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Abstract: This study focuses on NMC 811 (LiNi0.8Mn0.1Co0.1O2), a promising material for high-
capacity batteries, and investigates the challenges associated with its use, specifically the formation of
the cathode electrolyte interphase (CEI) layer due to chemical reactions. This layer is a consequence
of the position of the Lowest Unoccupied Molecular Orbital (LUMO) energy level of NMC 811 that
is close to the Highest Occupied Molecular Orbital (HOMO) level of liquid electrolytes, resulting
in electrolyte oxidation and cathode surface alterations during charging. A stable CEI layer can
mitigate further degradation by reducing the interaction between the reactive cathode material and
the electrolyte. Our research analyzed the CEI layer on NMC 811 using advanced techniques, such as
4D-STEM ACOM (automated crystal orientation mapping) and STEM-EDX, focusing on the effects of
different charging voltages (4.3 V and 4.5 V). The findings revealed varying degrees of degradation
and the formation of a fluorine-rich layer on the secondary particles. Detailed analysis showed that
the composition of this layer differed based on the voltage: only LiF at 4.5 V and a combination of
lithium fluoride (LiF) and lithium hydroxide (LiOH) at 4.3 V. Despite LiF’s known stability as a CEI
protective layer, our observations indicate that it does not effectively prevent degradation in NMC 811.
The study concluded that impurities and unwanted chemical reactions leading to suboptimal CEI
formation are inevitable. Therefore, future efforts should focus on developing protective strategies
for NMC 811, such as the use of specific additives or coatings.

Keywords: NMC 811; CEI layer; 4D-STEM ACOM; STEM-EDX; cathode primary particles

1. Introduction

Today, the necessity of battery materials has increased immensely due to the growing
portable devices market and the energetic transition from fossil fuels to electric vehicles
(EV) [1,2]. This exponential growth has pushed the scientific community to search for
new materials with an acceptable cost/safety ratio in lithium-ion batteries (LIBs) to be
part of this energetic change. One of the battery materials that has been studied is layered
cathode materials (LiMO2, M transition metal), such as NMC (LiNiMnCoO2). NMC is
based on an existing cathode material, LiCoO2, in which Co is partially replaced by Ni
and Mn, as a result obtaining LiNixMnyCozO2 (x + y + z = 1) [3]. In the case of NMC 811,
the predominant transition metal (TM) is Ni, with the final chemical composition being
LiNi0.8Mn0.1Co0.1O2 (Ni-rich cathode material). NMC 811 is a layered material with a space
group R-3m (lattice parameters a/b = 2.871 Å, c = 14.20 Å [4]). Besides the energy density,
the objective of this replacement is to reduce the quantity of Co because of its cost, safety,
and difficulties to recycle [5]. NMC 811 presents a high discharge capacity thanks to its Ni
content, with theoretical values of ~200 mAh/g [4,6].

Symmetry 2024, 16, 301. https://doi.org/10.3390/sym16030301 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16030301
https://doi.org/10.3390/sym16030301
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-3013-9276
https://orcid.org/0000-0002-4706-4592
https://doi.org/10.3390/sym16030301
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16030301?type=check_update&version=1


Symmetry 2024, 16, 301 2 of 14

The NMC cathode is usually used at a high voltage window (over 4.2 V) and presents
capacity fading at a low cycle number due to different degradation mechanisms [4,7,8].
During the charge of batteries at high voltage, the phenomenon takes place at the interface
of the liquid electrolyte and solid active material interface, leading to the CEI formation.
At a high stage of Li removal, the chemical potential of the cathode material is shifted
and approaches the HOMO energy of the electrolyte. This leads to its oxidation and the
formation of a CEI layer, which has an impact on Li transport as well as the electronic
configuration of TM sites in the cathode. The layer is composed of lithium carbonates,
oxides, alkyl carbonates, as a result of solvent electrolyte oxidation parasitic reactions, and
LiXPOYFZ oxidation products coming from the electrolyte salt. It has been shown that for
Ni-rich cathode materials, it is important to take care of the LUMO/HOMO energies of the
electrode and the electrolyte, as well as the nucleophilic affinity of the components [9–12].

In the study led by Iban Azcarate et al. [13], the reactivity of the LP30 electrolyte
(LiPF6 salt in a di-methyl carbonate/ethyl carbonate mixture), commonly utilized in LIBs,
was explored. Using both simple- and double-cell configurations with glassy carbon
cathodes and lithium metal anodes, the electrolyte’s behavior was scrutinized through
NMR (nuclear magnetic resonance) and XPS (X-ray photoelectron spectroscopy). The
research revealed that at 4.2 V, ethyl carbonate (EC) was the initial electrolyte component
to undergo oxidation. When the voltage increased to 4.8 V, di-methyl carbonate (DMC)
also began oxidizing, generating various derivative products. These products underwent
further oxidation at 5.4 V. The study also observed depositions of inorganic species, such as
LiF at 4.2 V, with the predominant deposition comprising mostly organic products, forming
a non-passivating layer between 4.2 and 4.8 V. Above 4.8 V, the CEI layer predominantly
consisted of inorganic compounds, enhancing passivation, although it remained unstable
up to 5.4 V. Notably, the researchers achieved increased passivity and stability of the cell by
maintaining it at a constant voltage for several hours.

In NMC cathode materials, capacity increases as a function of the amount of Ni.
However, to reach the theoretical high capacity of Ni-rich cathode materials, it is necessary
to charge the battery up to a voltage above 4.2 V, leading to degradations of the common
LP30 electrolyte. In the work of Noh et al. [8], a quasi-linear correlation between the Ni
content increasing and a decrease in the safety and stability of the battery have been clearly
demonstrated. This phenomenon can be attributed to changes in the microstructure and
chemical properties that correspond to alterations in the nickel content. In cathode materials
with a high nickel content, it has been observed that during cycling in the LP30 electrolyte,
the instability of the CEI layer leads to a reaction between Ni4+ and the electrolyte at an
advanced de-lithiation stage. This reaction amplifies the Li+/Ni2+ cation mixing, thereby
accelerating structural deterioration. Furthermore, structural decay is also exacerbated
by changes in the lattice parameters, particularly along the c-axis. These changes induce
strains that cause ruptures in secondary particles, which then come into contact with the
electrolyte, further contributing to the material’s degradation [14–17].

The CEI presence over NMC 811 particles has been reported in the literature multiple
times, as well as its importance for the correct performance of LIBs. Parasitic reactions and
products reduce the available Li quantity in the cell, and due to the non-ionic conductivity
of these products, impede the utilization of the remaining lithium, ultimately leading to a
decreased battery capacity [18–22]. One of the strategies for reducing these reactions is the
formation of an ionic conductive layer, stable during cycling and resistant to mechanical
deformation. Some works focused on the introduction of additives to the electrolyte for
the formation of a stable CEI layer. In the work of Sen et al. [20], triallylamine (TAA) was
proposed as an additive to eliminate the presence of parasite compounds, such as HF,
that cause cathode damage. In this work, the batteries with the TAA electrolyte additive
presented better performances in capacity retention, the CEI layer was more uniform and
compact, and there was no presence of cracks on the surface of NMC 811 particles.

Another strategy found in the literature is NMC 811 coating [12,23]. Looking deeply at
the work of Bishnu P. et al. [12], it was proposed to apply the electrochemical fluorination
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technique (ECF) to form a stable LiF layer at the surface of the particles. Pristine NMC 811
forms a non-stable CEI layer composed of inorganic compounds, such as LiOH, Li2CO3,
and Li2O. These compounds are electric and ionic insulators, which result in a decrease
of battery capacity due to the inaccessibility to Li ions on the particles. The LiF layer is an
ionic conductor as well as an electric insulator, avoiding the degradation of LP30 due to
electrochemical reactions, but allowing the transportation of Li ions between the cathode
and the electrolyte. The results showed that the formation of a stable CEI at low voltages
increased the cycling stability of NMC 811.

TEM methodologies have been extensively employed to conduct in-depth investiga-
tions of battery materials at various scales [24–27]. Notably, the 4D-STEM ACOM technique
has been instrumental in achieving precise phase characterization within batteries, both
in situ and postmortem. This local analytical method offers a significant advantage in
detecting compounds through electron diffraction patterns, as opposed to solely conducting
elemental analysis (i.e., detecting individual species). Furthermore, 4D-STEM strikes an
optimal balance between accessibility and resolution, especially when juxtaposed with
other compound detection methods in battery research, such as neutron diffraction or
XPS [28–32].

In the study by Ankush et al. [33], the researchers investigated LMNO (lithium–
manganese–nickel–oxide) thin films in situ and postmortem, utilizing a specially adapted
liquid TEM sample holder for electrochemical analysis. This investigation revealed in-
sightful details about the electrochemical behavior of LMNO, including the characteristic
oxidation peaks of nickel. Additionally, it highlighted the coexistence of amorphous and
crystalline phases in LMNO and identified the formation of organic compounds resulting
from electrolyte degradation. Despite the versatility of the 4D-STEM ACOM technique, it
encounters limitations in liquid cell environments, primarily due to signal-to-noise reduc-
tion caused by multi-scattering effects from the liquid electrolyte’s thickness. However,
these challenges can be mitigated through applications such as ePattern suite software
(1.1 version), as demonstrated in the work of Folastre et al. [34]. This algorithm employs
registration and reconstruction methods to enhance the pattern identification and denois-
ing of diffraction signals. Such advancements are pivotal in improving the image quality
and signal-to-noise ratio, thereby enabling more reliable and accurate pattern analysis in
TEM studies.

The objective of this research is to investigate the intrinsic characteristics and the gene-
sis of the CEI in NMC 811coin cells through postmortem examination. This investigation
employs an integrated approach utilizing SEM-EDX for the analysis of secondary particles,
and STEM-EDX in conjunction with 4D-STEM ACOM for the examination of primary
particles. This analysis is further correlated with the electrochemical performance observed
during cycling.

2. Results and Discussion

In this study, NMC 811 coin cells were electrochemically cycled against lithium metal
within a potential range of 2.7 to 4.5 V. To investigate the impact of upper potential limits on
the formation and efficiency of the CEI layer, two distinct cutoff voltages were employed:
a standard limit at 4.3 V (referred to as the 4.3 V-limit) and an extended limit at 4.5 V
(referred to as the 4.5 V-limit). Over the course of 90 cycles, the development of the CEI
layer was meticulously analyzed. This involved assessing its efficiency relative to the
number of cycles and conducting a comparative analysis with the efficiencies of CEI layers
documented in existing literature.

In Figure 1a,g, we delineate the electrochemical characteristics of the sample. The
cycling of the sample was conducted at a C-rate of C/20, interspersed with a 15 min
rest period between each charging and discharging cycle. Figure 1a depicts the potential
versus capacity curve across various cycles. Up to the 20th cycle, minimal polarization was
observed, indicative of the sample’s stability and negligible degradation. However, at the
50th cycle, a marked increase in polarization was evident relative to previous cycles. The
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initial cycle demonstrated a capacity of approximately 200 mAh/g, which diminished to
around 143 mAh/g by the end of the battery’s life cycle, culminating in a capacity retention
of 71.5%. Figure 1g illustrates the progression of capacity loss and Coulombic efficiency
(CE). A consistent pattern of degradation was observed. The absence of abrupt capacity
loss at the graph’s conclusion can be attributed to the fact that the span from 1 to 50 cycles
represents merely a segment of the battery’s potential state of life (SoL). This is corroborated
by the CE data, which showed a modest decline of approximately 2% between the 1st and
50th cycles.
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Figure 1. (a) Potential vs. capacity electrochemical curve of cycled NMC 811 at an upper high voltage
of 4.3 V. (b) Secondary electron (SE) image of NMC 811 single secondary particles in the cathode sheet
after cleaning (4.3 V-limit cell). EDX analysis for elemental identification of (c) carbon, (d) fluorine,
(e) oxygen, and (f) nickel. (g) Charge and discharge lost and CE in the function of the number of
cycles on the NMC 811 coin cell. (h) Secondary electron (SE) image of NMC 811 secondary particles
in the cathode sheet after cleaning (4.3 V-limit cell). EDX analysis for elemental identification of
(i) carbon, (j) fluorine, (k) oxygen, and (l) nickel.

The polarization and the variations in charge/discharge efficiency (Figure S1), along
with the CE, can be primarily attributed to two distinct mechanisms leading to electrolyte
degradation. These mechanisms include the formation of the CEI layer and the direct
degradation of the electrolyte due to its interaction with lithium (Li) metal at the negative
electrode. Li metal, especially, poses a significant risk due to its high reactivity when
in direct contact with the LP30 electrolyte. This interaction results in the formation of
various degradation products, such as 2,5-dioxahexanedioic acid dimethyl, CO2, CO, and
phosphates, as referenced in [14,35,36].

The cathode material was examined using SEM, and the findings are exhibited in
Figure 1c–f. Images of individual secondary particles (agglomerate of primary particles)
were acquired to obtain a first overview of primary particles’ behavior. Analysis of both
the aggregated particles (Figure 1b–f,h–l) and individual particles (Figure 1d,j) revealed
the presence of fluorine on the particle surfaces. Phosphorus was absent in the spectra,
indicating that the detected fluorine originates from an electrochemical process rather than
being a residual salt. This observation of fluorine suggests the formation of a CEI layer,
which, according to the existing literature, is likely to be a LiF layer. In Figure 1c,d,i,j, where
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both carbon and fluorine were observed, carbon distribution was non-uniform across the
surface of the secondary particle. Conversely, fluorine exhibited a homogeneous distribu-
tion, implying the absence of carbonate compounds in the CEI layer and suggesting the
presence of LiOH. However, the exact composition of the CEI layer remains undetermined
due to analytical limitations. Additionally, in the Supplementary Materials (Figure S2b),
an elemental analysis including manganese is provided for comparison with fluorine,
considering their similar edge energies. The distinct presence of fluorine and manganese
confirms that they are separate elements.

To gain deeper insight into the cell structure, analysis at the primary particle scale
was conducted using STEM-EDX, with results presented in Figure 2. The high-angle
annular dark-field (HAADF) imaging in Figure 2a reveals an agglomeration of primary
particles, ranging in size from 0.5 to 1.5 µm. Figure 2b displays the line profile across
various particle edges (indicated by a red line in Figure 2a), highlighting the presence of
fluorine, particularly pronounced in the third particle examined. Figure 2c compares the
Mn (Mn-Kα 5.895 keV) and F (F-K 0.676 keV) signals, showing a predominant Mn signal,
with fluorine primarily detected along the edges of some particles, aligning with previous
SEM-EDX observations. The C-O mapping in Figure 2d was conducted to assess the
potential presence of carbonate compounds, but unlike the fluorine layer, no distinct carbon
layer was observed. Finally, Figure 2e illustrates the transition metals, providing insights
into the high homogeneity in composition of NMC 811 particles with no segregation.
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Figure 2. The 4.3 V sample: STEM-EDX analysis for primary agglomerate particles. (a) HAADF
image. (b) Line profile of the selection area (red line) featuring the nickel, oxygen, and fluorine
presence over it. (c) Color overlay featuring fluorine and manganese over agglomerate particles for
LiF observation. (d) Color overlay featuring carbon and oxygen for carbonates’ observation. (e) Color
overlay featuring nickel, manganese, and cobalt (NMC 811).

To enhance the comprehension of the results from the STEM-EDX analysis, a compre-
hensive 4D-STEM investigation was conducted on two selected areas within the particle
agglomerate. Crystallographic orientation and phase mapping were derived through the
application of ACOM data-processing methods [37,38], coupled with the use of the ePat-
tern suite for data noise reduction [34]. Consistent with observations from the high-angle
annular dark-field (HAADF) imaging, the agglomerate was identified as a conglomerate of
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primary particles. ACOM analysis was specifically applied to two zones, designated as
zone 1 (illustrated in Figure 3a) and zone 2 (shown in Figure 3g), where STEM-EDX data
indicated a high potential for CEI layer formation.
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In zone 1, the crystal orientation and phase maps at a particle’s edge are displayed in
Figure 3b and 3c, respectively. Two primary components, NMC 811 and LiF, were identified,
aligning with the STEM-EDX findings, as shown in Figure 3d,e. The orientation fidelity
was notably high for the NMC 811 phase, but substantially lower for LiF. Despite this,
certain areas exhibited sufficient phase and orientation reliability, affirming the presence of
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LiF at the particle’s edge. The diminished orientation reliability in some regions could be
attributed to particle thickness or overlapping particle layers.

Regarding zone 2, the orientation mapping revealed a polycrystalline structure (Figure 3h).
This finding was corroborated by TEM (Figure 3g) and STEM-HAADF (Figure 2a) imaging,
which did not indicate particle superposition, thereby confirming the polycrystalline nature
of the primary particles. This supports the theory of LiF layer instability due to mechanical
disruption, as previously discussed. Figure 3k illustrates the uneven spatial distribution
of LiF around the particle edge, mirroring observations in zone 1. Additionally, LiOH
was detected in this area with high phase and orientation reliability (Figure 3l), yet it was
notably absent from the particle edges.

An alternative hypothesis for the origin of the LiF component layer and LiOH involves
the potential presence of water traces within the cathode material, which could facilitate
the production of HF and LiF [12,39]. Despite the samples being synthesized under meticu-
lously controlled conditions within a dry room, the likelihood of moisture contamination
during the battery assembly process cannot be discounted as a contributing factor to this
observed phenomenon. Furthermore, it is plausible that residual water traces are inherently
present in the electrolyte’s solvents [40], which may predispose the formation of a LiF layer
within the CEI.

In the presented study, electrochemical characteristics of a coin cell with a 4.5 V voltage
limit were elucidated, as depicted in Figure 4. This cell underwent cycling at a C/20 rate,
incorporating a 15 min interlude between successive charging and discharging phases. The
polarization observed in the 4.5 V-limit cell (Figure 4a) exhibited an enhanced magnitude
compared to its 4.3 V-limit counterpart, yet it maintained stability throughout the initial
50 cycles.
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Figure 4. (a) Potential vs. capacity electrochemical curve of cycled NMC 811 at the voltage limit
of 4.5 V. (b) Secondary electron (SE) image of NMC 811 secondary particles in the cathode sheet
after cleaning (4.5 V-limit cell). EDX analysis for elemental identification of (c) carbon, (d) fluorine,
(e) oxygen, and (f) nickel. (g) Charge and discharge lost and CE in the function of the number of
cycles on the NMC 811 coin cell. (h) Secondary electron (SE) image of NMC 811 single secondary
particles in the cathode sheet after cleaning (4.5 V-limit cell). EDX analysis for elemental identification
of (i) carbon, (j) fluorine, (k) oxygen, and (l) nickel.
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A closer examination of Figure 4b reveals a pronounced decline in capacity during
the early stages of the cell’s operational lifespan, stabilizing after approximately 20 cycles,
similar to the pattern observed in the 4.3 V-limit sample. This initial rapid degradation
can likely be ascribed to the electrolyte’s accelerated deterioration under high-voltage
conditions and the formation of a less stable solid electrolyte interphase (SEI) layer, which
is susceptible to crystallographic and potential morphological alterations, in contrast to the
4.3 V-limit scenario [41].

Furthermore, the CE of the cell is illustrated in the same figure. While it remained
relatively stable, there was an approximate 4% reduction, which is more significant than
that of the 4.3 V-limit sample. It is important to note that the thermal behavior of both
cells was consistent, as they were subjected to identical cycling conditions in the same
environment. For the 4.5 V-limit cell, the initial capacity was approximately 230 mAh/g,
diminishing to around 130 mAh/g at the end of its life cycle. This translates to a capacity
retention rate of 56.5%, indicating a 21% decrease in efficiency compared to the cell cycled
at a 4.3 V cutoff voltage.

The primary aim of this study was to investigate the potential presence of CEI layer
constituents, particularly carbonates, through SEM-EDX analysis. Multiscale images were
acquired for the same reason presented in the case of the 4.3 V-limit sample. Figure 4b
illustrates a cluster of secondary particles, with at least one exhibiting fracturing. As
previously noted, mechanical strain during cycling may induce deformation, potentially
leading to the fracturing of secondary particles. The detection of fluorine within the interior
of the particle, as shown in Figure 4f, implies pre-cycling damage. This is consistent with
observations from the 4.3 V-limit sample, where fluorine was present on the surface of
all analyzed particles (Figure 4e,f), indicating the formation of a reactive and potentially
unstable CEI layer during cycling. In contrast, the absence of carbon on the surface of
particles in the 4.5 V-limit sample suggests a lack of carbonate components. Figure S3c,d
present the manganese color overlay of the 4.5 V-limit sample, demonstrating a distribution
pattern distinct from that of fluorine, thus confirming the presence of the latter element
and eliminating any potential misinterpretation of spectral energies.

In the scientific analysis of the 4.5 V-limit sample, a thorough STEM-EDX examination
of primary particles was conducted. The findings are presented in Figure 5. This analysis
entailed a meticulous study of two primary particles, each approximately 500 nm in size.
Figure 5c displays a detailed mapping of manganese and fluorine elements. The presence
of fluorine is evident along the edge of these particles. Consequently, a more targeted
STEM-EDX profiling was carried out on one of these particles (as depicted in Figure 5a,b),
revealing an inhomogeneous fluorine distribution along the edges (F-K 0.676 keV). This
inhomogeneity is attributed to the varying thickness of the particles.

Parallel to the procedure executed for the 4.3 V-limit sample, a carbon-oxygen (C-O)
mapping was performed. This step aimed to detect any potential carbonate layers. How-
ever, the carbon (C-K 0.278 keV) detected around the particle edges was insufficient to
conclusively identify a CEI layer composed of carbonate.

Furthermore, the comparative analysis of Figure 5e, showing NMC 811 mapping, and
Figure 5a, depicting STEM-HAADF imaging, provided a crucial insight. It confirmed the
absence of overlap between the analyzed particles. This observation is significant, as it
implies that 4D-STEM analysis could be effectively employed to ascertain the polycrys-
talline nature of these primary particles without any complications arising from particle
superposition.

The 4D-STEM ACOM analysis was performed over the zone of interest, as shown in
Figure 6. First, the orientation map (Figure 6b) showed a polycrystalline composition for
the particle on the left of the scan. For the particle on the right, the thickness did not allow
to have a high enough orientation/phase reliability to conclude on a polycrystalline or
monocrystalline composition. This information allowed us to reaffirm the hypothesis of
lower performance of the 4.5 V-limit sample in comparison to the 4.3 V-limit due to layer
rupture contributing to the deformation at a higher voltage. In Figure 6d, the phase map
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shows the presence of both NMC 811 (Figure 6f) and LiF (Figure 6e), and the orientation
and phase maps (together with STEM-EDX analysis) confirm the presence of LiF on the
particle edge, with higher confidence than the 4.3 V-limit sample. The higher confidence
could be because at a higher voltage, the more aggressive degradation of the electrolyte
leads to more LiF formation. However, this does not mean better protection from capacity
loss, as we could expect from the reviewed literature. On the contrary, it rather represents a
higher loss due to the non-stability of the CEI.
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Figure 5. The 4.5 V sample: STEM-EDX analysis for primary particles. (a) HAADF image. (b) Line
profile of the selection area (red arrow (a)), featuring the nickel, oxygen, and fluorine presence over
it. (c) Color overlay featuring fluorine and manganese over particles for LiF observation. (d) Color
overlay featuring carbon and oxygen for carbonates’ observation. (e) Color overlay featuring nickel,
manganese, and cobalt (NMC 811).

Considering the analysis of both samples, the LiF layer was not formed homogeneously
over the entire particle edge. A possible explanation for this is the fact that the CEI formation
occurs at the surface of secondary particles, meaning that during grinding, core particles
do not present any CEI formation. Moreover, the CEI layer can be affected due to the
mechanical energy induced by the grinding of the particles.

Li inorganic compounds were expected to be present in the CEI layer, as has already
been reported in the literature. Carbonates and oxides were completely absent, LiOH was
found in the sample cycled at 4.3 V in a small quantity, and LiF was present in both samples
(4.3 V and 4.5 V) as the predominant component. Even though LiF has been reported to
be used as a CEI protective layer against degradation in NMC 811, as we presented in
the introduction of this paper, in our case, the samples still presented a retention capacity
between 70% and 50%, and these values are close to those found in other works for NMC
811 samples with any treatment or additive against degradation.
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Figure 6. The 4.5 V sample. (a) TEM image of 4.5 V-limit primary particles, (b) 4D-STEM analysis
of primary particles: reliability map and orientation map superposition, (c) orientation color map,
(d) 4D-STEM analysis of primary particles: phase map and phase reliability map superposition,
(e) diffraction pattern (DF) for LIF (blue) component, and (f) DF for NMC 811 component (red).

3. Conclusions

Ni-rich cathode materials are known for the several degradation mechanisms present
due to their high potential working conditions. Chemical and mechanical degradation
have been reported in numerous works. In this research, we explored the complex degra-
dation mechanisms in Ni-rich cathode materials, known for their susceptibility to chemical
and mechanical degradation under high-potential conditions. Our primary focus was to
investigate strategies for mitigating these degradation processes without compromising
the capacity of Ni-rich materials. A pivotal aspect of this endeavor involved the formation
of a stable CEI layer.

Utilizing advanced characterization techniques, such as 4D-STEM with automated
crystal orientation mapping, along with electrochemical analysis, SEM-EDX, and STEM-
EDX, we conducted an in-depth study of CEI layer formation in conventional NMC 811 coin
cell configurations. These configurations included a lithium metal anode and an LP30
electrolyte, examined at both cutoff voltage limits and beyond.

Our findings revealed the formation of an LiF-based CEI layer in both samples, poten-
tially resulting from water traces in the cathode during preparation. While LiF is frequently
lauded for its potential in mitigating degradation phenomena in battery systems, our obser-
vations indicated that this layer does not form prior to cycling, and its protective efficacy is
not consistent with results reported by other research groups. Our electrochemical data
further highlighted a more pronounced degradation at higher cutoff voltages (4.5 V-limit),
which could be attributed to the continuous formation and dissolution of the CEI layer. This
process, coupled with particle deformation, exacerbates the degradation of the electrolyte
at elevated voltages.
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Our methodological approach and experimental setup proved effective in studying
and understanding CEI formation. However, it is critical to note that CEI formation
is predominantly a surface phenomenon at the secondary particle scale. This implies
a reduced likelihood of observing primary particles with a CEI layer in TEM analysis,
especially considering that sample preparation involves powder grinding, which may
induce postmortem degradation of the existing CEI layer.

In perspective, for a better comprehensive analysis of CEI formation, liquid electro-
chemical in situ TEM cycling analysis techniques, including STEM-EDX and 4D-STEM, are
indispensable. Our study also highlighted the inevitability of parasitic reactions, even in
controlled environments, across both homemade and commercial batteries. These insights
suggest that future advancements in battery performance may hinge on integrating elec-
trolyte additives or adopting cathode material coatings, as explored in previous studies.
This direction holds promise for enhancing the durability and efficiency of Ni-rich cathode
materials in high-potential battery applications. Finally, it is imperative to conduct a more
advanced examination of phase transformations occurring at the surface of Ni-rich NMC
in relation to the applied electrochemical potential and the composition of the CEI layer.
This investigation is crucial for advancing our understanding of the interplay between CEI
layer formation and the alteration in crystallinity of NMC materials.

4. Materials and Methods
4.1. TEM/STEM Analysis

In the context of TEM analysis, the powder from the cathode sheet was detached
from the current collector, manually pulverized, and subsequently stored in an aerated
glass flask. HAADF-STEM imaging was conducted using a Tecnai G2 F20 S-Twin (Thermo
Fisher Scientific, Waltham, MA, USA) system, operated at an accelerating voltage of 200 kV
and equipped with a C2 aperture of 70 µm. Additionally, for the acquisition of elemental
maps, an energy-dispersive X-ray spectroscope (EDX, Xflash, Bruker, Berlin, Germany) was
employed in STEM mode. EDX-STEM analysis was performed in drifted corrected mode,
with an EDS map interval of 10 s, dexell time of 8 µs, and a stop mode relative value of 50%.
For Q-mapping, the TEM Cliff Lorimer B method was used, where the pixel size was 2 nm,
time per pixel was 64 µs, and total scanning time was 532 s.

4.2. 4D-STEM ACOM Analysis

The TEM investigations were conducted using an accelerating voltage set to 200 kV.
During the diffraction experiments, the camera length was meticulously maintained at
300 mm. A precesion angle of 0.7◦ was employed, aimed at minimizing dynamical scat-
tering effects. The condenser aperture was precisely configured to 10 µm, resulting in a
convergence semi-angle of 0.4 mrad. For electron beam control, Gun lens 3 was utilized,
with the spot size adjusted to 5. The electron dosage for 4D-STEM analysis was established
at 150 e/Å²/s. Data processing of the 4D-STEM dataset was executed utilizing the ePattern
suite software, which facilitated denoising operations with a prominence value set at 5.
Subsequently, the ASTAR software package (developed by Nanomegas, Brussels, Belgium)
was applied for the reconstruction of phase and orientation maps. This was achieved
through the Automated Crystal Orientation Mapping (ACOM) technique, which relies on
a pattern-matching algorithm. The resolution of each diffraction pattern was configured to
512 × 512 pixels. Acquisition of these diffraction patterns was carried out using a OneView
CMOS camera, manufactured by Gatan, Pleasanton, CA, USA.

4.3. SEM Analysis

An environmental SEM (ESEM), specifically the FEI Quanta 200 Field Emission Gun
(FEG) model, augmented with an advanced energy-dispersive X-ray (EDX) microanalyzer
(X-Max 80, Oxford Instruments Co., Abingdon, UK), was employed for detailed microstruc-
tural analysis. Imaging modalities, including secondary electron (SE) and backscattered
electron (BSE) techniques, were utilized, conducted under a controlled high-vacuum envi-
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ronment at an electron acceleration voltage range of 10 to 15 keV. EDX spectroscopy was
consistently executed at an acceleration voltage of 15 keV to ensure optimal elemental
characterization. For SEM imaging, the cathode sheet was subjected to examination in
its post-recovery state, following a meticulous cleaning process within a controlled atmo-
sphere glovebox. The cathode sheet was carefully placed over the SEM sample holder
using carbon tape, with no further manipulation.

4.4. Electrochemical Analysis

The positive electrode material, namely NMC 811, was procured from NEI Corporation
(Piscataway, NJ, USA) in the form of cathode sheets, each measuring 127 mm by 254 mm,
and adhered to an aluminum current collector with a thickness of 16 µm. The composition
of the cathode involved a blend of NMC 811 (constituting 90% of the active material),
polyvinylidene fluoride (PVDF) as a binder (5%), and Super P conductive carbon (5%),
achieving a uniform thickness of approximately 60 µm ± 5%. For the electrolyte, 100 µL of
LP30, a commonly utilized formulation comprising lithium hexafluorophosphate (LiPF6)
in a binary solvent system of ethylene carbonate (EC) and dimethyl carbonate (DMC) in
a 1:1 volumetric ratio, was employed. A 1 mm-thick fiberglass separator was integrated
into the design. Lithium metal, serving as the negative electrode, was sourced from Sigma
Aldrich (Saint Louis, MO, USA), preserved in a controlled dry environment, and prepared
as a thin foil for subsequent processing.

The coin cell assembly was conducted within a dry room environment, utilizing a
13 mm punched cathode, a 15 mm punched separator, and an 8 mm punched lithium
metal. Post-cycling, the coin cell was disassembled within a nitrogen-filled glovebox,
and the cathode sheet was subjected to a thorough cleaning process using DMC. This
cleaning involved a three-cycle spinning protocol, each at 3600 rpm for 3 min, followed by
a drying phase at 80 ◦C for one hour in an air atmosphere. Electrochemical characterization
was performed by cycling the coin cell using a BSC-COM Biologic Potentiostat, with the
operational parameters and data acquisition managed by EC-Lab software, version 11.34.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/sym16030301/s1, Figure S1: Potential vs. capacity electrochemical
curve of cycled NMC 811 at an upper high voltage of 4.3 V; Figure S2: Secondary electron (SE) image
of NMC secondary particles in cathode sheet after cleaning from 4.3V-limit cell; Figure S3: Secondary
electron (SE) image of NMC secondary particles in cathode sheet after cleaning from 4.5V-limit cell.
Supporting information shows SEM-EDX images of secondary particles featuring Mn and F. The
codes of cif files used in 4D-STEM and more details of the acquisition conditions are presented as well.
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