
Citation: Nurwahidah, N.; Bahri, M.;

Rahim, A. Two-Dimensional

Quaternion Fourier Transform

Method in Probability Modeling.

Symmetry 2024, 16, 257. https://

doi.org/10.3390/sym16030257

Academic Editor: Calogero Vetro

Received: 23 January 2024

Revised: 8 February 2024

Accepted: 16 February 2024

Published: 20 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Two-Dimensional Quaternion Fourier Transform Method in
Probability Modeling
Nurwahidah Nurwahidah 1,2, Mawardi Bahri 1,* and Amran Rahim 1

1 Department of Mathematics, Hasanuddin University, Makassar 90245, Indonesia;
nurwahidah.abidin@uin-alauddin.ac.id (N.N.); amran@science.unhas.ac.id (A.R.)

2 Department of Mathematics, Universitas Islam Negeri Alauddin Makassar, Gowa 92113, Indonesia
* Correspondence: mawardi.bahri@unhas.ac.id

Abstract: The Fourier transform plays a crucial role in statistics, applied mathematics, and engineer-
ing sciences. In this study, we give a definition of the two-dimensional quaternion Fourier transform,
which is an extension of the two-dimensional Fourier transform. We present a new convolution theo-
rem including this transformation. We study the characteristic function in the setting of quaternion
algebra and obtain the essential properties. Based on this, we seek the expected value, variance, co-
variance, and their basic relations to the two-dimensional quaternion Fourier transform. We illustrate
the results by giving examples to see how the obtained results differ from the classical case.

Keywords: two-dimensional quaternion Fourier transform; quaternion characteristic function;
quaternion probability density function; quaternion covariance

1. Introduction

The Fourier transformation is an important mathematical tool that has been widely
utilized in many fields of scientific study, including signal analysis and image processing
(see, for example, [1–3]). As a natural generalization of the two-dimensional Fourier trans-
form (2DFT), the two-dimensional quaternion Fourier transform (2DQFT) has attracted a
significant amount of attention from many scholars in applied and theoretic aspects (see,
for example, [4–13]). Various properties of the 2DQFT have been investigated in detail,
such as linearity, modulation, the convolution theorem, partial derivatives, energy conser-
vation, and uncertainty principles. These properties are amendments of the corresponding
properties of the 2DFT.

On the other hand, the use of the classical Fourier transform in probability modeling
is quite widespread. It is related to the characteristic function of any real-valued random
variable to compute the moment, variance, covariance, distribution function, etc. In [14],
the authors studied the representation of the characteristic function using the vector and
the classical Fourier transform and then provided some examples related to the proposed
characteristic function. A more general probability theory was investigated in [15] using the
one-dimensional Clifford–Fourier transform. Distinct from the one-dimensional quaternion
Fourier transform method in probability modeling [16], the two-dimensional quaternion
Fourier transform method in quaternion probability modeling is more complicated. This
work deals with an application of the two-dimensional quaternion Fourier transform
method in quaternion probability modeling. It may be regarded as an extension and
continuation of our previous work [16]. To arrive at the results, we first introduce the two-
dimensional quaternion Fourier transform (2DQFT) and state some of its useful properties.
We explore the application of this considered transformation in probability modeling. In
particular, we study the characteristic function in the setting of quaternion algebra and
present its relation to the two-dimensional quaternion Fourier transformation. Several
properties of the quaternion characteristic function are also investigated in detail. We utilize
the results to calculate the moments, variance, and covariance in the context of quaternion
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algebra. We provide several examples to verify how the obtained results differ from the
classical case.

The material presented in this paper is organized in the following way. In Section 2,
we shortly review the basic knowledge of quaternion algebra needed for the next section.
In Section 3, we provide useful properties of the 2DQFT such as the inversion theorem and
Parseval’s formula. We also establish a new form of the convolution theorem, including the
2DQFT in this part. In Section 4, we study the utility of the 2DQFT in probability modeling.
Some conclusions are presented in Section 5.

2. Notations

A quaternions is an expansion of real and complex numbers to higher dimensions.
The set of quaternions is denoted by H. A quaternion q can be written in the following
form [17]

H = {q = qa + iqb + jqc + kqd : qa, qb, qc, qd ∈ R}, (1)

where imaginary numbers i, j, and k satisfy:

i2 = j2 = k2 = ijk = −1. (2)

This equation will lead to

ij = −ji = k, jk = −kj = i, ki = −ik = j. (3)

The scalar part and vector part of quaternion q = qa + iqb + jqc + kqd are denoted by
Sc(q) = qa and Vc(q) = q = iqb + jqc + kqd, respectively. Using Equations (2) and (3), we
obtain the quaternion product qp as

qp = qa pa − q · p + qa p + paq + q × p, (4)

where

q · p = qb pb + qc pc + qd pd,

and

q × p = i(qc pd − qd pc) + j(qd pb − qb pd) + k(qb pc − qc pd). (5)

Similar to the complex case, the conjugate of quaternion q is defined by

q = qa − iqb − jqc − kqd, (6)

which satisfies
qp = pq, ∀p, q ∈ H. (7)

It is obvious to see that from Equation (7), the quaternion conjugate changes the order
of the quaternion product. Due to relation (6), we get the modulus as

|q| =
√

qq =

√
(qa)2 + (qb)

2
+ (qc)2 + (qd)

2. (8)

It should be observed that the scalar part of any quaternion satisfies the symmetry
property; that is,

Sc(rpq) = Sc(prq) = Sc(qrp), ∀p, q, r ∈ H. (9)

This formula plays a key role in deriving some properties of the quaternion Fourier
transform. Also, one can easily verify that

|Sc(q)| ≤ |q|, |q2| = |q|2, |qp| = |q||p|, and |q + p| ≤ |q|+ |p|, ∀p, q ∈ H. (10)
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Due to Equations (6), (8) and (10), we obtain the inverse of a non-zero quaternion
q ∈ H by

q−1 =
q

|q2| . (11)

When |q| = 1, q is called a unit quaternion and when qa = 0, q is called a pure quaternion.
We introduce the inner product for two functions f , g : R2 −→ H as

( f , g)L2(R2;H) =
∫
R2

f (x)g(x)dx, dx = dx1dx2. (12)

For f = g, we get

∥ f ∥L2(R2;H) =

(∫
R2

| f (x)|2dx
) 1

2
. (13)

3. Two-Dimensional Quaternion Fourier Transform with Properties

In this section, we provide the definition of the two-dimensional quaternion Fourier
transform (2DQFT). We present useful facts such as Parseval’s formula and the convolution
theorem, which will be used later on. More details regarding the properties of the 2DQFT
have been presented in [6,7,11].

Definition 1. The two-dimensional quaternion Fourier transform of the function f ∈ L1(R2;H)∩
L2(R2;H) is defined by

FH{ f }(ω) =
∫
R2

eiω1x1 f (x)ejω2x2 dx, (14)

for x, ω ∈ R2.

Observe that

|FH{ f }(ω)| =
∣∣∫

R2 eiω1x1 f (x)ejω2x2 dx
∣∣

≤
∫
R2

∣∣eiω1x1 f (x)ejω2x2
∣∣dx

= ∥ f ∥L1(R2;H),

(15)

which shows that |FH{ f }(ω)| is bounded by the quaternion constant ∥ f ∥L1(R2;H).
Further, the reconstruction formula related to the 2DQFT is calculated by the following.

Definition 2. Let f ∈ L1(R2;H) and FH{ f } ∈ L1(R2;H). The inverse transform of the 2DQFT
is obtained through

f (x) =
1

(2π)2

∫
R2

e−iω1x1FH{ f }(ω)e−jω2x2 dω. (16)

Based on Definition 2, one may easily obtain the following theorem.

Theorem 1. Let the quaternion function f ∈ L2(R2;H). One obtains∫
R2

| f (x)|2dx =
1

(2π)2

∫
R2
|FH{ f }(ω)|2dω, (17)

which is often called the Plancherel formula for the 2DQFT.

One of the fundamental results of the 2DQFT is the convolution theorem. It is known
that the form of the convolution theorem in the 2DQFT is more complicated compared
with the convolution theorem of the FT (see [8] for more details). Let us introduce the
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convolution and correlation definitions and then establish a new version of the convolution
theorem associated with the 2DQFT.

Definition 3. Let two functions f , g ∈ L1(R2;H). The convolution operator of f and g is
described by

( f ⋆ g)(x) =
∫
R2

f (y)g(x − y)dy. (18)

With Definition 3 above, we obtain the following result.

Theorem 2. For f , g in L2(R2;H), it holds that

FH{ f ⋆ g}(ω) = FH

{
FH{ f }(ω)(ga + jgc)

}
(ω) +FH

{
FH{ f }(ω1,−ω2)(igb + kgd)

}
(ω). (19)

In particular, we get

FH{ f ⋆ g}(ω) = FH
{
FH{ f }g

}
(ω), (20)

where, in this case, g is a real function.

Proof. According to Definition 3, we have

FH{ f ⋆ g}(ω) =
∫
R2

∫
R2

eiω1x1 f (y)g(x − y)ejω2x2 dydx. (21)

We change the variables to x − y = z and get

FH{ f ⋆ g}(ω) =
∫
R2

∫
R2

eiω1(y1+z1) f (y)g(z)ejω2(y2+z2)dydz

=
∫
R2

∫
R2

eiω1y1 eiω1z1 f (y)g(z)ejω2y2 ejω2z2 dydz

=
∫
R2

∫
R2

eiω1y1 eiω1z1 f (y)
(

ga(z) + igb(z1, z2) + jgc(z) + kgd(z1, z2)
)

ejω2y2 ejω2z2 dydz

=
∫
R2

∫
R2

eiω1y1 eiω1z1 f (y)ejω2y2 (ga(z) + jgc(z))ejω2z2 dydz

+
∫
R2

∫
R2

eiω1y1 eiω1z1 f (y)e−jω2y2 (igb(z) + kgd(z))ejω2z2 dydz

=
∫
R2

eiω1z1FH{ f }(ω)(ga(z) + jgc(z))ejω2z2 dz

+
∫
R2

eiω1z1FH{ f }(ω1,−ω2)(igb(z) + kgd(z))ejω2z2 dz

= FH

{
FH{ f }(ω)(ga + jgc)

}
(ω) +FH

{
FH{ f }(ω1,−ω2)(igb + kgd)

}
(ω),

which is a new version of convolution theorem for the 2DQFT.

Definition 4. The correlation operator related to the 2DQFT for two quaternion functions
f , g ∈ L1(R2;H) is given by the integral

( f ◦ g)(x) =
∫
R2

f (x + y)g(y)dy. (22)

4. Two-Dimensional Quaternion Fourier Transform in Quaternion Probability

In [14,18], the authors studied the characteristic function in the setting of complex
numbers. The authors of [16] presented the quaternion characteristic function using the
one-dimensional quaternion Fourier transform. In this part, we study the use of the two-
dimensional quaternion Fourier transform in quaternion probability, see Table 1. For this
aim, we start with the following definition.
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Definition 5. Let X = (X1, X2) be real two random variables. A quaternion-valued function
fX(x) = f a

X(x) + i f b
X(x) + j f c

X(x) + k f d
X(x) is called the quaternion probability density function

of X (compare to [19,20]) if∫
R2

f l
X(x)dx = 1, f l

X(x) ≥ 0, ∀x ∈ R2, l = a, b, c, d. (23)

In this case, f l
X(x) is a real probability density function. The quaternion cumulative distribu-

tion function is expressed as (compare to [18])

fX(x1, x2) =
∂

∂u
∂

∂v
FX(u, v)

∣∣∣∣
u=x1,v=x2

. (24)

Here, the quaternion probability P is related to FX of X1 and X2 given by

FX(x1, x2) = P(X1 ≤ x1, X2 ≤ x2). (25)

Table 1. Comparison of one-dimensional quaternion probability and two-dimensional quater-
nion probability.

Property One-Dimensional
Quaternion Probability

Two-Dimensional
Quaternion Probability

Characteristic
Function

ϕX(t) =
ϕa

X(t) + iϕb
X(t) + jϕc

X(t) + kϕd
X(t)

ϕX (t) = ϕa
X (t) + iϕb

X (t) +
jϕc

X (−t1, t2) + kϕd
X (−t1, t2)

Moments E[Xk] = dk

dtk ϕX(0)(−i)k E
[
Xn

1 Xm
2
]
= i−m ∂m+n

∂tm
1 ∂tn

2
ϕX (0)j−n

Variance,
Covariance

var(X) =

d2

dt2 ϕX(0)(−i)2 −
(

d2

dt2 ϕX(0)(−i)2
) Cov(X1, X2) = i ∂2

∂t1∂t2
ϕX (0)j −(

i ∂
∂t1

ϕX (0) ∂
∂t1

ϕX (0)j
)2

Definition 6 (Expected value). Let X = (X1, X2) be any two real random variables with the
quaternion probability density function fX(x). The expected value of X1 and X2 is defined as

E[X1X2] =
∫
R2

x1x2 fX(x)dx. (26)

The expected value of X1 is given by

E[X1] =
∫
R2

x1 fX(x)dx, (27)

and the expected value of X2 is defined as

E[X2] =
∫
R2

x2 fX(x)dx. (28)

Now, write Equation (26) above as

E[X1X2] =
∫
R2 x1x2

(
f a
X(x) + i f b

X(x) + j f c
X(x) + k f d

X(x)
)
dx

=
∫
R2 x1x2 f a

X(x)dx + i
∫
R2 x1x2 f b

X(x)dx + j
∫
R2 x1x2 f c

X(x)dx

+ k
∫
R2 x1x2 f d

X(x)dx

= Ea[X1X2] + iEb[X1X2] + jEc[X1X2] + kEd[X1X2],

(29)
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where

El [X1X2] =
∫
R2

x1x2 f l
X(x)dx, l = a, b, c, d (30)

Let us illustrate the above results in the following example.

Example 1. Let X1 and X2 have the quaternion probability density function in the form of

f (x1, x2) =

{
4x1x2 + 3ix2

1 + 3jx2
2 + k(x1 + x2), if 0 < x1, x2 < 1

0, elsewhere.
(31)

Find the expected value of X1 and X2.

Solution. It is easy to check that∫
R2

f l
X(x)dx = 1, l = a, b, c, d. (32)

Now, the expected value of X1 is

E[X1] =
∫ 1

0

∫ 1
0 x1

(
4x1x2 + 3ix2

1 + 3jx2
2 + k(x1 + x2)

)
dx1dx2

= 2
3 + 3

4 i + 1
2 j + 7

12 k.
(33)

The expected value of X2 is

E[X2] =
∫ 1

0

∫ 1
0 x2

(
4x1x2 + 3ix2

1 + 3jx2
2 + k(x1 + x2)

)
dx1dx2

= 2
3 + 1

2 i + 3
4 j + 7

12 k.
(34)

The expected value of X1X2 is

E[X1X2] =
∫ 1

0

∫ 1
0 x1x2

(
4x1x2 + 3ix2

1 + 3jx2
2 + k(x1 + x2)

)
dx1dx2

= 4
9 + 3

8 i + 3
8 j + 1

3 k.
(35)

From Equations (33)–(35), it is straightforward to see that

Ei[X1X2] = Ei[X1]Ei[X2], i = a, b, c. (36)

The product of E[X1]E[X2] is

E[X1]E[X2] =

(
2
3 + 3

4 i + 1
2 j + 7

12 k
)(

2
3 + 1

2 i + 3
4 j + 7

12 k
)

= 4
9 − 3

8 − 1
2 − 49

144 +

(
2
6 + 6

12 + 7
24 − 7

12

)
i +

(
2
3 − 21

48 − 2
6 + 7

24

)
j

+

(
14
36 − 3

4 − 1
4 + 14

36

)
k

= −31
48 + 11

16 i + 11
16 j + 1 13

144 k.

(37)

Definition 7. Let X = (X1, X2) be real random variables with the quaternion probability density
function fX(x). The characteristic function of X1 and X2, ϕX : R2 −→ H, is defined by the formula

ϕX(t) = E[eit1X1 ejt2X2 ]

=
∫
R2 eit1x1 fX(x)ejt2x2 dx.

(38)
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Based on Equation (38), the generalization of the characteristic function in higher
dimensions is given by the following.

Remark 1. Assume f ∈ L2(R2n;H), n ∈ N. The definition of the n-dimensional quaternion
Fourier transform of the function f is given by

FH{ f }(u, v) =
∫
R2n

eiu·x f (x, y)ejv·ydxdy

for u, v, x, y,∈ Rn. Moreover, the generalization of the characteristic function of X = (X1, X2, · · ·Xn),
ϕX : R2n −→ H, is given by the formula

ϕX(u, v) =
∫
R2n

eiu·x fX(x, y)ejv·ydxdy.

Theorem 3. Let X = (X1, X2) be real random variables. If the quaternion probability density
function related to the quaternion characteristic function ϕX satisfies∫

R2
| fX(x)| < ∞,

then ϕX is uniformly continuous.

Proof. Simple computations yield

|ϕX(t + h)− ϕX(t)| =
∣∣∣∣ ∫R2 eix1(t1+h1) fX(x)ejx2(t2+h2) − eix1t1 fX(x)ejx2t2 dx

∣∣∣∣
=

∣∣∣∣ ∫R2 eix1t1

(
eix1h1 fX(x)ejx2h2 − fX(x)

)
ejx2t2 dx

∣∣∣∣
≤

∫
R2

∣∣∣∣(eix1h1 fX(x)ejx2h2 − fX(x)
)∣∣∣∣dx.

(39)

Invoking the triangle inequality for quaternion (10) gives

|ϕX(t + h)− ϕX(t)
∣∣ ≤

∫
R2

(∣∣eix1h1 fX(x)ejx2h2
∣∣+ ∣∣ fX(x)

∣∣)dx

= 2
∫
R2 | fX(x)|dx.

Using the dominated convergence theorem implies that |ϕX(t + h) − ϕX(t)| → 0
when h → 0 and so, ϕX is uniformly continuous.

Theorem 4. Let X = (X1, X2) be real random variables. If X1 and X2 are independent and the
quaternion probability density function fX(x) factorizes as

fX(x) = fX1(x1) fX2(x2), (40)

then

ϕX(t) = ϕX1(t1)ϕX2(t2) (41)

Proof. In fact, we have

ϕX(t) = E[eit1X1 ejt2X2 ]

=
∫
R2 eit1x1 fX(x)ejt2x2 dx

=
∫
R2 eit1x1 fX1(x1) fX2(x2)ejt2x2 dx.

(42)
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If we assume that fX2 is a real-valued function, the above relation changes to

ϕX(t) =
∫
R2 eit1x1 fX1(x1) fX2(x2)ejt2x2 dx

=
∫
R2 eit1x1 fX1(x1)ejt2x2 fX2(x2)dx,

(43)

and the proof is complete.

Relation (38) above may be expressed in the form

ϕX(t) =
∫
R2

eit1x1
(

f a
X(x) + i f b

X(x) + j f c
X(x) + k f d

X(x)
)
ejt2x2 dx

=
∫
R2

eit1x1 f a
X(x)ejt2x2 dx + i

∫
R2

eit1x1 f b
X(x)ejt2x2 dx

+ j
∫
R2

e−it1x1 f c
X(x)ejt2x2 dx + k

∫
R2

e−it1x1 f d
X(x)ejt2x2 dx

= ϕa
X(t) + iϕb

X(t) + jϕc
X(−t1, t2) + kϕd

X(−t1, t2),

where
ϕl

X(t) =
∫
R2

eit1x1 f l
X(x)ejt2x2 dx, l = a, b, c, d. (44)

Proposition 1. Let X = (X1, X2) be real random variables. Then, one gets

1. ϕl
X(0) = 1, ϕX(0) = 1.

2. |ϕl
X(t)| ≤ 1, |ϕX(t)| ≤ |1| = 4, l = a, b, c, d

where 1 = (1, 1, 1, 1) = 1 + i + j + k.

Proof. According to relations (23) and (44), it is straightforward to see that

ϕl
X(0) =

∫
R2

f l
X(x)dx = 1, (45)

and

ϕX(0) =
∫
R2

fX(x)dx

=
∫
R2

(
f a
X + i f b

X + j f c
X + k f d

X

)
dx

=
∫
R2

f a
X dx + i

∫
R2

f b
X dx + j

∫
R2

f c
X dx + k

∫
R2

f d
X dx

= 1.

On the other hand, we have

|ϕl
X(t)| =

∣∣∣∣ ∫R2
eit1x1 f l

X(x)ejt2x2 dx
∣∣∣∣

≤
∫
R2

∣∣eit1x1 f l
X(x)ejt2x2

∣∣dx

=
∫
R2

∣∣ f l
X(x)

∣∣dx

=
∫
R2

f l
X(x)dx

= 1.
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We also find

|ϕX(t)| =
∣∣∣∣ ∫R2

eit1x1 fX(x)ejt2x2 dx
∣∣∣∣

≤
∫
R2

| fX(x)|dx.

Applying (10) and (23) results in

|ϕX (t)| =
∣∣∣∣ ∫R2

eit1x1 ( f a
X (x) + i f b

X (x) + j f c
X (x) + k f d

X (x))ejt2x2 dx
∣∣∣∣

≤
∫
R2

| f a
X (x)|dx +

∫
R2

|i f b
X (x)|dx +

∫
R2

|j f c
X (x)|dx +

∫
R2

|k f d
X (x)|dx

=
∫
R2

| f a
X (x)|dx +

∫
R2

| f b
X (x)|dx +

∫
R2

| f c
X (x)|dx +

∫
R2

| f d
X (x)|dx

=
∫
R2

f a
X (x)dx +

∫
R2

f b
X (x)dx +

∫
R2

f c
X (x)dx +

∫
R2

f d
X (x)dx

= 1 + 1 + 1 + 1

= 4,

and the proof is complete.

Definition 8. The quaternion probability density function fX(x) can be recovered from the charac-
teristic function using the formula

fX(x) =
1

(2π)2

∫
R2

e−it1x1 ϕX(t)e−jt2x2 dt. (46)

Let us now compute the quaternion characteristic function of Example 1. It follows
from Equation (38) that

ϕX1,X2(t1, t2)

=
∫ 1

0

∫ 1
0 eit1x1

(
4x1x2 + 3ix2

1 + 3jx2
2 + k(x1 + x2)

)
ejt2x2 dx1dx2

=
∫ 1

0

∫ 1
0 eit1x1(4x1x2)ejt2x2 dx1dx2 +

∫ 1
0

∫ 1
0 eit1x1(3ix2

1)e
jt2x2 dx1dx2

+
∫ 1

0

∫ 1
0 eit1x1(3jx2

2)e
jt2x2 dx1dx2 +

∫ 1
0

∫ 1
0 eit1x1(k(x1 + x2))ejt2x2 dx1dx2

= 4
∫ 1

0 x1eit1x1 dx1
∫ 1

0 x2ejt2x2 dx2 + 3i
∫ 1

0 eit1x1 x2
1dx1

∫ 1
0 ejt2x2 dx2

+ 3
∫ 1

0 eit1x1 dx1 j
∫ 1

0 x2
2ejt2x2 dx2 +

∫ 1
0 eit1x1 x1dx1k

∫ 1
0 ejt2x2 dx2

+
∫ 1

0 eit1x1 dx1k
∫ 1

0 x2ejt2x2 dx2.

(47)

Further, we get

ϕX1,X2(t1, t2)

= 4( eit1
it1

+ eit1−1
t2
1

)( ejt2
jt2

+ ejt2−1
t2
2

) + 3i( eit1
it1

+ 2eit1

t2
1

− 2eit1−2
it3

1
)( ejt2−1

jt2
)

+ 3j( eit1−1
it1

)( ejt2
jt2

+ 2ejt2
jt2

− 2ejt2−2
jt2

) + k( eit1
it1

+ eit1−1
t2
1

)( ejt2−1
jt2

)

= 4( t1eit1+i(eit1−1)
it2

1
)( t2ejt2+j(ejt2−1)

jt2
1

)

+ 3i( t2
1eit1+it12eit1−2eit1+2

it3
1

)( ejt2−1
jt2

)

+ 3j( eit1−1
it1

)(
t2
2ejt2+jt22ejt2−2ejt2+2

jt3
2

)

+ k( t1eit1+i(eit1−1)
it2

1
)( ejt2−1

jt2
)

+ k( eit1−1
it1

)( t2ejt2+j(ejt2−1)
jt2

2
).

(48)
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Equation (48) may be further simplified to

ϕX1,X2(t1, t2)

= 4
((

t1eit1+i(eit1−1)
)(

t2ejt2+j(ejt2−1)
)

kt2
1t2

2

)
+ 3i

((
t2
1eit1+it12eit1−2eit1+2

)(
ejt2−1

)
kt3

1t2

)
+ 3j

((
eit1−1

)(
t2
2ejt2+2jt2

2ejt2−2ejt2+2
)

kt1t3
2

)
+ k

((
t1eit1+i(eit1−1)

)(
ejt2−1

)
kt2

1t2

)
+ k

((
eit1−1

)(
t2ejt2+j(ejt2−1)

)
kt1t2

2

)
(49)

We finally arrive at

ϕX1,X2 (t1, t2) =
4

kt2
1t2

2

((
t1eit1 + i(eit1 − 1)

)(
t2ejt2 + j(ejt2 − 1)

))
+

1
kt3

1t2

(
3i
(
2 + eit1 (t2

1 + 2it1 − 2)
)(

ejt2 − 1
))

+
1

kt1t3
2

(
3j
(
2 + ejt2 (t2

2 + 2jt2 − 2)
)(

eit1 − 1
))

+
1

t2
1t2

((
t1eit1 + i(eit1 − 1)(ejt2 − 1)

))
+

1
t1t2

2

(
(eit1 − 1)

(
t2ejt2 + j(ejt2 − 1)

))
.

As an immediate consequence of Definition 8, the following result can be found.

Theorem 5. Assume that the quaternion characteristic functions ϕX and ψX of the random variables X are
defined by

ϕX (t) =
∫
R2

eit1x1 fX (x)ejt2x2 dx, ψX (x) =
∫
R2

eit1x1 gX (t)ejt2x2 dt. (50)

Assume that fX is a real probability density function; then, one gets

∫
R2 gX(t)e−it1y1 ϕX(t)e−jt2y2 dt =

∫
R2 fX(x)ψa

X(x − y) dx + i
∫
R2 fX(x)ψb

X(x − y)dx

+j
∫
R2 fX(x)ψc

X(y − x)dx + k
∫
R2 fX(x)ψd

X(y − x)dx.
(51)

Proof. By virtue of the quaternion characteristic function defined in (38), we obtain

e−it1y1 ϕX (t)e−jt2y2 = e−it1y1
∫
R2 eit1x1 fX (x)ejt2x2 dxe−jt2y2

=
∫
R2 eit1(x1−y1) fX (x)ejt2(x2−y2)dx.

(52)

Multiplying both sides of relation (52) by gX (t) and then integrating with respect to dt, we
see that ∫

R2
gX (t)e−it1y1 ϕX (t)e−jt2y2 dt =

∫
R2

gX (t)
(∫

R2
eit1(x1−y1) fX (x)ejt2(x2−y2)dx

)
dt

=
∫
R2

∫
R2

(
ga

X (t) + igb
X (t) + jgc

X (t) + kgd
X (t)

)
eit1(x1−y1) fX (x)ejt2(x2−y2)dxdt

=
∫
R2

∫
R2

(
ga

X (t) + igb
X (t) + jgc

X (t) + kgd
X (t)

)
eit1(x1−y1) fX (x)ejt2(x2−y2)dxdt.
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Fubini’s theorem allows us to obtain∫
R2

gX (t)e−it1y1 ϕX (t)e−jt2y2 dt

=
∫
R2

( ∫
R2

fX (x)eit1(x1−y1)ga
X (t)e

jt2(x2−y2)dt + i fX (x)
∫
R2

eit1(x1−y1)gb
X (t)e

jt2(x2−y2)dt
)

dx

+
∫
R2

(
j fX (x)

∫
R2

eit1(x1−y1)gc
X (t)e

jt2(x2−y2)dt + k fX (x)
∫
R2

eit1(x1−y1)gd
X (t)e

jt2(x2−y2)dt
)

dx

=
∫
R2

(
fX (x)ψa

X (x − y) + i fX (x)ψb
X (x − y)

)
dx

+
∫
R2

(
j fX (x)ψc

X (y − x) + k fX (x)ψd
X (y − x)

)
dx

=
∫
R2

fX (x)ψa
X (x − y)dx + i

∫
R2

fX (x)ψb
X (x − y)dx

+ j
∫
R2

fX (dx) ψc
X (y − x)dx + k

∫
R2

fX (dx)ψd
X (y − x)dx.

This is the desired result.

Based on Equation (26), we may define the (n + m)th moment of real random variables X1 and
X2 as

E[Xm
1 Xn

2 ] =
∫
R2

xn
1 xm

2 fX (x)dx, n, m = 1, 2, 3, · · · , (53)

provided the integral exists. It is obvious that for n = 1, m = 0 and n = 0, m = 1 in (53), we obtain

µ1 = E[X1] =
∫
R2

x1 fX (x)dx, (54)

and
µ2 = E[X2] =

∫
R2

x2 fX (x)dx. (55)

Theorem 6. If X = (X1, X2) are real random variables, then there exist (n + m)th continuous derivatives
for the quaternion characteristic function ϕX (t) described by the formula

∂m+n

∂tm
1 ∂tn

2
ϕX (t) = im

∫
R2

xm
1 eit1x1 fX (x) xn

2 ejt2x2 dx jn. (56)

In addition,

E[Xn
1 Xm

2 ] = i−m ∂m+n

∂tm
1 ∂tn

2
ϕX (0)j−n. (57)

Proof. For m = 1 and n = 0, direct calculations reveal that

∂
∂t1

ϕX (t) = ∂
∂t1

∫
R2 eit1x1 fX (x)ejt2x2 dx

=
∫
R2

(
∂

∂t1
eit1x1

)
fX (x)ejt2x2 dx

=
∫
R2 (ix1)eit1x1 fX (x) ejt2x2 dx.

(58)

In view of relation (58), we obtain

∂2

∂t2
1
ϕX (t) = ∂

∂t1

( ∫
R2 (ix1)eit1x1 fX (x) ejt2x2 dx

)
= i2 ∫

R2 x2
1eit1x1 fX (x) ejt2x2 dx .

(59)

This implies that

∂m+n

∂tm
1 ∂tn

2
ϕX (t) = im

∫
R2

xm
1 eit1x1 fX (x) xn

2 ejt2x2 dx jn. (60)

Applying Equation (53) gives

∂m+n

∂tm
1 ∂tn

2
ϕX (0) = im

∫
R2

xm
1 fX (x) xn

2 dx jn. (61)
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Hence,

i−m ∂m+n

∂tm
1 ∂tn

2
ϕX (0)j−n =

∫
R2

xm
1 fX (x) xn

2 dx,

thus, the proof of the theorem is completed.

Let us now introduce the definition of the quaternion covariance of real random variables X1
and X2.

Definition 9. Let X = (X1, X2) be any real random variables. The covariance of X1 and X2 in the quaternion
setting is given by

Cov(X1, X2) = E
[
(X1 − E[X1])(X2 − E[X2])

]
= E

[
(X1 − E[X1])(X2 − E[X2])

]
= E

[
(X1X2 − X1E[X2]− E[X1]X2 + E[X1]E[X2]

]
= E

[
X1X2

]
− E[X1]E[X2]− E[X1]E[X2] + E[X1]E[X2]

= E
[
X1X2

]
− E[X1]E[X2].

(62)

According to (62), we obtain

Cov(X2, X1) = E[X2X1]− E[X2]E[X1]

= E[X1X2]− E[X2]E[X1]
(63)

In general, since E[X1]E[X2] ̸= E[X2]E[X1], then Cov(X1, X2) ̸= Cov(X2, X1). Due to (62), we get

Var(X1) = σ1 = E
[
X1X1

]
− E[X1]E[X1]

= E
[
X2

1
]
− E[X1]

2.
(64)

which is the quaternion variance of real random variable X1.
From Example 1, we get

Cov(X1, X2) = E
[
X1X2

]
− E[X1]E[X2]

=
(

4
9 + 3

8 i + 3
8 j + 1

3 k
)
−

(
−31
48 + 11

16 i + 11
16 j + 1 13

144 k
)

= 1 13
144 − 5

16 i + 5
16 j − 109

144 k,

(65)

and

|Cov(X1, X2)| =

√(
157
144

)2
+

(
− 5

16

)2
+

(
5

16

)2
+

(
− 109

144

)2

=
√

10145
5184 = 1

72

√
10145.

(66)

It can be obtained that the quaternion covariance Cov(X1, X2) of real random variables X1 and
X2 in terms of the quaternion characteristic function is

Cov(X1, X2) = i−1 ∂2

∂t1∂t2
ϕX (0)j−1 −

(
i ∂

∂t1
ϕX (0) ∂

∂t2
ϕX (0)j

)
= i ∂2

∂t1∂t2
ϕX (0)j −

(
i ∂

∂t1
ϕX (0) ∂

∂t1
ϕX (0)j

)
.

(67)

Remark 2. Due to Equation (63), one gets

Cov(X2, X1) = i−1 ∂2

∂t1∂t2
ϕX (0)j−1 −

(
∂

∂t2
ϕX (0)j−1i−1 ∂

∂t1
ϕX (0)

)
= i ∂2

∂t1∂t2
ϕX (0)j −

(
∂

∂t2
ϕX (0)k ∂

∂t1
ϕX (0)

)
.

(68)

The following example illustrates the use of the results mentioned above.
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Example 2. The random variables X1 and X2 have a probability density function of the form

f (x1, x2) =
1

2π|σ1||σ2|
e
− (x1−|µ1 |)

2

2|σ1 |2 e
− (x2−|µ2 |)2

2|σ2 |2 . (69)

where µ1 and µ2 are defined by Equations (54) and (55). Find the quaternion variance of X1 and X2.

Solution. It follows from Equation (38) that

ϕX(t1, t2) =
1

2π|σ1||σ2|

∫
R2

eit1x1 e
− (x1−|µ1 |)

2

2|σ1 |2 e
− (x2−|µ2 |)2

2|σ2 |2 ejt2x2 dx.

Changing the variables to x1 − |µ1| = y1 and x2 − |µ2| = y2, it is easily seen that

ϕX(t1, t2)

= 1
2π|σ1||σ2|

∫
R2 eit1(|µ1|+y1)e

− y2
1

2|σ1 |2 e
− y2

2
2|σ2 |2 ejt2(|µ2|+y2)dy1dy2

= eit1 |µ1 |ejt2 |µ2 |

2π|σ1||σ2|
∫
R e

− y2
1

2|σ1 |2
+it1y1 dy1

∫
R e

− y2
2

2|σ2 |2
+jt2y2 dy2.

(70)

We further obtain

ϕX(t1, t2)

= eit1 |µ1 |ejt2 |µ2 |

2π|σ1||σ2|
∫
R e

− 1
2|σ1 |2

(y2
1−2|σ1|2it1y1)dy1

∫
R e

− 1
2|σ2 |2

(y2
2−2|σ2|2 jt2y2)dy2

= eit1 |µ1 |ejt2 |µ2 |

2π|σ1||σ2|
∫
R e

− 1
2|σ1 |2

(
(y1−|σ1|2it1)

2−(|σ1|2it1)
2
)

dy1
∫
R e

− 1
2σ2

2

(
(y2−|σ2|2 jt2)

2−(|σ2|2 jt2)
2
)

dy2

= eit1 |µ1 |ejt2 |µ2 |

2π|σ1||σ2|
∫
R e

(|σ1 |
2 it1)

2

2|σ1 |2 e
− 1

2σ2
1
(y1−|σ1|2it1)

2

dy1
∫
R e

(|σ2 |2 jt2)
2

2|σ2 |2 e
− 1

2|σ2 |2
(y2−|σ2|2 jt2)

2

dy2

= eit1 |µ1 |ejt2 |µ2 |

2π|σ1||σ2| e
(|σ1 |

2 it1)
2

2|σ1 |2
∫
R e

− 1
2|σ1 |2

(y1−|σ1|2it1)
2

dy1
∫
R e

− 1
2|σ2 |2

(y2−|σ2|2 jt2)
2

dy2 e
(|σ2 |2 jt2)

2

2|σ2 |2 .

(71)

Substituting u1 = y1 − |σ1|2it1 and u2 = y2 − |σ2|2 jt2 yields

ϕX(t1, t2) = eit1 |µ1 |ejt2 |µ2 |

2π|σ1||σ2| e−
|σ1 |

2 t21
2 e−

|σ2 |2 t22
2

∫
R e

− 1
2|σ1 |2

u2
1 du1

∫
R e

− 1
2|σ2 |2

u2
2 du2

= eit1 |µ1 |ejt2 |µ2 |

2π|σ1||σ2| e
−|σ1 |

2 t21
2 e−

|σ2 |2 t22
2

√
2π|σ1|2

√
2π|σ2|2

= eit1|µ1|−
|σ1 |

2 t21
2 ejt2|µ2|−

|σ2 |2 t22
2 .

(72)

Therefore,

∂
∂t1

ϕX (t1, t2) =
(
i|µ1| − t1|σ1|2

)
eit1|µ1|−

|σ1 |
2 t21

2 ejt2|µ2|−
|σ2 |2 t22

2

∂
∂t2

ϕX (t1, t2) = eit1|µ1|−
|σ1 |

2 t21
2

(
j|µ2| − t2|σ2|2

)
ejt2|µ2|−

|σ2 |2 t22
2

∂2

∂t1∂t2
ϕX (t1, t2) =

(
i|µ1| − t1|σ1|2

)
eit1|µ1|−

|σ1 |
2 t21

2
(

j|µ2| − t2|σ2|2
)
ejt2|µ2|−

|σ2 |2 t22
2

∂2

∂t2
1
ϕX (t1, t2) =

((
i|µ1| − t1|σ1|2

)2 − |σ1|2
)

eit1|µ1|−
|σ1 |

2 t21
2 ejt2|µ2|−

|σ2 |2 t22
2

∂2

∂t2
2
ϕX (t1, t2) =

(
i|m| −

(
t|σ|2

)3 − 3|σ|2(i|m| − t|σ|2)
)

eit|m|− |σ|2 t2
2 .

(73)
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Due to Equation (67), we obtain

Cov(X1, X2) = i
∂2

∂t1∂t2
ϕX (0)j −

(
i

∂

∂t1
ϕX (0)

∂

∂t2
ϕX (0)j

)
= i(i|µ1|j|µ2|)j −

(
i2|µ1|j|µ2|j

)
= i2 j2|µ1||µ2| − |µ2||µ1|
= |µ1||µ2| − |µ2||µ1|
= 0.

Remark 3. According to Equation (68), one has

Cov(X2, X1) = i
∂2

∂t1∂t2
ϕX (0)j −

(
∂

∂t2
ϕX (0)k

∂

∂t1
ϕX (0)

)
= i2 j2|µ1||µ2| − j|µ2|ki|µ1|
= |µ1||µ2|+ |µ2||µ1|
= 2|µ1||µ2|.

This example shows that Cov(X1, X2) in Equation (62) is different from Cov(X2, X1) in Equation (63).
The above results are summarized in Table 2.

Table 2. Comparison of quaternion probability and classical probability.

Quaternion Probability Classical Probability

Cov(x1, x2) ̸= Cov(x2, x1) Cov(X1, X2) = Cov(X2, X1)
E[X1]E[X2] ̸= E[X2]E[X1] E[X1]E[X2] = E[X2]E[X1]∫

R2 f (x)dx = 1
∫
R2 f (x)dx = 1

|ϕX (t)| ≤ |1| = 4 |ϕX (t)| ≤ 1

5. Conclusions and Future Works
In this paper, we have introduced the two-dimensional quaternion Fourier transform (2DQFT)

and investigated a new convolution theorem related to this transformation. We demonstrated
its utility in quaternion probability modeling and obtained some results that differ from classical
probability modeling.

All works reported in this paper are only preliminary results. There are many issues that can
be studied through further research. For instance, instead of the continuous quaternion Fourier
transform, the discrete quaternion Fourier transform [21,22] may be implemented in the construction
of the discrete characteristic function, discrete expectation, and so on. In addition, the generalization
of the n-dimensional quaternion Fourier transform allows us to define the characteristic function,
expectation, etc., in higher dimensions. Also, in a forthcoming paper, we will investigate the use of
two-dimensional quaternion differential equations to solve quaternion-valued differential equations
like the quaternion Laplace transform [23].
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