 447.5264 415.2512
N5 391.1549 391.3873 418.4176 468.5866 400.4491
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Figure 5. Cont.
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Figure 5. Q-Q plots for fitting the distribution for the PM2.5 datasets.

The 95% SCIs for the daily PM2.5 datasets from five provinces in northern Thailand
are reported in Table 7. The results show that the AL for HPD.BCI was the shortest, which
corresponds well with the simulation results. Therefore, it is a good choice for constructing
the SCI for the ratios of the CVs of the five PM2.5 datasets.

The 95% SCIs for the daily PM2.5 dataset from five provinces in northern Thailand in
May–June 2022 are reported in Table 7. The results show the AL of the HPD.BCI was the
shortest, which corresponds with the simulation results. Therefore, it is a good choice for
constructing the SCI for the ratios of the CVs of the PM2.5 datasets from the five provinces
in northern Thailand.

Table 6. The BIC values for evaluating the distribution for the daily PM2.5 data.

Province
Distribution

Inverse Gaussian Lognormal Cauchy Exponential Weibull

N1 364.7405 365.8324 402.3752 419.9202 373.576
N2 387.6714 388.3781 423.5742 471.5274 399.2824
N3 375.0896 376.8635 420.5937 405.8203 379.9462
N4 395.6044 395.7477 419.3375 449.6373 419.473
N5 395.3767 395.6091 422.6394 470.6995 404.6708
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Table 7. The ratios of the CV of the daily PM2.5 datasets with the nominal 95% SCI.

Provinces
GCI Bayesian HPD.Bayesian FCI HPD.FCI MOVER

Lower Upper Length Lower Upper Length Lower Upper Length Lower Upper Length Lower Upper Length Lower Upper Length

N1/N2 1.0344 1.7718 0.7374 1.0477 1.7314 0.6837 1.0339 1.7101 0.6762 1.0389 1.7479 0.7090 1.0235 1.7284 0.7049 1.0439 1.7437 0.6998
N1/N3 0.5431 0.9937 0.4506 0.5741 0.9534 0.3793 0.5629 0.9387 0.3758 0.5617 0.9681 0.4064 0.5548 0.9575 0.4027 0.5730 0.9570 0.3840
N1/N4 0.7192 1.2710 0.5518 0.7472 1.2426 0.4954 0.7285 1.2181 0.4896 0.7346 1.2608 0.5262 0.7189 1.2410 0.5221 0.7466 1.2471 0.5005
N1/N5 0.9337 1.6365 0.7028 0.9647 1.5999 0.6352 0.9400 1.5693 0.6293 0.9564 1.6256 0.6692 0.9273 1.5863 0.6590 0.9616 1.6061 0.6445
N2/N3 0.4138 0.7229 0.3091 0.4261 0.7083 0.2822 0.4214 0.6996 0.2782 0.4206 0.7202 0.2996 0.4107 0.7062 0.2955 0.4247 0.7094 0.2847
N2/N4 0.5314 0.9443 0.4129 0.5538 0.9202 0.3664 0.5438 0.9054 0.3616 0.5486 0.9317 0.3831 0.5359 0.9127 0.3768 0.5534 0.9244 0.3710
N2/N5 0.7081 1.1962 0.4881 0.7154 1.189 0.4736 0.6987 1.1677 0.4690 0.7106 1.1997 0.4891 0.6972 1.1804 0.4832 0.7127 1.1905 0.4778
N3/N4 0.9636 1.7625 0.7989 1.0110 1.6862 0.6752 0.9839 1.6482 0.6643 0.9905 1.7175 0.7270 0.9722 1.6856 0.7134 1.0082 1.6841 0.6759
N3/N5 1.2584 2.2576 0.9992 1.3064 2.1611 0.8547 1.2777 2.1263 0.8486 1.2804 2.2012 0.9208 1.2420 2.1498 0.9078 1.2985 2.1689 0.8704
N4/N5 0.9729 1.7170 0.7441 0.9977 1.6628 0.6651 0.9750 1.6289 0.6539 0.9884 1.6866 0.6982 0.9539 1.6419 0.6880 0.9965 1.6645 0.6680
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4. Discussion

Wasana et al. [32] utilized the FCI and HPD.FCI methods to construct CIs for the
ratio of the CVs of two IG distributions. Examination of the efficacies of these methods
revealed that HPD.FCI is the most suitable in this scenario. Building on this idea, we
developed estimates for the SCI for the ratios of the CVs of multiple IG populations. The
results reveal that the CPs and ALs for the 95% SCI for p = 3 were similar to those for
p = 5 across various sample sizes. Notably, for a shape parameter of 10, the HPD.BCI
approach performed the best. In contrast, for shape parameter values of 1 or 5, the HPD.FCI
approach was the most suitable for all of the situations studied. In addition, the ALs of the
approaches decreased with an increasing sample size. The methods were applied in an
empirical investigation of the ratios of CVs of PM2.5 datasets following IG distributions for
five provinces in northern Thailand. The findings aligned with the results of the simulation
study, indicating that the HPD.BCI and HPD.FCI methods are the most suitable depending
on the scenario. By utilizing our approach for the SCI of the CVs of several PM2.5 datasets
following IG distributions in a decision-making process, policymakers can enhance the
effectiveness and adaptability of measures aimed at mitigating PM2.5 pollution, ultimately
safeguarding public health and the environment. The proposed approaches could be used
in the spatial analysis of PM2.5 concentrations to identify areas with high pollution levels.
Policymakers can use the information to develop new air pollution prevention and control
action plans in key areas.

5. Conclusions

In this research, six approaches (GCI, BCI, HPD.BCI, FCI, HPD.FCI, and MOVER) to
constructing the SCI for the ratios of CVs of multiple IG distributions were investigated.
The outcomes from a simulation study and an empirical study involving PM2.5 datasets
in terms of the CP and AL suggest that the HPD.FCI method was the most appropriate in
most instances. However, it is noteworthy that HPD.BCI demonstrated effectiveness in
certain scenarios involving three or five IG populations. Although the proposed HBD.BCI
and HBD.FCI methods have many advantages, they have two limitations. First, the choice
of prior distribution in the Bayesian analysis can significantly impact the results. Specifying
informative priors may be challenging for areas where prior knowledge is limited or
where the environmental conditions are diverse. Second, Bayesian and fiducial methods
frequently entail computationally intensive tasks, and the efficiency of these methods
can be influenced by factors such as the scale of the data or the complexity of the model,
particularly for diverse real-world scenarios. These limitations will be addressed in future
studies. Adaptive Bayesian and fiducial methods, which can be adjusted to different
environmental conditions by incorporating contextual information, will be developed.
Moreover, parallel processing or distributed computing could be carried out to more
efficiently handle the computational complexity, along with exploring advancements in
Bayesian computation, such as MCMC algorithms, to enhance the speed and scalability of
the analysis. The investigation also reveals the limitations of using different priors. Future
investigations will also be conducted to refine the choice of prior and to construct the SCI
for the ratios of the percentiles of several IG distributions.
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Abbreviations
The following abbreviations are used in this manuscript:

AIC Akaike information criterion
AL Average length
BCI Bayesian confidence interval
BIC Bayesian information criterion
CI Confidence interval
CP Coverage probability
CV Coefficient of variation
FCI Fiducial confidence interval
GCI Generalized confidence interval
GPQ Generalized pivotal quantity
HPD.BCI Highest posterior density based on the Bayesian method
HPD.FCI Highest posterior density based on the fiducial method
IG Inverse Gaussian
MCMC Monte Carlo Markov Chain
MLE Maximum likelihood estimator
MOVER Method of variance estimates recovery
SCI Simultaneous confidence interval
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