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Abstract: Thermoacoustic oscillation is indeed a phenomenon characterized by the symmetric
coupling of thermal and acoustic waves. This paper introduces a novel approach for monitoring and
predicting thermoacoustic combustion instability using a combination of recurrence quantification
analysis (RQA) and an optimized deep belief network (DBN). Six samples of combustion state data
were collected using two distinct types of burners to facilitate the training and validation of GA-DBN.
The proposed methodology leverages RQA to extract intricate patterns and dynamic features from
time series data representing combustion behavior. By quantifying the recurrence plot of specific
patterns, the analysis provides valuable insights into the underlying thermoacoustic dynamics.
Among three different feature extraction methods, RQA stands out remarkably in performance.
These RQA-derived features serve as input to a carefully tuned DBN, which is trained to learn the
complex relationships within the combustion process. The classification accuracy of deep belief
network optimized by genetic algorithm (GA-DBN) reached an impressive 99.8%. Subsequent
multiple comparisons were conducted between GA-DBN, DBN, and support vector machine (SVM),
revealing that GA-DBN consistently demonstrated satisfactory classification results. This method
holds significant importance in monitoring intricate combustion states.

Keywords: thermoacoustic instability; recurrence quantification analysis; optimized deep belief
network

1. Introduction

Thermoacoustic oscillation is a phenomenon that occurs in combustion systems and is
characterized by the coupling of heat release rate fluctuations and pressure fluctuations [1,2].
This intricate interaction between combustion and acoustics results in self-sustained, peri-
odic oscillations that can significantly impact the performance and stability of combustion
devices, such as gas turbines, engines, and other propulsion systems [3,4]. In thermoa-
coustic systems, the pressure and temperature fluctuations typically exhibit symmetric
behavior in terms of their amplitude and phase. Additionally, amplitude modulation
limit cycles may occur, characterized by fluctuations in amplitude, multiple frequencies,
and irregular bursts [5,6]. Researchers and engineers are actively engaged in studying
and mitigating thermoacoustic oscillations to enhance the performance and reliability of
combustion systems. Thermoacoustic oscillations often manifest in the form of symmetric
modes of vibration or oscillation. Various control methods, both passive and active, have
been proposed to suppress or mitigate the impact of thermoacoustic instability [7,8].
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Monitoring thermoacoustic oscillations is a crucial aspect of ensuring the stability,
efficiency, and safety of combustion systems [9,10]. Several methods have been developed
to detect and analyze thermoacoustic oscillations in real time [11].

Signal processing techniques, such as FFT and spectral analysis, are applied to acous-
tic and pressure signals to identify specific frequencies associated with thermoacoustic
oscillations [12]. This helps in quantifying the characteristics of instability. However, the
inherent limitation of low-frequency spectral resolution in short-time data hinders the
frequency domain transformation of transient signals, such as the dynamic pressure sig-
nal at the onset of combustion oscillation, resulting in the loss of temporal details in the
signal [13]. Consequently, spectrum analysis of dynamic pressure signals often proves
insufficient for identifying the transition from a stable state to oscillation. Recognizing
this limitation, a time-domain analysis has been proposed. As thermoacoustic instability
approaches, there is a gradual increase in both the root mean squares and variances of
the acoustic pressure. Song [14] suggested quantifying a combustion process using the
kurtosis of dynamic pressure signals. However, owing to intermittent oscillations, beat
vibrations, and other oscillation forms, these measured values do not exhibit monotonic
changes. Consequently, this method is susceptible to misjudgment and lacks the ability to
distinguish between various oscillation modes.

In recent years, data-driven methods utilizing machine learning tools have garnered
significant attention, owing to their robust learning capabilities and adeptness in nonlinear
fitting. In reference [15], a neural ordinary differential equation (neural ODE) was employed
to model the entire thermoacoustic system. Zhu [16] introduced the stacked long short-term
memory network (S-LSTM) for predicting future amplitudes of acoustic pressure signals.
Comparative analysis against the support vector machine (SVM) revealed that S-LSTM
demonstrated superior predictive performance. Ruiz [17] conducted nonlinear analysis
on the sound pressure signal to generate a thresholdless recurrence plot. Moving forward,
there is a clear opportunity to bridge this gap by exploring the integration of quantitative
recursive graph analysis with machine learning techniques for feature extraction and
classification of combustion states. Such endeavors could lead to valuable insights into
the complex dynamics of combustion systems and pave the way for the development of
more robust and accurate monitoring and control strategies. By leveraging these innovative
approaches, researchers can advance our understanding of combustion phenomena and
address critical challenges in combustion science and engineering.

This study collected data samples representing six distinct combustion states utilizing
two distinct burner types—laminar and swirling. These samples encompassed a compre-
hensive range of combustion oscillations and were employed for the training and validation
of a genetic algorithm-optimized deep belief network (GA-DBN). The study included the
analysis of six types of oscillations via nonlinear analysis, with recursive quantitative analy-
sis (RQA) being compared against three different feature extraction methods. Subsequently,
multiple comparisons were conducted among GA-DBN, traditional deep belief networks
(DBN), and support vector machines (SVM). Finally, the article delves into the parameter
selection process during linear analysis.

2. Methods
2.1. Experimental Setup

The dataset utilized for training and validating the neural network in this article is
derived from two burners illustrated in Figure 1—specifically, a laminar flow burner and a
swirl burner. Each combustion chamber comprises three components: a flame burner, glass
tubing, and a measurement system. In Figure 1b, the burner is depicted with a cyclone
featuring 8 blades. The axial cyclone has a hub diameter of 20 mm, an outer diameter
of 50 mm, and a swirl number of 0.429. The glass tube is replaceable, allowing for the
replacement of various lengths of glass segments based on the experimental requirements
to induce different combustion oscillation states. To ensure the sensors operate at the
optimal temperature, a semi-infinite pressure tube was implemented. Acoustic pressure
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data were collected using microphones (CRYSOUND type 547). A signal conditioner (PCB
482C16) was utilized to amplify the minute voltage signals, enhancing the accuracy of
signal acquisition. Data were then acquired with a 16-bit analog-to-digital conversion
card (NI 6212) at a sampling rate of 10 kHz. Given that the oscillation frequency of the
combustion system was within 1 kHz, the digitally sampled signal faithfully preserved the
information from the original signal. The fuel employed in the combustion experiment
was 99.9% pure methane. The combustion state can be discerned through three methods:
modifying the size of the glass tube, adjusting the relative position between the glass tube
and the flame, and tuning the equivalence ratio. After analysis, we identified a total of six
distinct combustion oscillation states, as illustrated in the following text.
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Figure 1. Schematic diagram of combustion experimental devices using (a) a Rijke tube and laminar
flow burner, or (b) a swirl burner.

2.2. Nonlinear Analysis Methods

Thermoacoustic oscillations exhibit inherently nonlinear characteristics, necessitating
the application of nonlinear analysis methods for a comprehensive investigation. By
employing nonlinear analysis techniques, we can ascertain various types of combustion
oscillations, including, but not limited to, limit cycle oscillations, intermittent oscillations,
quasi-periodic oscillations, and double periodic oscillations. This article employs the
method of phase space reconstruction to conduct a nonlinear analysis of sound pressure
signals associated with thermoacoustic oscillations.

According to Takens’ delay embedding theorem [18], given an observable time series [x(n)]
measured within a system, we can construct a new vector Xi = [x(i),x(i+τ), · · · ,x(i+(m−1)τ)],
where τ represents the time delay, m is the embedding dimension, and i takes values from
1 to N − (m − 1)τ. Through this process, the time series is embedded into a d-dimensional
phase space. The trajectory of this time series evolution is typically depicted in a phase
diagram. Furthermore, the selection of the optimal delay time τ and embedding dimension
m is essential. A commonly employed technique for determining the optimal time delay
necessary for reconstructing the phase space is the average mutual information (AMI)
method [19]. AMI assesses the correlation between x(i) and x(i + τ) at a specified τ,
akin to an autocorrelation function in a broader context. In this paper, the optimum τ
is identified as the point corresponding to the first local minimum in the AMI. In the
context of determining the optimal embedding dimension for the reconstructed phase
space, the analysis has employed Cao’s method [20]. Building upon the aforementioned
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methodologies, the optimal delay time (τ = 2 ms) and embedding dimension (m = 10),
as illustrated in Figure 2, were chosen to embed the pressure time series into a higher-
dimensional phase space.
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Upon reconstructing the phase space vector, a recursive matrix can be defined as
follows [21–23]:

Rm,ε
i,j = Θ

(
ε − ∥ Xi − Xj ∥

)
, i, j = 1, 2, . . . , N (1)

Here, Θ represents the Heaviside function, ∥ Xi − Xj ∥ denotes the Euclidean norm
representing the distance between any two points in the reconstructed phase space vector,
and ε signifies the distance threshold used to determine whether two points in phase space
undergo recursion. Clearly, a recursive matrix is a binary matrix composed of 0 and 1:

Θ(x) =

{
0

1

x > 0

x < 0
(2)

Referring to Equation (2), when ∥ Xi − Xj ∥ < ε, Rm,ε
i,j = 1 signifies the occurrence

of recursion between points Xi and Xj, such instances are denoted as black dots on the
recursive graph. Conversely, if ∥ Xi − Xj ∥ > ε, Rm,ε

i,j = 0 indicates the absence of a
recursion phenomenon, then points (i, j) on the recursion graph are represented by white
dots. Additionally, Equation (2) ensures a black main diagonal in the recursive graph when
calculating the distance between a point in phase space and itself. This symmetry in the
recursive graph is evident as Rm,ε

i,j = Rm,ε
j,i . After traversing any two points in the phase

space and calculating all Rm,ε
i,j values, a recursive graph with a distribution of black and

white points can be generated.

2.3. Deep Belief Network Optimized by Genetic Algorithm

The DBN (deep belief network) architecture is a deep neural network composed of
several layers of restricted Boltzmann machines (RBMs) and one layer of backpropagation
(BP) [24]. The structure of the DBN is shown in Figure 3b. RBMs consist of only two layers
of neurons: visible and hidden layers. The units between the two layers are interconnected,
while there are no connections within each layer. The structure of an RBM is illustrated in
Figure 3a.
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RBM neurons are intricately connected through weights, with the visible layer denoted
as V and the hidden layer as H. The extraction of meaningful features from input data is
carried out by the hidden layer H, and the connection weights between the visible and
hidden layers are symbolized by W. Neurons within the network exhibit binary states,
being either active or inactive, denoted by 0 and 1, respectively, to signify their states. It
is worth noting that RBMs operate as energy-based models. The state of the visible layer
neuron i is denoted by vi, with the corresponding bias value being ai. Similarly, the state of
hidden layer neuron j is represented by hj and bj signifies the corresponding bias value.
The connection weight between neuron i and j is represented by wij. The RBM system’s
energy, contingent on the state (v, h), can be succinctly expressed as follows:

E(v, h | θ) = −
n

∑
i=1

aivi −
m

∑
j=1

bjhj −
n,m

∑
i,j=1

viwijhj (3)

In the formula, θ
(
wij, ai, bj

)
represents parameters of the RBM. Here, n and m corre-

spond to the number of neurons in the visible and hidden layers, respectively. The joint
probability distribution of (v, h) is derived from the energy function:

p(v, h | θ) =
1

Z(θ)
exp(−E(v, h | θ)) (4)

Here, Z(θ) = ∑v,h exp(−E(v, h | θ)) is the normalization factor. During the training
process, the normalization factor Z(θ) is typically obtained using Gibbs sampling and other
sampling methods.

Since the activation states of neurons in the RBM layers are independent of each other,
the j neuron in the hidden layer can be computed from the states of neurons in the visible
layer. The activation probability is given by:

p
(
hj = 1 | v, θ

)
=

1
1 + exp

(
−bj − ∑i viwij

) (5)

The i neuron in the visible layer is reconstructed from the hidden layer, and the
activation probability is given by:

p(vi = 1 | h, θ) =
1

1 + exp
(
−bj − ∑i hiwij

) (6)
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The maximum value of the log-likelihood function is obtained through stochastic
gradient ascent, and the calculation of the change in each parameter is as follows:

∆wij =
〈
vihj

〉
data −

〈
vihj

〉
recon

∆ai = ⟨vi⟩data − ⟨vi⟩recon

∆bj =
〈

hj
〉

data −
〈

hj
〉

recon

(7)

Here, ⟨∗⟩data represents the distribution defined by the original observed data model,
while ⟨∗⟩recon represents the distribution defined by the reconstructed model.

A genetic algorithm (GA) is a computational optimization technique inspired by natu-
ral selection [25–27]. Mimicking biological evolution, GAs iteratively evolve a population
of potential solutions by selecting, recombining, and mutating individuals based on their
fitness. Solutions that better address a problem survive and propagate, creating diverse
offspring. This process continues until an optimal or satisfactory solution is found. Lever-
aging a genetic algorithm for optimizing the parameters of a DBN mitigates the challenge
of encountering local optima resulting from random initialization. This approach enhances
the predictive performance of the DBN network. The optimization process is visually
depicted in Figure 4.
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3. Results and Discussion
3.1. Recurrence Plot Analysis of Combustion States

Through the manipulation of the burner’s operating conditions, we achieved a set
of six diverse combustion oscillation states, denoted as Case 1 to Case 6. These states are
visualized in Figures 5 and 6.
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Figure 5 presents a comprehensive overview of the time-domain and frequency-
domain characteristics associated with six distinct combustion oscillation states. Specifically,
Figure 5(a-1–f-1) provide the primary time-domain graphs, offering a broad perspective.
Figure 5(a-2–f-2) zoom in on local details within the time-domain graphs, providing a closer
examination of specific features. Meanwhile, Figure 5(a-3–f-3) display the corresponding
frequency-domain graphs, capturing the oscillatory patterns and frequencies associated
with each combustion state. In Case 1, a stable state is observed, where the time-domain
graph is predominantly characterized by environmental noise, lacking regularity. Although
a peak of 133 Hz and its harmonic frequency is discernible in the frequency domain
diagram, the amplitude of this peak is notably small. Moving on to Case 2, intermittent
peaks emerge in the time-domain plot, displaying different amplitudes. Oscillating pulses
randomly manifest in the non-periodic signals, and Figure 5(b-2) reveals a discernible
pattern in the appearance of these pulses. The frequency domain diagram depicts a clear
peak at 139 Hz with a relatively wide bandwidth. This type of oscillation is commonly
referred to in the literature as intermittent oscillation. Case 3 distinctly exhibits a limit
cycle oscillation, characterized by a regular sine time series in pressure oscillation. The
frequency domain diagram highlights the presence of a single dominant frequency at
530.3 Hz. In Case 4, the frequencies of the first and second modes are identified as 274.7 Hz
and 549.7 Hz, respectively, and they are not integer multiples. When these two modes are
simultaneously excited, a frequency difference phenomenon occurs, leading to variation
in the amplitude of the waveform in the time-domain graph over time. The principle of
modal superposition provides a better explanation for this phenomenon. Case 5 aligns
with the literature’s description of beat vibration. The time-domain diagram illustrates
low-frequency periodic changes in the amplitude of the oscillation. Multiple adjacent peaks
near the main frequency in the frequency spectrum of the beat vibration suggest the result
of linear superposition of vibrations with similar frequencies. Finally, Case 6 displays two
amplitudes in the time-domain plot, with peaks at 534.7 Hz and 267.3 Hz in the frequency
domain diagram. This characteristic pattern is indicative of a typical period-2 oscillation.
In summary, the detailed analysis of each combustion oscillation state provides valuable
insights into their distinct behaviors and underlying dynamics, as depicted in the time-
and frequency-domain diagrams.

Given the nonlinear nature of thermoacoustic oscillations, the complete representation
of the system’s inherent dynamic characteristics goes beyond the capabilities of time-
domain and frequency-domain diagrams alone. Figure 6 presents a nonlinear analysis
of six distinct combustion oscillation states. In particular, Figure 6(a-1–f-1) illustrate the
3D phase plots, Figure 6(a-2–f-2) showcase the Poincaré sections, and Figure 6(a-3–f-3)
display the recurrence plots. In Case 1, characterized by a stable state, the trajectories
on the strange attractor exhibit random movement in the phase space, indicating an
inability to follow a periodic orbit. The Poincaré profile displays scattered points, and
the recursive graph depicts the presence of vertical and horizontal lines, signaling slow
or unchanged states, with evenly distributed points, suggesting white noise. Case 2
manifests as an intermittent oscillation state, as depicted by a 3D phase plot featuring
two dense, concentric disks—an outer and an inner disk. During bursts, trajectories are
propelled to the outer disk and subsequently reintroduced to the inner region, mirroring
the characteristic behavior observed in intermittent oscillations across various nonlinear
systems, known as intermittency. The Poincaré section exhibits a diagonal distribution
of numerous points, and the recurrence plot unveils intricate details about the system’s
transition to bursts, embedded within a kite-like structure. Tracing the main diagonal in
the recurrence plot essentially tracks the temporal evolution of the system. Preceding a
burst, the system dynamics are characterized by limit cycle oscillations. Over time, the
limit cycle undergoes a gradual transformation toward quasi-periodic behavior. In the
moments just preceding a burst, the recurrence plot notably highlights the emergence
of quasi-periodic dynamics. In Case 3, the limit cycle state is identified by a distinct
closed-loop phase plot, a relatively concentrated point in the Poincaré cross-section, and
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periodic repetitive structures in recursive graphs, such as equidistant diagonals. Case 4
represents a differential frequency oscillation state, with the phase diagram displaying
orbits forming two loops. The Poincaré cross-section shows two relatively concentrated
points on either side of the diagonal, and the recursive graph exhibits a wavy pattern.
Moving to Case 5, the beat vibration state, the three-dimensional phase diagram forms a
concentric disk with a relatively uniform orbit distribution. The Poincaré cross-section
features many points distributed along the diagonal, showing a more uniform distribution
compared to intermittent oscillations. The recursive diagram resembles a kite-like structure,
capturing the process of beat oscillation from periodic to burst. Finally, Case 6, a period-2
oscillation state, is characterized by a phase diagram displaying orbits forming two loops,
indicating a doubling of the oscillation period compared to limit cycle oscillation. The
Poincaré cross-section reveals two concentrated points, and a clear separation diagonal is
evident in the recursive graph. This detailed analysis provides valuable insights into the
diverse dynamic behaviors exhibited by each combustion oscillation state.

Based on the aforementioned analysis, it can be deduced that nonlinear analysis of
combustion systems is capable of discerning various combustion states. Nevertheless, there
is a perceived inefficiency in recognition. It is proposed that summarizing linear analy-
sis into several quantitative indicators may enhance clarity and efficiency in identifying
combustion states.

3.2. Quantitative Feature Extraction Based on Recurrence Plots

While recursive graphs offer an intuitive representation of a system’s dynamic char-
acteristics through two-dimensional images, there exists a need for quantitative methods
to describe its motion state. Marwan [21–23] introduced a methodology involving the
calculation of recursive points, diagonals, and other microscopic texture structures within
recursive graphs. This approach allows for the quantification of the recursive phenomenon
in the system, enabling the expression of the system’s dynamic characteristics in numerical
form. Table 1 enumerates the quantification methods employed in this article.

Table 1. Quantitative approaches in recursive quantitative analysis.

Parameters Expression Parameters Expression

RR 1
N2

N
∑

i,j=1
Rm,ε

i,j
Pmax max{Pi, i = 1, . . . . . . , Nv}

DET ∑N
l=lmin

lP(l)

∑N
i,j=1 Rm,ε

i,j

T1
j

∣∣∣{i, j : Xi, Xj ∈ Ri

}∣∣∣
Lave

∑N
l=lmin

lP(l)

∑N
l=lmin

P(l)
T2

j

∣∣∣{i, j : Xi, Xj ∈ Ri; Xj−1 /∈ Ri

}∣∣∣
Lmax max{Li, i = 1, . . . . . . , Nl} RPDE −∑Tmax

t=1 P(t)InP(t)
In(Tmax)

ENTR −
N
∑

l=lmin

P(l)InP(l) C1
N
∑

i=1

∑N
j,k=1 Rm,ε

i,j Rm,ε
j,k Rm,ε

k,i

∑N
j=1 Rm,ε

i,j

LAM ∑N
v=vmin

vP(v)

∑N
i,j=1 Rm,ε

i,j

C2
∑N

i,j,k=1 Rm,ε
i,j Rm,ε

j,k Rm,ε
k,i

∑N
i,j,k=1 Rm,ε

i,j Rm,ε
k,i

TT ∑N
v=vmin

v·P(v)
∑N

v=vmin
P(v)

Recursion rate (RR) is defined as the percentage of recursion points within a recursive
graph relative to the total number of points. Determinism (DET) is characterized as the
percentage of the total number of recursive points located in line segments parallel to the
main diagonal within a recursive graph. Here, P(l) represents the probability distribution
of the length l of the parallel diagonal in the recursive graph, with lmin denoting the
minimum diagonal length. The length of each parallel diagonal (l) is calculated. This
calculation typically involves measuring the distance along the diagonal line formed by
the connected nodes. This distance can be calculated using various metrics, such as the
Euclidean distance between nodes in phase space, which is adopted in this paper. Entropy
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of diagonal length (ENTR) refers to the Shannon entropy [28] calculated from the frequency
distribution of diagonal lines of varying lengths within a recursive graph. Laminarity
(LAM) is determined as the percentage of vertical lines within the recurrence plot relative
to the total number of recursive points. Here, P(v) represents the probability distribution of
a vertical line with a length of v in a recursive graph. Additional characteristic parameters
include average diagonal length (Lave), length of longest diagonal line (Lmax), trapping time
(TT), length of longest vertical line (Pmax), recurrence times of first type (T1

j ), recurrence

times of second type (T2
j ), recurrence period density entropy (RPDE), clustering coefficient

(C1), and transitivity (C2).
Diverse quantization parameters capture various details of oscillation states within

recursive graphs from distinct perspectives. Figure 7 elucidates the quantification outcomes
derived from three quantitative methods—RR, TT, and RPDE—in diverse oscillation states.
In Case 1, representing a stable combustion state, both RR and TT values maintain a
proximity to −1, with subtle fluctuations over time. Meanwhile, RPDE values exhibit
significant variation within the range of −1 to 1, lacking a discernible pattern. Shifting
to Case 2, emblematic of an intermittent oscillation state, the transition between stable
combustion and oscillation states induces noticeable changes in RR. It increases from −1 in
the stable state to approximately 0.5 during oscillation, with fluctuating values around 0.5
due to irregular oscillations. TT values follow a similar trend to RR, stabilizing around 0
during oscillation, while RPDE values become more regular, converging toward stability.
In Case 3, representing a limit cycle oscillation state, RR, TT, and RPDE converge to a stable
value, reflecting the strong periodicity evident in the sound pressure time series during
limit cycle oscillation. Case 4, portraying differential frequency oscillation, witnesses stable
RR, TT, and RPDE values closely correlated with the amplitude of the sound pressure
time series. Case 5, characterized by beat oscillation, exhibits large variations in amplitude
over time, resulting in substantial fluctuations in RR, TT, and RPDE values. Lastly, in
Case 6, representing period-2 oscillation, the TT value maintains relative constancy, while
RR and RPDE values display systematic variations in correspondence with the amplitude
of the sound pressure time series. In summary, the comprehensive analysis of RR, TT, and
RPDE as quantification parameters underscores their efficacy in effectively distinguishing
between different oscillation states.
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3.3. Monitoring Performance Based on Optimized Deep Belief Network
3.3.1. Evaluation of GA-DBN Prediction Outcomes

Thirteen feature parameters, representing distinct combustion states, were derived
through the quantification of recursive graphs. Due to the impracticality of manually and
swiftly analyzing and determining combustion states based on these feature parameters,
we opted for the GA-DBN method to efficiently classify combustion states.

Figure 8 illustrates the classification outcomes of GA-DBN, with Figure 8a showcasing
the classification results for 3486 sample data. Figure 8b presents the confusion matrix
associated with these classification results. Examining Figure 8a, it is evident that only six
data samples were misclassified, yielding a remarkable prediction accuracy of 99.83% for
this experiment. Figure 8b offers an in-depth analysis of the classification scenario using the
confusion matrix. All 581 samples in Case 1 were accurately predicted, with no instances
of other combustion states being erroneously classified as Case 1. For Case 2, out of
581 samples, 580 were correctly predicted, and only 1 sample was inaccurately classified as
Case 5. Further analysis suggests that Case 2 exhibits intermittent oscillation, characterized
by significant amplitude variations over time, resembling the beating feature of Case 5.
When the time window of the time series is short, it might fail to capture the complete
characteristics of intermittent oscillation, leading to misclassification as beating oscillation.
One sample in Case 4 was misclassified as Case 3, with no other combustion states being
erroneously classified as Case 4. In Case 3, out of 581 samples, 580 were correctly predicted,
while 1 sample was mistakenly classified as Case 6. This misclassification can be attributed
to the relatively similar features of these two combustion states. For Case 5, 579 out of
581 samples were accurately predicted, with 1 sample each being misclassified as Case 6
and Case 4. In Case 6, 580 out of 581 samples were correctly predicted, with 1 sample
mistakenly classified as Case 4. In summary, it was observed that Case 3, Case 4, and Case 6
are more susceptible to misclassification due to their regular oscillatory nature.

Symmetry 2024, 16, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 8. The classification results of GA-DBN: (a) represents the classification results and (b) de-
picts the confusion matrix of the classification results. 

3.3.2. Comparative Analysis of Diverse Feature Extraction and Classification Methods 
In this section, we present a comprehensive examination of various feature extraction 

and classification methods employed for monitoring thermoacoustic combustion instabil-
ity. The aim was to assess the efficacy of different algorithms in capturing and classifying 
critical combustion instability patterns. 

As shown in Figure 9, Figure 9a displays the comparative results of feature extraction 
algorithms. Figure 9a illustrates the performance of three distinct feature extraction algo-
rithms: recursive quantification analysis (RQA): This method relies on recursive graph 
analysis to derive thirteen feature parameters representing different combustion states. 
Energy entropy of empirical mode decomposition (EMD): This approach leverages the 
energy entropy derived from EMD to capture intricate details of combustion instability 
dynamics. Time-domain and frequency-domain features (TF): Traditional time-domain 
and frequency-domain features are extracted to provide a baseline for comparison. In Fig-
ure 9a, the accuracy of the RQA method remains consistently near 100%, significantly out-
performing the other two methods. This robust and reliable performance showcases the 
effectiveness of the RQA algorithm in accurately extracting features related to thermoacoustic 
combustion instability, making it a standout performer in comparison to the other two meth-
ods. The EMD method performs relatively well, while the TF method shows the lowest per-
formance. The time-domain and frequency-domain features (TF) method lags behind, indi-
cating limitations in accurately representing the intricate patterns inherent in thermoacoustic 
combustion instability. Additionally, across eight experiments, both the EMD and TF methods 
exhibited significant fluctuations in prediction accuracy, whereas the RQA method consist-
ently achieved desirable prediction results in each trial. 

 
Figure 9. Comparative analysis of results using various methods: (a) different feature extraction 
methods; (b) different classification algorithms. 

Figure 8. The classification results of GA-DBN: (a) represents the classification results and (b) depicts
the confusion matrix of the classification results.

3.3.2. Comparative Analysis of Diverse Feature Extraction and Classification Methods

In this section, we present a comprehensive examination of various feature extraction
and classification methods employed for monitoring thermoacoustic combustion instability.
The aim was to assess the efficacy of different algorithms in capturing and classifying
critical combustion instability patterns.

As shown in Figure 9, Figure 9a displays the comparative results of feature extrac-
tion algorithms. Figure 9a illustrates the performance of three distinct feature extraction
algorithms: recursive quantification analysis (RQA): This method relies on recursive graph
analysis to derive thirteen feature parameters representing different combustion states.
Energy entropy of empirical mode decomposition (EMD): This approach leverages the
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energy entropy derived from EMD to capture intricate details of combustion instability
dynamics. Time-domain and frequency-domain features (TF): Traditional time-domain
and frequency-domain features are extracted to provide a baseline for comparison. In
Figure 9a, the accuracy of the RQA method remains consistently near 100%, significantly
outperforming the other two methods. This robust and reliable performance showcases
the effectiveness of the RQA algorithm in accurately extracting features related to thermoa-
coustic combustion instability, making it a standout performer in comparison to the other
two methods. The EMD method performs relatively well, while the TF method shows the
lowest performance. The time-domain and frequency-domain features (TF) method lags
behind, indicating limitations in accurately representing the intricate patterns inherent in
thermoacoustic combustion instability. Additionally, across eight experiments, both the
EMD and TF methods exhibited significant fluctuations in prediction accuracy, whereas the
RQA method consistently achieved desirable prediction results in each trial.
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Moving beyond feature extraction, Figure 9b delves into the comparison of three
classification algorithms: genetic algorithm-optimized deep belief network (GA-DBN):
This method combines the power of genetic algorithms with deep belief networks for
efficient and accurate classification of combustion states. Deep belief network (DBN): A
standard deep belief network is employed to evaluate its performance in comparison to
the optimized GA-DBN. Support vector machine (SVM): As a widely used classification
algorithm, SVM serves as a benchmark for assessing the effectiveness of deep learning
approaches. The results depicted in Figure 9b reveal that the genetic algorithm-optimized
deep belief network (GA-DBN) method consistently achieves exceptional accuracy, with its
performance maintaining stability around the 100% mark. This indicates the effectiveness of
the genetic algorithm in optimizing the parameters of the deep belief network, resulting in
a highly accurate and stable classification of combustion states. The DBN method takes the
second place, and the SVM method has the worst performance. The random initialization
of parameters in the DBN method can result in different starting points for the optimization
process, leading to variations in the final accuracy achieved. This highlights a potential
limitation in the DBN method, emphasizing the significance of optimizing the initialization
process for achieving more consistent and reliable results.

3.3.3. The Influence of Various Recursive Analysis Parameters on Outcome

The analysis of thermoacoustic combustion instability reveals that the parameters gov-
erning linear analysis—specifically, the length of the time series and the step size (L) of the
time window movement—significantly influence prediction outcomes. By systematically
varying these parameters, with the selection of five window lengths ranging from 200 to
2000 and three step sizes (L = 50, L = 100, and L = 200), the experiment in Figure 10 exposes
crucial trends. Notably, an increase in window length correlates positively with enhanced
prediction accuracy, as longer windows capture finer details of combustion instability
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dynamics. However, this improvement comes at the expense of longer computation times.
It is vital to strike a balance, as excessively long windows, while yielding higher accuracy,
may introduce challenges in practical applications, potentially leading to errors during
state transitions. Additionally, the experiment highlights that larger step sizes result in
diminished prediction accuracy, emphasizing the trade-off between capturing crucial in-
formation and maintaining high prediction precision. Achieving an optimal configuration
of these parameters is essential for the effective real-world application of thermoacoustic
combustion instability monitoring.
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4. Conclusions

In conclusion, this paper has presented a comprehensive exploration into the mon-
itoring of thermoacoustic combustion instability through the innovative integration of
recursive quantitative analysis (RQA) and GA-DBN. Our study included a meticulous
comparison of three different feature extraction methods, revealing that recursive quantita-
tive analysis (RQA) emerged as the standout performer in capturing the intricate features
associated with combustion states. This underscores the significance of leveraging RQA
for its outstanding performance in enhancing the accuracy and reliability of combustion
state monitoring. Furthermore, we conducted extensive multiple comparisons between
GA-DBN, conventional deep belief networks (DBN), and support vector machines (SVM).
The results of these comparisons unequivocally demonstrate the superior classification
capabilities of GA-DBN, with the model achieving not only impressive but also satisfactory
classification results across various combustion states. This reinforces the effectiveness of
the genetic algorithm optimization in enhancing the performance of deep belief networks
for thermoacoustic combustion instability monitoring. The insights gained from this study
not only deepen our understanding of thermoacoustic combustion instability but also
provide a robust framework for addressing the challenges associated with classification
tasks in diverse combustion processes. We will use this method to monitor the combustion
status in real time, providing reference for adjusting the combustion status of gas turbines.
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