
Citation: Kalina, B.; Lee, J.-H.; Na,

K.-T. Enhancing Portfolio

Performance through Financial

Time-Series Decomposition-Based

Variational Encoder-Decoder Data

Augmentation. Symmetry 2024, 16, 283.

https://doi.org/10.3390/sym16030283

Academic Editors: Diyin Tang and

Danyang Han

Received: 1 February 2024

Revised: 25 February 2024

Accepted: 27 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Enhancing Portfolio Performance through Financial
Time-Series Decomposition-Based Variational
Encoder-Decoder Data Augmentation
Bayartsetseg Kalina , Ju-Hong Lee * and Kwang-Tek Na

Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea;
22192320@inha.edu (B.K.); kwangtek.na@inha.edu (K.-T.N.)
* Correspondence: juhong@inha.ac.kr

Abstract: The objective of portfolio diversification is to reduce risk and potentially enhance returns
by spreading investments across different asset classes. Existing portfolio diversification models
have traditionally been trained on historical financial time series data. However, several issues
arise with historical financial time series data, making it challenging to train models effectively
to achieve the portfolio diversification objective: an insufficient amount of training data and the
uncertainty deficiency problem, wherein the uncertainty that existed in the past is not visible in
the present. Insufficient datasets, characterized by small data size, result in information asymmetry
and compromise portfolio performance. This limitation underscores the importance of adopting a
pattern-centric data augmentation approach, capable of unveiling hidden patterns and structures
within the financial time series data. To address these challenges, this paper introduces the financial
time series decomposition-based variational encoder-decoder (FED) method to augment financial
time series data, overcoming the limitations of insufficient training data and providing a more realistic
and dynamic simulation of the financial market environment. By decomposing the data into distinct
components, such as trend, dispersion, and residual, FED leverages pattern-centric data augmentation
within the financial time series data. In the environment generated using the FED method, this paper
proposes a two-class portfolio diversification, called FED2Port. It integrates stochastic elements into
the reward function, enabling a reinforcement learning algorithm to learn from a comprehensive
spectrum of financial market uncertainties. The experimental results demonstrate that the proposed
model significantly enhances portfolio performance.

Keywords: portfolio diversification; data augmentation; financial time-series decomposition;
variational encoder-decoder

1. Introduction

Financial investments involve a trade-off between risk and return. Higher potential
returns usually come with higher risks. A diversified portfolio is an investment strategy
that involves spreading investments across different asset classes. Large-scale funds, such
as national pensions worldwide, invest in a diverse range of assets. In most countries,
equities and bills and bonds were the two main asset classes in which pension capital was
invested in 2020, accounting for more than half of the investment in 35 out of 38 OECD
countries and four reporting non-OECD G20 jurisdictions [1]. The Melbourne Mercer
Global Pension Index (MMGPI) considers a split between growth and defensive assets [2].
Growth assets typically include high-risk assets, such as equities, property, and some
alternative assets. On the other hand, defensive assets include low-risk assets, such as bills
and bonds, as well as cash and deposits.

The present study classifies financial assets into two broad categories based on their
inherent characteristics and the level of associated risk: high-risk and low-risk assets. This
classification is similar to the MMGPI categorization, with growth representing high-risk
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and defensive representing low-risk. Such categorization assists investors in making well-
informed portfolio decisions, balancing risk tolerance and investment goals. Investments
in high-risk assets can offer significantly large returns, making them attractive to investors
seeking aggressive growth, but they also come with a higher likelihood of losses. On the other
hand, investments in low-risk assets are often considered safer for preserving capital and
generating modest, consistent returns. Two-class portfolio diversification involves spreading
investments between these two classes of assets to reduce the overall portfolio risk.

A buy-and-hold strategy is a long-term investment approach where an investor buys
assets and holds onto them for an extended period, regardless of short-term market fluc-
tuations. Portfolio rebalancing is the process of periodically adjusting the weights of
assets in a portfolio. The tangency portfolio among Markowitz optimization [3], risk bud-
geting [4,5], recurrent reinforcement learning (RRL) [6,7], and deep deterministic policy
gradient (DDPG) [8,9] aims to find the optimal proportion of assets within a given period.
Traditional portfolio diversification models [3–5] aim to optimize the allocation of assets
in a portfolio to balance risk and return. Markowitz optimization [3] provides a mathe-
matical approach for constructing an investment portfolio that maximizes the expected
return for a given level of risk or minimizes the risk for an expected return. Risk budget-
ing [4,5] involves allocating risk across different assets or asset classes based on predefined
risk constraints. This strategy aims to control and manage the portfolio risk effectively.
Reinforcement learning (RL) portfolio diversification models [6–11] make decisions by in-
teracting with an environment to maximize a cumulative reward signal. While RRL [6,7,10]
aims to learn the optimal policy by maximizing the reward functions, DDPG [8,9] achieves
this goal by adjusting the parameters of the actor and critic networks iteratively using
optimization techniques.

Existing portfolio diversification models have a common deficit; they are trained using
only historical financial time series data. On the other hand, historical financial time series
data have the following problems.

• Uncertainty deficiency. Both the financial market and its empirical time series data
contain inherent uncertainty. At some point, probabilities were assigned to different
events or market scenarios, including rises, falls, and magnitudes of changes, with non-
zero probabilities. On the other hand, as time elapses, all past events collapse into a
single outcome. Consequently, only one event is assigned a 100% probability, and the
probabilities of all other events are set to 0%. This phenomenon, termed uncertainty
deficiency, suggests that historical financial time series data only represent a sequence
of singular events, lacking the diversity of market uncertainties that existed in the
past. Ignoring financial market uncertainty can lead to overly confident models that
fail to account for unforeseen risks. RL algorithms or traditional models optimized
solely based on historical financial time series data may lack robustness and show
poor capability when applied to novel or extreme events.

• Insufficient amount of training data. Historical financial time-series datasets are often
not large enough for training due to financial market uncertainty. For example, even
with 10 years of daily data for an asset class (250 trading days in a year × 10 years = 2500),
the amount is relatively small, only 2.5k. Insufficient datasets, characterized by small
data size, result in information asymmetry and compromise portfolio performance.

Good results are not possible in the face of future uncertainty because of these prob-
lems. A financial time series decomposition-based variational encoder-decoder (FED) data
augmentation is proposed to address the challenges of financial market uncertainty and
insufficient training data, providing a more realistic and dynamic simulation of the financial
market environment. Under the environment generated by FED, this paper proposes a
two-class portfolio diversification (FED2Port), allowing the RL algorithm to learn from a
comprehensive spectrum of financial market uncertainties.

The main contributions of this paper are as follows.
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• FED for Financial Time Series Data Augmentation. The first contribution introduces
an innovative financial time series data augmentation called the FED. Generating
nonstationary financial time series data is deemed challenging, and FED addresses
this challenge by leveraging decomposition techniques, separating the financial time
series into distinct components (trend, dispersion, and residual). Based on the encoder-
decoder architecture, the FED method utilizes latent variables further decomposed
into components. This pattern-centric approach provides a profound understanding
of the underlying structure of financial time series data, unveiling the hidden patterns
or structures and offering insights into factors influencing observed trends and fluctu-
ations. FED captures the distributions of latent variable components, generating more
realistic financial time series data. In doing so, the FED method revives some of the
past uncertainty that had disappeared, compensating for the problems of uncertainty
deficiency and an insufficient amount of training data.

• FED2Port for Decision-Making under Financial Market Uncertainty. The second con-
tribution is the proposal of FED2Port as a novel diversification approach to enhance the
efficiency of RL algorithms. Specifically tailored for RL portfolio diversification models,
FED2Port addresses the uncertainty deficiency problem inherent in historical financial
time series data. FED2Port trains the RL algorithm under the financial market environ-
ment generated using the FED. This environment simulation incorporates stochastic
elements in the reward function, enabling the algorithm to learn from a more com-
prehensive spectrum of financial market uncertainties. Therefore, FED2Port improves
the adaptability of the algorithm significantly, empowering it to make well-informed
decisions in the face of future uncertainty, ultimately enhancing portfolio performance.

2. Related Work

Financial time series data generation plays a significant role in RL portfolio diversification
models by addressing the challenges of financial market uncertainty and enhancing portfolio
performance. Simulating the financial market environment with additional scenarios and
variations can help improve the robustness of portfolio diversification. This ensures that the
RL algorithm is exposed to a broader range of market conditions. The two most prominent
types of generative models are the generative adversarial nets (GANs) [12,13] and variational
autoencoders (VAEs) [14,15].

GANs usually generate more realistic data but face training stability and sampling
diversity challenges. GANs are based on a two-player minimax game with value function
V(G, D):

min
G

max
D

V(G, D) :=Ex∼pdata(x)[log D(x)]

+Ez∼pZ(z)[log(1 − D(G(z)))]

where z, G, and D are random noise, a generator, and a discriminator, respectively. GANs
involve training a generator and a discriminator in a competitive setting, which can some-
times lead to training instabilities, mode collapse, or difficulties in convergence. Time-series
GAN (TimeGAN) [16] and real-world time series GAN (RTSGAN) [17] are designed to
generate synthetic data that closely resemble real-world time series data. In TimeGAN,
the generator produces embeddings, and the recovery produces time series data based on
the generated embeddings. RTSGAN shares similarities with TimeGAN but sets itself apart
by specializing in generating time series data with variable lengths. They do not address
the nonstationary financial time series data generation.

VAEs often exhibit more stable training dynamics compared to GANs. VAEs explicitly
model the generative process by assuming a specific form for the latent variable distribution.
This can be advantageous in scenarios where understanding the generative process is
crucial. VAEs aim to maximize the probability of the generated output with respect to
the input and produce an output from a target distribution by compressing the input into
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a latent space. VAEs can learn via maximum likelihood using a variational approach to
maximize the evidence lower bound (ELBO) as follows:

ELBO = −DKL[qϕ(z|x)||p(z)] +Eqϕ(z|x)[log pθ(x|z)]

where qϕ(z|x) is an approximate posterior distribution for the latent variables, also known
as a probabilistic encoder; p(z) is a prior over the latent variables; pθ(x|z) is a likelihood
function, also known as a probabilistic decoder.

Time series decomposition [18–26] aims to decompose a time series into its components
structurally and interpretably. These components typically include the trend, seasonal,
and residual components. The trend component represents the long-term direction or
underlying movement in the financial time series data, capturing the overall trajectory,
which can be either linear or nonlinear. It helps identify whether the financial time series
data generally increases or decreases over time. The seasonal component captures the
periodic patterns and fluctuations within a year or specified period, elucidating regular,
predictable movements in the financial time series data. The cyclical component represents
longer-term fluctuations tied to economic or business cycles, spanning multiple years and
identifying broader economic trends. The residual component, the error term or reminder,
accounts for random and unexplained variability in the financial time series data, not
attributable to the trend, seasonal, or cyclical components. Time series decomposition can
be expressed in additive or multiplicative forms. An additive decomposition [22] would be
written as

yt = Tt + St + Rt

A multiplicative decomposition [22] would be written as

yt = Tt × St × Rt

where yt, St, Tt, and Rt are the data, seasonal component, trend component, and residual
component, respectively, all at time t. The additive decomposition is appropriate when the
magnitude of the seasonal fluctuations or the variation around the trend does not change as
the level of the time series increases. The multiplicative decomposition is more appropriate
when the variation in the seasonal pattern or the variation around the trend is proportional
to the time series level [22].

STD decomposition [26] extracts the components of the seasonality, trend, and disper-
sion, it is expressed as

yt = St × Dt + Tt

where yt, St, Dt, and Tt are the data, seasonal component, dispersion component, and trend
component, respectively, all at time t. STD with a reminder component [26], called STDR,
is defined as follows:

yt = S′
t × Dt + Tt + Rt

where S′
t is an averaged seasonal component, and Rt is a reminder component, all at time t.

Decomposition is a crucial tool in analyzing and simulating nonstationary financial
time series data, providing insights into changing patterns and helping simulators better
understand and model the complexities of financial markets.

The Markowitz optimization [3], known as modern portfolio theory (MPT), provides
a mathematical approach to constructing portfolios to maximize the expected returns while
minimizing risk. The tangency portfolio represents the optimal portfolio that maximizes a
risk-adjusted return measure, the Sharpe ratio [27]. Risk budgeting [4,5] is a portfolio con-
struction approach that involves allocating risk among different assets based on predefined
risk constraints. A risk budgeting model helps to manage and control the overall risk of a
portfolio while optimizing returns. Previous studies [3–5] relied on the assumption of a
stationary market. The Black–Litterman model [28] is an asset allocation framework that
combines market equilibrium assumptions [29] with an investor’s subjective views. Ap-
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plying the Black–Litterman model requires the availability of expert views or a predictive
model that can represent those expert views.

Maximizing future rewards typically involves optimizing a sequence of decisions or
actions to achieve the best possible outcomes. It is a fundamental problem in various fields,
including reinforcement learning. Ref. [6] introduced an RL model called recurrent reinforce-
ment learning (RRL) for portfolio management. They used the Sharpe ratio as the reward.
A previous study [7] used the modified RRL, which optimizes the Sharpe ratio with batch
learning. The deep deterministic policy gradient (DDPG) [30] was used for portfolio man-
agement [8,9]. RL portfolio diversification models [6–9] can construct optimal portfolios that
achieve the best possible rewards, such as the expected return, the Sharpe ratio [27], the Sortino
ratio [31], or the market-adaptive ratio [32]. The Sharpe ratio [27] relates the excess returns
on a portfolio to its risk, the standard deviation of the excess return. The market-adaptive
ratio [32] is a risk-adjusted return based on a market-type measure, rho. This ratio is a general
form of the Sharpe ratio, considering the characteristics of the market types. During bull
markets, the focus is on seeking high returns and embracing risk. In contrast, it aims to
preserve capital and minimize risk during bear markets. The Sortino ratio [31] focuses on
the downside risk. RL portfolio diversification models leverage insights gained from data
analysis instead of relying on an assumption. On the other hand, they use observed historical
environments to estimate the model parameters that lead to the uncertainty deficiency and
the shortage of training data problems.

3. Proposed Methods

The d-day log-return vector of the high-risk asset (or the low-risk asset) at time t is
defined as

xt =


xt−d+1
xt−d+2
· · ·
xt

 =


log pt−d+1

pt−d

log pt−d+2
pt−d+1

· · ·
log pt

pt−1

 (1)

where pt is the price of a high-risk asset (or the low-risk asset) at time t.

3.1. FED

The encoder-decoder architecture encourages the latent space to have meaningful
representations of the data, which is advantageous for operations like interpolation or
feature manipulation. Based on this architecture, the FED method utilizes latent variables
further decomposed into components. This approach provides a profound understanding
of the underlying structure of financial time series data, unveiling the hidden patterns or
structures and offering insights into factors influencing observed trends and fluctuations.

Time series decomposition is a fundamental technique in time series analysis that
separates complex time series data into individual components, helping understand the
underlying dynamics. Most time series decomposition methods have focused on the
trend, seasonal, and residual components. Previous work [26] considers a component
related to the dispersion of the time series. The trend and dispersion components are
crucial for generating financial time series data due to their nonstationary property. FED
incorporates components of the trend, dispersion, and residual. The trend component,
mt, is the mean return at time t, representing the direction of financial time series data.
The dispersion component, st, is the standard deviation of the return at time t, representing
the fluctuation of financial time series data. The residual component accounts for the
unexplained variability in the financial time series data. The primary concept of the
proposed model is to apply decomposition into the hidden space. By emphasizing these
components, FED leverages pattern-centric data augmentation within the financial time
series data.
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Assume that data x̃t are generated by a decoder with a probabilistic latent variable, ht.

x̃t = D(ht) (2)

The FED method is based on the latent variable decomposition,

ht = νt × τt × ξt (3)

where νt ∼ N(µνt, Σνt) is a probabilistic trend component of the latent variable, τt ∼ N(µτt, Στt)
is a probabilistic dispersion component of the latent variable, and ξt ∼ N(µξt, Σξt) is a proba-
bilistic residual component of the latent variable, all at time t.

The product of two multivariate normal distributions results in another multivariate
normal distribution [33], which is valuable and highly useful in the proposed model.
Consequently, the parameters of the probabilistic hidden variable, ht ∼ N(µht, Σht) were
calculated, as follows:

N(µνt, Σνt)× N(µτt, Στt)× N(µξt, Σξt) = N(µ1t, Σ1t)× N(µξt, Σξt)

= N(µht, Σht) (4)

where

Σ1t = (Σ−1
νt + Σ−1

τt )
−1

µ1t = Σ1tΣ−1
νt µνt + Σ1tΣ−1

τt µτt (5)

and

Σht = (Σ−1
1t + Σ−1

ξt )
−1

= (Σ−1
νt + Σ−1

τt + Σ−1
ξt )

−1

µht = ΣhtΣ
−1
1t µ1t + ΣhtΣ

−1
ξt µξt

= ΣhtΣ
−1
νt µνt + ΣhtΣ

−1
τt µτt + ΣhtΣ

−1
ξt µξt (6)

FED employs three encoders to model the three probabilistic components of the latent
variables, including trend (return), dispersion (standard deviation), and residual. Similar
to reference [14], the reparameterization trick was used. Figure 1 illustrates the general
framework of FED.

Figure 1. General framework of financial time series decomposition-based variational encoder-
decoder (FED). xt is the d-day log-return vector of the high-risk asset (or the low-risk asset) at time t.
m̃t, s̃t, and x̃t are the generated trend (return), the generated dispersion (standard deviation), and the
generated d-day log-return vector of the high-risk asset (or the low-risk asset), respectively, all at
time t. νt ∼ N(µνt, Σνt) is a probabilistic trend component of the latent variable, τt ∼ N(µτt, Στt) is
a probabilistic dispersion component of the latent variable, and ξt ∼ N(µξt, Σξt) is a probabilistic
residual component of the latent variable. ht = νt × τt × ξt is the decomposed latent variable.

The marginal log-likelihood of the trend mt:
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log p(mt) = log
∫

pθν
(mt|νt)p(νt)dνt

= log
∫ qϕν(νt|xt)

qϕν(νt|xt)
pθν

(mt|νt)p(νt)dνt

≥
∫

qϕν(νt|xt) log

[
p(νt)

qϕν(νt|xt)
pθν

(mt|νt)

]
dνt

= −
∫

qϕν(νt|xt) log

[
qϕν(νt|xt)

p(νt)

]
dνt +

∫
qϕν(νt|xt) log

[
pθν

(mt|νt)
]
dνt

= −DKL

[
qϕν(νt|xt)||p(νt)

]
+Eqϕν (νt |xt)

[
log pθν

(mt|νt)
]

(7)

where pθν
(mt|νt) is the conditional probability distribution of the trend mt given the latent

variable νt, modeled by a decoder and the sampling of the latent variable, and qϕν(νt|xt)
is the conditional probability distribution of the latent variable νt given data xt, modeled
by an encoder and the reparameterization trick. The above bound is the evidence lower
bound (ELBO).

Similarly, the marginal log-likelihood of dispersion st is expressed as

log p(st) = log
∫

pθτ
(st|τt)p(τt)dτt

= log
∫ qϕτ (τt|xt)

qϕτ (τt|xt)
pθτ

(st|τt)p(τt)dτt

≥ −DKL

[
qϕτ (τt|xt)||p(τt)

]
+Eqϕτ (τt |xt)

[
log pθτ

(st|τt)
]

(8)

where pθτ
(st|τt) is the conditional probability distribution of the dispersion st given

the latent variable τt, modeled by a decoder and the sampling of the latent variable,
and qϕτ (τt|xt) is the conditional probability distribution of the latent variable τt given data
xt, modeled by an encoder and the reparameterization trick.

Similarly, the marginal log-likelihood of data xt is expressed as

log p(xt) = log
∫

pθ(xt|ht)p(ht)dht

= log
∫ qϕ(ht|xt)

qϕ(ht|xt)
pθ(xt|ht)p(ht)dht

≥ −DKL

[
qϕ(ht|xt)||p(ht)

]
+Eqϕ(ht |xt)

[
log pθ(xt|ht)

]
(9)

where pθ(xt|ht) is the conditional probability distribution of data xt given the latent vari-
able ht, modeled by a decoder and the sampling of the latent variable, and qϕ(ht|xt) is
the conditional probability distribution of the latent variable ht given data xt, modeled
by encoders and the reparameterization trick. The FED method aims to maximize the
combination of the above three bounds as follows:

LFED := α

(
− DKL

[
qϕν(νt|xt)||p(νt)

]
+Eqϕν (νt |xt)

[
log pθν

(mt|νt)
])

+ β

(
− DKL

[
qϕτ (τt|xt)||p(τt)

]
+Eqϕτ (τt |xt)

[
log pθτ

(st|τt)
])

+ γ

(
− DKL

[
qϕ(ht|xt)||p(ht)

]
+Eqϕ(ht |xt)

[
log pθ(xt|ht)

])
(10)

where α, β, and γ are hyperparameters that control the importance of each task.
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3.2. FED2Port

The environment of the FED2Port is defined as follows.

• The action is defined as the weight vector:

at =

[
at,hr
at,lr

]
(11)

where at,hr and at,lr ≥ 0 represent the weights of a high-risk asset and a low-risk asset,
respectively, with the constraint that at,hr + at,lr = 1.

• The state is defined as the portfolio return st:

st = at−1,hrxt,hr + at−1,lrxt,lr (12)

where xt,hr and xt,lr are the d-day log-return vectors of the high-risk and low-risk
assets, respectively.

• The reward is defined as the market-adaptive ratio [32]:

rt(x̃t+d,hr, x̃t+d,lr, at) =
(R̄p − R f )

ρhr

σ
1/ρhr
p

(13)

where ρhr =
2

1+e−Rhr
represents the rho of the high-risk asset; Rhr is the return of the

high-risk asset, x̃t+d,hr and x̃t+d,lr are the generated log-return vectors of the high-risk
and low-risk assets, respectively. FED methods are used for high-risk and low-risk
assets. R̄p and σp represent the expected return and standard deviation of the total
portfolio, respectively, and R f is the risk-free rate. In this paper, the risk-free rate
equals zero. By using the market-adaptive ratio as the reward, FED2Port can take into
account market characteristics such as bull and bear markets.

The agent, πω, receives the portfolio return and selects an action.

at = πω(st) (14)

It controls the policy using an evaluation of the reward. Figure 2 illustrates the general
framework of FED2Port.

Figure 2. General framework of two-class portfolio diversification (FED2Port). st and at are the state
and the action, respectively, at time t. x̃t+d,hr and x̃t+d,lr represent the generated log-return vectors of
the high-risk and low-risk assets, respectively, at time t. rt is the reward at time t.

The objective of FED2Port is to maximize the expected reward,

max
ω

Ex̃t+d,hr ,x̃t+d,lr

[
rt(x̃t+d,hr, x̃t+d,lr, at)

]
(15)

4. Experiment
4.1. Dataset

FED2Port aims to allocate the total investment into two classes: high-risk and low-risk
assets. This paper considers three stock indices and three bond funds (Table 1) in the
experiment. The daily data from January 2010 to December 2022 (https://finance.yahoo.

https://finance.yahoo.com/
https://finance.yahoo.com/
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com/ accessed on 1 October 2023) were included. To initialize models, they were trained
using the five-year data from January 2010 to December 2014 for each dataset. Then, we
tested the model using eight-year data, from January 2015 to December 2022.

Table 1. Assets.

Class Symbol Explanation

High-risk assets
SP500 S&P500 Index
DAX DAX Index
KOSPI KOSPI Index

Low-risk assets

BND Vanguard Total Bond Market Index Fund
BSV Vanguard Short-Term Bond Index Fund

VCIT Vanguard Intermediate-Term Treasury
Index Fund

Figure 3 depicts the price data of the assets, while Table 2 lists the differences be-
tween stock market indices and bond funds. While stock market indices carry higher
risk, bond funds offer lower risk. Nine two-class portfolios (Table 3) were considered,
comprising three stock indices and three bond funds (Table 1), to assess the performance of
the proposed model.

Figure 3. Graphs of the price data of the assets.

Table 2. Statistic of funds during test period.

SP500 DAX KOSPI BND BSV VCIT

The standard deviation of the portfolio return 0.5221 0.6125 0.5564 0.1429 0.0590 0.1702

Table 3. Portfolios.

Portfolio Low-Risk Asset High-Risk Asset

1 BND&SP500 Vanguard Total Bond Market Index Fund S&P500 Index
2 BND&DAX Vanguard Total Bond Market Index Fund DAX Index
3 BND&KOSPI Vanguard Total Bond Market Index Fund KOSPI Index
4 BSV&SP500 Vanguard Short-Term Bond Index Fund S&P500 Index
5 BSV&DAX Vanguard Short-Term Bond Index Fund DAX Index
6 BSV&KOSPI Vanguard Short-Term Bond Index Fund KOSPI Index
7 VCIT&SP500 Vanguard Intermediate-Term Treasury Index Fund S&P500 Index
8 VCIT&DAX Vanguard Intermediate-Term Treasury Index Fund DAX Index
9 VCIT&KOSPI Vanguard Intermediate-Term Treasury Index Fund KOSPI Index

4.2. Benchmarks

For comparison, several benchmarks (Table 4) were considered, including buy-and-
hold strategies, traditional portfolio diversification models, and RL portfolio diversification

https://finance.yahoo.com/
https://finance.yahoo.com/
https://finance.yahoo.com/
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models. The buy-and-hold strategy is a long-term investment approach in portfolio man-
agement where an investor buys financial assets and holds onto them for an extended
period, regardless of short-term market fluctuations. Traditional portfolio diversification
models help construct portfolios that align with the investors’ risk tolerance and return
objectives. RL portfolio diversification models showcase the adaptability and learning
capabilities of reinforcement learning.

Table 4. Comparison benchmarks.

Model Explanation

1 100% low-risk asset portfolio

Buy-and-Hold strategies2 Equally Weighted

3 100% high-risk asset
portfolio

4 Tangency portfolio Traditional portfolio diversification models5 Risk Budgeting

6 RRL Historical data-based RL portfolio diversification models7 DDPG

8 TimeGAN2Port Data augmentation-based RL portfolio diversification models9 RTSGAN2Port

4.3. Performance Measures

The expected portfolio return, the standard deviation of the portfolio return, and the
Sharpe ratio were considered to evaluate the effectiveness of portfolio strategies.

The expected portfolio return (Profit) is expressed as

µp = t × R̄p (16)

where t is the length of the test period, and R̄p is the daily mean return of the portfolio.
The expected portfolio return provides insight into the overall portfolio performance,
capturing the total change in value over time.

The standard deviation of the portfolio return (Risk) is expressed as follows:

σp =

√
t ×

∑t
i=1(Rp,i − R̄p)2

t − 1
(17)

where Rp,i is a daily return of the portfolio at time i. The standard deviation of the portfolio
return is a key metric in assessing the risk associated with a portfolio. A higher standard
deviation indicates greater variability in returns, suggesting higher risk, while a lower
standard deviation implies more stability.

The Sharpe ratio is a risk-adjusted return that evaluates the portfolio performance,
which was calculated using expected return and risk during the test period, as follows.

Sharpe ratio =
µp

σp
(18)

4.4. Experimental Results

Network architectures in Figure 4 were used for the encoder and decoder of the FED
method. The dimensions of the latent variables were set to 100. The network architecture in
Figure 5 was used for the FED2Port agent, πω, which utilizes the Softmax function to generate
portfolio weights. A rolling window approach was implemented to retrain the FED2Port
model annually from January 2015 to December 2022. The total portfolios were rebalanced for
each month (20 trading days). The Profit (Equation (16)), Risk (Equation (17)), and Sharpe
ratio (Equation (18)) were considered to evaluate the effectiveness of the portfolio strategies.
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(a)

(b)
Figure 4. Network architecture of financial time series decomposition-based variational encoder-
decoder (FED). (a) Encoders. (b) Decoders.

Figure 5. Network architecture of two-class portfolio diversification (FED2Port).

The importance of using FED in FED2Port was demonstrated by comparing the
performances of TimeGAN2Port and RTSGAN2Port. Synthetic data were generated using
TimeGAN [16] for TimeGAN2Port and RTSGAN [17] for RTSGAN2Port. Ten samples were
generated at each time step for each generation.

Tables 5–13 list the experimental results. The empirical evaluation of FED2Port across
diverse datasets underscored its robustness and superior performance, consistently out-
performing benchmark models, including traditional and reinforcement learning models.
The risk–return trade-off is a fundamental trading principle that describes the inverse relation-
ship between investment risk and return. The Sharpe ratio is a helpful measure for quantifying
this trade-off. For eight portfolios out of nine, 100% low-risk asset portfolios provided the
lowest risks, but the profits were not sufficiently strong. In the VCIT&DAX dataset (Table 12),
TimeGAN2Port provided the lowest risk, but its profit was also lower. For five portfolios
out of nine, 100% high-risk asset portfolios offered the highest profits but they also came
with the highest risks. In the BND&KOSPI (Table 7) and the BSV&KOSPI (Table 10) datasets,
DDPG offered the highest profits, but its risks were higher than those of the proposed model,
FED2Port. The Sharpe ratios of FED2Port were the highest among the compared models
across all portfolios, indicating that FED2Port delivered the most favorable return per unit of
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risk undertaken. Other RL portfolio diversification models (RRL, DDPG, TimeGAN2Port, and
RTSGAN2Port) exhibited mixed results in terms of robustness. They sometimes outperformed
traditional portfolio models (tangency portfolio and risk budgeting) while yielding poorer re-
sults at other times. This variability suggests that the performance of these RL models may be
sensitive to specific market conditions or dataset characteristics. The primary concept behind
FED2Port is to utilize financial market environment simulation through FED. The importance
of using FED was highlighted by comparing the performances of FED2Port, TimeGAN2Port,
and RTSGAN2Port. The results demonstrated that employing financial market environment
simulation through FED is crucial for enhancing portfolio performance.

Table 5. Results of the BND&SP500 portfolio. Cells with a red background color indicate the best
Sharpe ratio in the experiment.

Model Profit Risk Sharpe Ratio
(Higher the Better) (Lower the Better) (Higher the Better)

100% low-risk asset portfolio 0.0904 0.1429 0.6322
Equally Weighted 0.3833 0.2779 1.3793
100% high-risk asset portfolio 0.7459 0.5221 1.4286
Tangency portfolio 0.5587 0.4183 1.3356
Risk Budgeting 0.2303 0.2126 1.0835
RRL 0.2866 0.2483 1.1540
DDPG 0.0853 0.2939 0.2903
TimeGAN2Port 0.3956 0.3027 1.3072
RTSGAN2Port 0.1277 0.2549 0.5009
FED2Port (our) 0.3755 0.2101 1.7869

Table 6. Results of the BND&DAX portfolio. Cells with a red background color indicate the best
Sharpe ratio in the experiment.

Model Profit Risk Sharpe Ratio
(Higher the Better) (Lower the Better) (Higher the Better)

100% low-risk asset portfolio 0.0904 0.1429 0.6322
Equally Weighted 0.2001 0.3164 0.6322
100% high-risk asset portfolio 0.4074 0.6125 0.6652
Tangency portfolio 0.3568 0.4915 0.7260
Risk Budgeting 0.0806 0.1685 0.4783
RRL 0.0993 0.1696 0.5857
DDPG 0.2662 0.3133 0.8496
TimeGAN2Port 0.1444 0.3209 0.4500
RTSGAN2Port 0.0940 0.2750 0.3417
FED2Port (our) 0.2084 0.1778 1.1722

Table 7. Results of the BND&KOSPI portfolio. Cells with a red background color indicate the best
Sharpe ratio in the experiment.

Model Profit Risk Sharpe Ratio
(Higher the Better) (Lower the Better) (Higher the Better)

100% low-risk asset portfolio 0.0904 0.1429 0.6322
Equally Weighted 0.0990 0.2873 0.3447
100% high-risk asset portfolio 0.1903 0.5564 0.3420
Tangency portfolio 0.2562 0.4268 0.6002
Risk Budgeting 0.1232 0.1781 0.6917
RRL −0.1851 0.2737 −0.6765
DDPG 0.2909 0.3223 0.9026
TimeGAN2Port 0.0539 0.1460 0.3690
RTSGAN2Port 0.0452 0.1510 0.2995
FED2Port (our) 0.2510 0.1845 1.3604
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Table 8. Results of the BSV&SP500 portfolio. Cells with a red background color indicate the best
Sharpe ratio in the experiment.

Model Profit Risk Sharpe Ratio
(Higher the Better) (Lower the Better) (Higher the Better)

100% low-risk asset portfolio 0.0776 0.0590 1.3158
Equally Weighted 0.3772 0.2633 1.4325
100% high-risk asset portfolio 0.7459 0.5221 1.4286
Tangency portfolio 0.6639 0.4328 1.5342
Risk Budgeting 0.1548 0.1545 1.0019
RRL 0.1337 0.2343 0.5704
DDPG 0.1307 0.2737 0.4775
TimeGAN2Port 0.0825 0.0592 1.3931
RTSGAN2Port 0.0780 0.0602 1.2958
FED2Port (our) 0.3964 0.1562 2.5377

Table 9. Results of the BSV&DAX portfolio. Cells with a red background color indicate the best
Sharpe ratio in the experiment.

Model Profit Risk Sharpe Ratio
(Higher the Better) (Lower the Better) (Higher the Better)

100% low-risk asset portfolio 0.0776 0.0590 1.3158
Equally Weighted 0.1948 0.3070 0.6346
100% high-risk asset portfolio 0.4074 0.6125 0.6652
Tangency portfolio 0.3822 0.5053 0.7564
Risk Budgeting 0.0782 0.0947 0.8264
RRL 0.0421 0.1884 0.2235
DDPG 0.1343 0.2874 0.4675
TimeGAN2Port 0.2224 0.4972 0.4473
RTSGAN2Port 0.1487 0.4921 0.3021
FED2Port (our) 0.1997 0.1296 1.5406

Table 10. Results of the BSV&KOSPI portfolio. Cells with a red background color indicate the best
Sharpe ratio in the experiment.

Model Profit Risk Sharpe Ratio
(Higher the Better) (Lower the Better) (Higher the Better)

100% low-risk asset portfolio 0.0776 0.0590 1.3158
Equally Weighted 0.0956 0.2827 0.3381
100% high-risk asset portfolio 0.1903 0.5564 0.3420
Tangency portfolio 0.2746 0.4441 0.6183
Risk Budgeting 0.0835 0.0715 1.1677
RRL 0.0961 0.0696 1.3822
DDPG 0.3463 0.2891 1.1978
TimeGAN2Port 0.0451 0.0637 0.7075
RTSGAN2Port 0.0407 0.0651 0.6245
FED2Port (our) 0.2610 0.1446 1.8056

Table 11. Results of the VCIT&SP500 portfolio. Cells with a red background color indicate the best
Sharpe ratio in the experiment.

Model Profit Risk Sharpe Ratio
(Higher the Better) (Lower the Better) (Higher the Better)

100% low-risk asset portfolio 0.1660 0.1702 0.9750
Equally Weighted 0.4231 0.2922 1.4480
100% high-risk asset portfolio 0.7459 0.5221 1.4286
Tangency portfolio 0.5802 0.3769 1.5396
Risk Budgeting 0.3235 0.2429 1.3319
RRL 0.4325 0.2765 1.5642
DDPG 0.1164 0.3092 0.3766
TimeGAN2Port 0.4754 0.2835 1.6765
RTSGAN2Port 0.3242 0.3162 1.0252
FED2Port (our) 0.4941 0.2167 2.2800
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Table 12. Results of the VCIT&DAX portfolio. Cells with a red background color indicate the best
Sharpe ratio in the experiment.

Model Profit Risk Sharpe Ratio
(Higher the Better) (Lower the Better) (Higher the Better)

100% low-risk asset portfolio 0.1660 0.1702 0.9750
Equally Weighted 0.2389 0.3265 0.7317
100% high-risk asset portfolio 0.4074 0.6125 0.6652
Tangency portfolio 0.4429 0.4696 0.9431
Risk Budgeting 0.1447 0.2078 0.6964
RRL 0.4450 0.2473 1.7990
DDPG 0.3058 0.3202 0.9551
TimeGAN2Port 0.1617 0.1700 0.9510
RTSGAN2Port 0.1779 0.2882 0.6173
FED2Port (our) 0.5214 0.2401 2.1714

Table 13. Results of the VCIT&KOSPI portfolio. Cells with a red background color indicate the best
Sharpe ratio in the experiment.

Model Profit Risk Sharpe Ratio
(Higher the Better) (Lower the Better) (Higher the Better)

100% low-risk asset portfolio 0.1660 0.1702 0.9750
Equally Weighted 0.1374 0.2962 0.4637
100% high-risk asset portfolio 0.1903 0.5564 0.3420
Tangency portfolio 0.3115 0.4115 0.7570
Risk Budgeting 0.1778 0.1962 0.9065
RRL 0.0478 0.1767 0.2706
DDPG 0.1967 0.3161 0.6223
TimeGAN2Port 0.1305 0.1729 0.7545
RTSGAN2Port 0.0355 0.2280 0.1556
FED2Port (our) 0.3683 0.2044 1.8021

FED was compared with the most recent time series data generation models, namely
TimeGAN [16] and RTSGAN [17]. TimeGAN and RTSGAN are designed to generate
synthetic data that closely resembles real-world time series data. However, neither of these
models addresses the generation of nonstationary financial time series data. FED leverages
decomposition techniques to break down financial time series data into distinct components,
such as trend, dispersion, and residual. By decomposing the data in this manner, FED
can capture the various underlying factors influencing the trends and fluctuations in the
market, leading to a more accurate representation of real-world financial time series data.
The t-SNE plots of original versus generated data were plotted in Figure 6. The results
indicated that FED produces synthetic data that closely match the original distribution of
the data, suggesting that FED is more effective in capturing the underlying structure and
characteristics of financial time series data compared to other models.

(a)

Figure 6. Cont.
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(b)

(c)
Figure 6. t-SNE plots for original versus generated data. (a) Financial time series decomposition-
based variational encoder-decoder (FED). (b) Time-series generative adversarial net (TimeGAN).
(c) Real-world time series GAN (RTSGAN).

5. Conclusions

This paper introduced a novel portfolio diversification approach called FED2Port, which
effectively addresses the uncertainty deficiency problem inherent in historical financial time se-
ries data and insufficient training data. This is achieved by utilizing dynamic financial market
environment simulation during reinforcement learning algorithm training. Our experimental
results across diverse datasets have demonstrated the robustness and superior performance of
FED2Port compared to benchmark models, including traditional and reinforcement learning
models. Notably, FED2Port consistently outperformed in terms of the Sharpe ratio, em-
phasizing its effectiveness in delivering risk-adjusted returns. This superior performance
underscores the importance of environment simulation in enhancing portfolio diversification
strategies, as it allows for a more accurate representation of real-world conditions.

However, it is important to note that the experimental results for TimeGAN2Port and
RTSGAN2Port were not as favorable as those of the other benchmarks. This highlights the
limitations of solely relying on synthetic data generation methods that do not specifically address
the complexities of financial markets. Our findings suggest the necessity of employing financial
pattern-centric data augmentation techniques, such as FED, to enhance portfolio diversification
strategies. By providing more accurate insights into market trends and fluctuations, FED2Port
enables investors to make informed decisions that can potentially enhance portfolio performance
and mitigate risks.

Overall, our findings highlight the practical importance of incorporating sophisticated
data augmentation techniques, like FED, into portfolio diversification. Moving forward, further
research in this area could explore additional applications of FED and similar methods in port-
folio optimization and risk management, ultimately contributing to more robust and effective
investment strategies in financial markets.
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