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Abstract: Despite the obvious progress made by the Feynman, Ravndal, and Kislinger relativistic
model in describing the internal motion of a system with confinement of quarks in a nucleon, it turned
out to be insufficiently realistic for a number of reasons. In particular, the model does not take into
account some cornerstone properties of QCD, namely, gluon exchange between quarks, the influence
of the resulting quark sea on valence quarks, and the self-interaction of colored gluons. It is these
phenomena that spontaneously break the chiral symmetry of the quark system and form the bulk of
the nucleon. To eliminate the above shortcomings of the model, the problem of self-organization of
a three-quark dynamical system immersed in a colored quark–antiquark sea is considered within
the framework of complex probabilistic processes that satisfy the stochastic differential equation of
the Langevin–Kline–Gordon–Fock type. Taking into account the hidden symmetry of the internal
motion of a dynamical system, a mathematically closed nonperturbative approach was developed,
which makes it possible to construct the mathematical expectation of the wave function and other
parameters of the nucleon in the form of multiple integral representations. It is shown that additional
subspaces arising in a representation characterized by a noncommutative geometry with topological
features participate in the formation of an effective interaction between valence quarks against the
background of harmonic interaction between them.

Keywords: flavor physics; quantum chromodynamics; multiquark states; 4D relativistic quantum
oscillator; three-quark system; colored quark–antiquark sea; gluon fields distribution; noncommutative
geometry; mathematical expectation of nucleon wave function

1. Introduction

The observable universe, ordinary matter, and star formations in particular, is com-
posed primarily of strongly interacting particles of protons and neutrons called nucleons.
In this regard, one of the most important tasks of modern nuclear physics is the study of
the structure of the nucleon and its excited states from the point of view of effective degrees
of freedom and, at a more fundamental level, the emergence of these from QCD [1]. After
postulating the quark structure of strongly interacting particles by Gell-Mann, Zweig, and
Fritzsch [2–4], based on the ideas of symmetry and invariance in the system of particles
and fields, Feynman, Ravndahl, and Kislinger [5] proposed a three-quark representation
of nucleons within the framework of a four-dimensional relativistic quantum oscillator
model. Note that the main idea underlying the three-quark nucleon model is that quarks,
interacting through the potential of a four-dimensional harmonic oscillator, cannot move
away from each other and become free. In a series of papers [6–8], the authors discussed a
quantum harmonic oscillator formalism to study the important features of hadronic struc-
tures in relativistic quark models. An important achievement of these models is that they
allow a covariant-probabilistic interpretation of the wave functions under consideration [9].
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Despite the obvious successes of the relativistic model of a four-dimensional oscillator
in describing the structure and internal motion of a nucleon with the effect of quark
confinement, it still remains insufficiently realistic. The fact is that the nucleon model
under consideration does not take into account the continuous processes of colored gluon
exchange between quarks. Moreover, the model does not take into account the spontaneous
breaking of chiral symmetry, which is responsible for the generation of nucleon mass from
more elementary light quarks. The latter is obviously a strong simplification of the problem.
The difficulties of the model become even more obvious when we have to consider nucleons
in nuclei or dense and superdense stellar formations. Recall that in this case, the main
characteristics of the processes of gluon exchange between quarks, as well as the properties
of the quark sea, change, which in turn directly affects the structure and other parameters
of nucleons.

To explain the missing nucleon mass, Nambu and Jona-Lasinio proposed a simple
model Hamiltonian in which the nucleon mass arises as the self-energy of some primordial
fermion field, analogous to the energy gap in superconductivity theory [10]. In particular, a
consequence of symmetry is that pseudoscalar bound states with zero mass of the nucleon–
antinucleon pair arise, which can be considered as a pion.

In the last two decades, string models of hadrons have been intensively developed [11,12];
however, despite the very promising ideas underlying string approaches, these studies are
still far from complete and are often unsuitable for describing various phenomena arising
in experiments on hadron physics.

To solve a number of the above problems, this paper considers a relativistic three-
quark dynamical system immersed in colored gluon fields, which, in turn, generate a
quark–antiquark sea. At the same time, we describe the interactions between quarks using
a four-dimensional harmonic oscillator, which ensures confinement of quarks, their asymp-
totic freedom at short distances, and chiral symmetry. We formulate the mathematical
problem in terms of a complex probabilistic process that satisfies a stochastic differential
equation (SDE) of the Langevin–Klein –Gordon–Fock type. Note that this formulation of
the problem allows us to take into account both elastic and inelastic processes of gluon
exchange between quarks as well as the self-action and type of gluon–antigluon inter-
actions. It is shown that for the case when fluctuations of the colored quark–antiquark
sea are characterized by complex processes of the Markov–Gauss type, it is possible to
construct a mathematically closed nonperturbative theory of the nucleon with additional
six-dimensional compact subspaces. In particular, when calculating the mathematical
expectation of various parameters of the nucleon, we perform averaging over additional
subspaces, which breaks the chiral symmetry [13] but at the same time maintains the
color of the nucleon. In our opinion, it is very important that the averaging procedure
over additional quantized subspaces against the background of the harmonic interaction
between valence quarks forms a new, effective interaction between them. In this work, for
all parameters of the nucleon, mathematical expressions are obtained in the form of double
integral representations, where the integrand is a solution to a system of two coupled
second-order partial differential equations (PDEs).

In conclusion, we note that considering the nucleon as a complex, self-consistent
system of “three quarks + a sea of quarks–antiquarks”, as a problem of self-organization
within the framework of the developed concept, allows us to go beyond the framework of
perturbation theory, which is very important for obtaining new nontrivial results in the
field of quantum chromodynamics (QCD), which is essentially a nonperturbative theory.

This manuscript is organized as follows:
Section 2 briefly outlines the well-known formulation of the problem of the internal mo-
tion of a nucleon as a three-quark dynamical system within the framework of the Klein–
Gordon–Fock equation using a four-dimensional model of a relativistic oscillator for quark
interactions [6]. An exact, relativistically invariant solution of the wave function of the
internal motion of a nucleon is presented.
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In Section 3, the problem of the internal motion of a nucleon immersed in a colored
quark sea is mathematically formulated in the framework of a complex probabilistic process
that satisfies the Langevin–Klein–Gordon–Fock-type SDE. It is shown that a complex prob-
abilistic process in the model of a four-dimensional relativistic oscillator, after a convenient
transformation of coordinates, is written in factorized form, as a product consisting of three
independent functions.

In Section 4, a system of stochastic equations for gluon fields is derived, taking into
account the synchronization of four-dimensional events in the Minkowski space. The
conditions of complex stochastic processes for generators of colored gluon fields, in the
form of Markov–Gaussian processes, are determined.

In Section 5, taking into account the SDE system, an equation for the distribution of
gluon fields in the limit of statistical equilibrium is derived. It is shown that the solution for
the field distribution is factorized into the product of three two-dimensional distributions,
each of which describes the states of gluon fields of a certain color and anticolor. It is shown
that the additional six-dimensional subspace generated by the SDEs system is factorized as
a direct product of three two-dimensional subspaces.

In Section 6, the geometric and topological features of the emerging two-dimensional
subspaces are analyzed. It is shown that each of the sub-spaces is generated by an algebraic
equation of the fourth degree and is described by noncommutative geometry. It is also
proven that the topological features of these manifolds are characterized by the Betti
number n ≤ 4.

In Section 7, using a two-dimensional distribution equation for gluon fields, a Fokker–
Planck measure of the functional space is constructed.

In Section 8, the mathematical expectation of the total wave function of a three-quark
dynamical system immersed in a colored quark–antiquark sea is defined in the form of a
functional integral representation. Using the generalized Feynman–Kac theorem, functional
integrals are calculated. As a result, a factorized representation in the form of three double
integrals is obtained for the mathematical expectation of the wave function of nucleon
internal motion.

In Section 9, using the mathematical expectation of the total wave function of a
nucleon, its radius and mass are determined depending on the constants characterizing the
fluctuation powers of colored gluon fields. Two independent equations are derived that
make it possible to uniquely calculate two independent constants characterizing the gluon
fields of a nucleon when the nucleon is in a free state.

Section 10 discusses in detail the possibilities of representation for a more correct
description of the quantum state of the nucleon, taking into account the processes of gluon
exchange between quarks. The issues of the state of a nucleon in the case of their immersion
in dense and superdense stellar formations are discussed in light of changes in the spectrum
and power of fluctuations of gluon fields.

Appendix A discusses the issues of color synchronization of valence quarks or the
problem of preserving the white color of the nucleon, which, in turn, is closely related to
the problem of the three-particle interaction of valence quarks.

2. Relativistic Three-Quark Dynamical System

As is known, the main assumption about the dynamics of the internal motion of a
nucleon is that the motion of three quarks is described by the relativistic Klein–Gordon–
Fock equation in the light-front formalism, where the interaction between quarks is carried
out through a four-dimensional harmonic potential, ensuring the confinement of quarks in
the nucleon [5]. Taking this work into account, the following Lorentz-invariant Equation
was proposed to describe the state of a three-quark dynamical system [6]:{

∑
ζ=xa ,xb ,xc

□ζ −
1

27
Ω2

0
[
(xa − xb)

2 + (xa − xc)
2 + (xb − xc)

2]+m2
0

}
Ψ(0)(xa, xb, xc) = 0, (1)
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where xa, xb, and xc are the four-dimensional space-time coordinates of quarks a, b, and c
(see Figure 1); in addition, Ω0 is the sum constant, m0 denotes the sum of the rest masses of
three quarks, and □ζ denotes the d’Alembert operator acting on the ζ-th quark:

□ζ = ∂2
t −∇2(xζ , yζ , zζ) = ∂2

t − ∂2
xζ
− ∂2

yζ
− ∂2

zζ
.

Recall that below, all calculations will be carried out in units; ℏ = c = 1.
By performing the following coordinate transformations,

u =
1√
3
(xa + xb + xc), v =

1√
2
(xa − xb), w =

1√
6
(xa + xb − 2xc), (2)

Equation (2) can be reduced to diagonal form:{
∑

ξ=u,v,w
□ξ + m2

0 −
1
9

Ω2
0(v

2 + w2)
}

Ψ(u, v, w) = 0, (3)

where ξ = (ξ0, ξ1, ξ2, ξ3), and accordingly, the d’Alembert operator in new coordinates has
the form □ξ = ∂2

ξ0
− ∑3

k=1 ∂2
ξk

.

Figure 1. Figures show two nucleons (proton and neutron) in the form of valence quarks located in
different quantum states, i.e., in different colors. Conventionally, we will assume that the a-quark is
depicted in blue, the b-quark in red, and the c-quark in green.

Now, representing the solution of Equation (3) in factored form,

Ψ(u, v, w) = Ψ1(u)Ψ2(v)Ψ3(w), (4)

from (3), we obtain three new Equations:[
□u + λ01

]
Ψ1(u) = 0,[

□v + λ02 − (1/9)Ω2
0 v2]Ψ2(v) = 0,[

□w + λ03 − (1/9)Ω2
0w2]Ψ3(w) = 0, (5)

where m2
0 = λ01 + λ02 + λ03.

The solution to the first Equation of system (5) can be represented as

Ψ1(u) = exp
{
−iu · P/

√
3
}

, (6)

where Pν(ν = 0, 1, 2, 3) is a four-vector.
After substituting this solution into the first Equation of system (5), it is easy to find

that P2 = 3λ01. In addition, from (5), it follows that λ01 = λ02 = (1/3)Ω2
0 = (1/3)m2

0.
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The remaining two equations describe the quantum motions of two independent four-
dimensional oscillators, described by the wave functions Ψ2(v) and Ψ2(w), respectively. In
the rest frame, where Pν = (m0, 0) = (m0, 0, 0, 0), the ground-state wave function normalized
in relative coordinates v and w can be written as

Ψ(u, v, w; 0) =
(

Ω0

3π

)2

exp
{
−i

m0u0√
3

− Ω0

6
(
v2

0 + v2 + w2
0 + w2)}, (7)

which may be written in covariant form:

Ψ(u, v, w; P) =
(

Ω0

3π

)2

exp
{
−i

m0u0√
3

− Ω0

6m2
0

(
2
[
(P · v)2 + (P · w)2]− m2

0
[
v2 + w2])}.

As for the wave function of the excited state, as shown in the work [6], it can be
represented in the form

Ψn m(u, v, w) = NnNm

[
∏

k=1,2,3
Hnk (vk)Hmk (wk)

]
Ψ(u, v, w; 0), Nn = Nn1 Nn2 Nn3 , (8)

where Nnk is the normalization constant of the one-dimensional oscillator, n = (n1, n2, n3)
is the set of quantum numbers, and Hn(x) denotes the Hermite polynomials. Recall that
the wave function of a four-dimensional oscillator has the form

Ψ2(n; v) = Nn ∏
k=1,2,3

Hnk (vk) exp
{
−Ω0

6
v2

k

}
. (9)

Note that we obtain exactly the same function for another oscillator described by the
function Ψ3(m; w).

As can be seen from expressions (7) and (9), the wave function of the nucleon is
localized along the coordinates v and w, while the three-quark dynamical system performs
translational motion along the coordinate u.

3. Three-Quark Dynamical System Immersed in a Colored Quark–Antiquark Sea

Since nucleons consist of combinations of two types of light quarks u and d (see
Figure 1), it is natural to expect that the interaction of these quarks should be carried out
by gluons of different colors. In particular, when the colors of two quarks are known, the
interaction between them will be carried out by gluons of these colors and corresponding
antigluons. Note that by antigluon we mean the same gluon that has an anticolor. Having
gone through all the combinations, it becomes obvious that a nucleon consisting of three
quarks of different colors, without taking into account the spins of the quarks, is immersed
in a six-color quark–antiquark sea (see Figure 2). Taking this into account, we must construct
a consistent nonperturbative theory of self-organization of a quark system and its random
multicolor quark–antiquark environment. Based on the experience of studying similar
problems of nonrelativistic quantum mechanics [14], we can rewrite Equation (1) in the
following form:{

∑
ζ=xa ,xb ,xc

□ζ −
1

27
Ω2

0
[
(xa − xb)

2 + (xa − xc)
2 + (xb − xc)

2]+ m2(xa, xb, xc)
}

Ψ = 0, (10)

where m2(qa, qb, qc) is some space-time complex random function, the form of which will
be indicated below. Recall that the valence quarks a, b, and c (see Figure 1) in a nucleon are
in three different quantum states or colors, so the mathematical expectation of the mixed
color of a nucleon should be white.
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Figure 2. Three valence quarks are immersed in a colored quark–antiquark sea inside a single proton.
As the numerical simulation of the problem (see, for example, [15,16]) as well as experimental studies
show, with a decrease in space-time scales, the powers and frequency of gluon field fluctuations
increase. As can be seen from the figure, for very short times, the color symmetry of valence quarks
can be violated.

Using coordinate transformations (2), Equation (10) can be written as{
∑

ξ=u,v,w
□ξ −

1
9

Ω2
0
(
v2 + w2)+ m̆2(u, v, w)

}
Ψ̆(u, v, w) = 0, (11)

where m̆2(u, v, w) = m2(xa, xb, xc).
To clarify the function m̆2(u, v, w), we assume that it can be represented in the form

m̆2(u, v, w) = m2
0 + {λ}, {λ} = λ1(su) + λ2(sv) + λ3(sw), (12)

where λ1(su), λ2(sv), and λ3(sw) are some complex random processes depending on proper
space-time events:

sξ =
(
ξ2

0 − ∑
δ=x,y,z

ξ2
δ

)1/2, ξ = u, v, w. (13)

Recall that since we are considering a relativistic problem, it is natural to use a four-
vector, which defines a chronologized sequence of space-time events in Minkowski space,
as a parameter describing the evolution of a dynamical system.

Finally, based on the symmetry of Equations (11) and (12), the solution to the total
wave function of the system can be represented as the following product:

Ψ̆(u, v, w|{λ}) = Ψ̆1
(
u, λ1(su)

)
· Ψ̆2

(
v, λ2(sv)

)
· Ψ̆3

(
w, λ3(sw)

)
. (14)

Substituting (14) into (11), taking into account (12), we obtain three new equations:[
□u + λ01 + λ1(su)

]
Ψ̆1

(
u, λ1(su)

)
= 0,[

□v + λ02 − (1/9)Ω2
0 v2 + λ2(sv)

]
Ψ̆2

(
v, λ2(sv)

)
= 0,[

□w + λ03 − (1/9)Ω2
0w2 + λ3(sw)

]
Ψ̆3

(
w, λ3(sw)

)
= 0. (15)

It should be noted that Equation (15) due to the presence of random generators
λk(sξ), (k = 1, 2, 3) in them still require definition and reduction to canonical forms, that is
to first-order stochastic differential equations of Langevin type.
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Now our main task will be to construct the mathematical expectation of the total wave
function of a nucleon on the light cone, taking into account gluon exchanges between
quarks and the influence of the quark–antiquark sea:

Ψ(xa, xb, xc) = Ψ̆(u, v, w) = E[Ψ̆(u, v, w|{λ})], (16)

where E[· · ·] denotes the mathematical expectation of a random variable; in addition, recall
that the sets (xa, xb, xc) and (u, v, w) denote four-vectors of Minkowski space-time.

4. Equations of Motion of Gluon Fields under the Influence of Valence Quarks

Taking into account the previous section, the solution to each of the equations of the
system (15) can be represented in the form:

Ψ̆k(ξ, sξ |λk(sξ)) = Ψk(ξ) exp
(∫ sξ

0
Λk(ξ, s′)ds′

)
, k = 1, 2, 3, (17)

where Ψk(ξ) is a regular function, a solution to one of the Equations in system (5), and
Λk(ξ, sξ) denotes a complex probabilistic process, which can be conveniently represented
as a sum consisting of real and imaginary terms:

Λ1 = ∑
j=1,2

ij−1ϕj(su|u), Λ2 = ∑
j=1,2

ij−1 φj(sv|v), Λ3 = ∑
j=1,2

ij−1θj(sw|w). (18)

Substituting a solution of the form (17) into the corresponding Equations of system (15),
we obtain 

Λ̇1 + a1Λ1 + b1Λ2
1 + c1λ1(su) = 0,

Λ̇2 + a2Λ2 + b2Λ2
2 + c2λ2(sv) = 0,

Λ̇3 + a3Λ3 + b3Λ2
3 + c3λ3(sw) = 0,

(19)

where

Λ̇k = ∂Λk/∂sξ , ak =
2ξ · ∇M ln Ψk − 2 − sξ

ξ0 − ∑3
k=1 ξk

, bk = ck =
sξ

ξ0 − ∑3
k=1 ξk

. (20)

Note that the operator ∇M = (∂ξ0 ,−∂ξ1 ,−∂ξ2 ,−∂ξ3) denotes the gradient in Minkowski
space-time R4.

Now we define random functions λk(sξ) that characterize the properties of colored
and anticolored gluon fields, representing them as the sum of real and imaginary terms:

λk(sξ) = f (r)k (sξ) + i f (i)k (sξ), k = 1, 2, 3. (21)

For definiteness, we assume that these functions satisfy Markov–Gaussian random
processes or white noise correlation relations:

E
[

f (υ)j (sξ)
]
= 0, E

[
f (υ)j (sξ) f (υ)j (s′ξ)

]
= 2ε

(υ)
j δ(sξ − s′ξ), j = 1, 2, (22)

where υ = (i, r).
We assume that the random generators f (r)j and f (i)j characterize elastic and in-

elastic processes of exchange of gluons and antigluons of a given color between two
specific quarks.

Finally, using expressions (17)–(21), we can obtain the following system of six nonlinear
Langevin-type SDEs:
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ϕ̇1 + a(r)1 ϕ1 − a(i)1 ϕ2 + b1(ϕ
2
1 − ϕ2

2) + c1 f (r)1 (s) = 0,

ϕ̇2 + a(i)1 ϕ1 + a(r)1 ϕ2 + 2b1ϕ1ϕ2 + c1 f (i)1 (s) = 0,

φ̇1 + a(r)2 φ1 − a(i)2 φ2 + b2(φ2
1 − ϕ2

2) + c2 f (r)2 (s) = 0,

φ̇2 + a(i)2 ϕ1 + a(r)2 φ2 + 2b2 φ1 φ2 + c2 f (i)2 (s) = 0,

θ̇1 + a(r)3 θ1 − a(i)3 θ2 + b3(θ
2
1 − θ2

2) + c3 f (r)3 (s) = 0,

θ̇2 + a(i)3 θ1 + a(r)3 θ2 + 2b3θ1θ2 + c3 f (i)3 (s) = 0.

(23)

Recall that for further study of the system of Equation (23), we synchronized the evolu-
tionary parameters, that is, we took the smallest parameter among them s = min{su, sv, sw}.

Thus, the system of Equation (23) describes colored gluon fields under the influence
of three valence quarks and also takes into account the self-actions of gluons. Now it is
important to use the SDEs (23) to obtain a regular equation that describes the distribution of
gluon fields in the limit of statistical equilibrium. Note that this is fundamentally important
for a consistent analytical construction of the problem.

5. Distribution of Colored Gluon Fields in the Limit of Statistical Equilibrium

When gluons are exchanged between two valence quarks of different colors, since the
overall white color of the nucleon must be conserved, this must affect the dynamics of the
third valence quark to preserve the color of the nucleon. It follows that any processes of
gluon exchange between two quarks make the interaction in the nucleon three-particle.
The latter means that the probabilities of the distribution of gluon fields of all six colors
should be interconnected and combined. Taking into account the above, it is necessary to
represent the distribution of gluon fields in the following form:

P(ϑ, s|ϑ0, s0) =
〈

∏
j=1,2

∏
ϑ=ϕ,φ,θ

δ
(
ϑj(s)− ϑ0j

)〉
, (24)

where ϑ(s) =
{

ϕ(s),φ(s), θ(s)
}
∈ Ξ{ϑ(s)} and ⟨· · ·⟩ denotes the functional integration over

the functional space Ξ{ϑ(s)}, whose measure will be defined below; in addition, ϑ0j = ϑj(s0)
denotes the field value in s0 = 0.

Using the SDE system (22), it is possible to strictly prove that the probability distribu-
tion of gluon fields satisfies the following Fokker–Planck-type PDE (see [17,18]):

∂P
∂s

= L̂(ϑ, s|u, v, w)P , (25)

where the evolution operator L̂(ϑ, s|u, v, w) has the following form:

L̂ =

{(
ε̄
(r)
1

∂2

∂ϕ2
1
+ ε̄

(i)
1

∂2

∂ϕ2
2

)
+

(
ε̄
(r)
2

∂2

∂φ2
1
+ ε̄

(i)
2

∂2

∂φ2
2

)
+

(
ε̄
(r)
3

∂2

∂θ2
1
+ ε̄

(i)
3

∂2

∂θ2
2

)}
+

2

∑
j=1

{
∂

∂ϕj
σj(ϕ, s|u) + ∂

∂φj
πj(φ, s|v) + ∂

∂θj
ωj(θ, s|w)

}
. (26)

where ε̄
(υ)
k = c2

kε
(υ)
k , (k = 1, 2, 3).

Note that in Equation (26), the following notations are made: ϕ = (ϕ1, ϕ2), φ =
(φ1, φ2), and θ = (θ1, θ2). In addition,

σ1(ϕ, s|u) = a(r)1 ϕ1 − a(i)1 ϕ2 + b1[ϕ
2
1 − ϕ2

2 ], σ2(ϕ, s|u) = a(i)1 ϕ1 + a(r)1 ϕ2 + 2b1ϕ1ϕ2,

π1(φ, s|v) = a(r)2 φ1 − a(i)2 φ2 + b2[φ
2
1 − φ2

2], π2(φ, s|v) = a(i)2 φ1 + a(r)2 φ2 + 2b2 φ1 φ2,

ω1(θ, s|w) = a(r)3 θ1 − a(i)3 θ2 + b3[θ
2
1 − θ2

2 ], ω2(θ, s|w) = a(i)3 θ1 + a(r)3 θ2 + 2b3 θ1θ2, (27)
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where a(r)k = Re{a} and a(i)k = Im{a}, (k = 1, 2, 3).
It is important to note that Equations (25) and (26) take into account gluon–antigluon

interactions. Recall that this is reflected in the mixed terms σ2(ϕ, s|u), π2(φ, s|v), and
ω2(θ, s|w). It is important to note that since colored gluon fields generate a sea of colored
quarks–antiquarks, the indicated distributions also describe a quark sea.

The symmetry of Equations (25) and (26) allows us to represent their solution in
factorized form:

P(ϑ, s|u, v, w) = Pϕ(ϕ, s|u) · Pφ(φ, s|v) · Pθ(θ, s|w), (28)

where each of the probability distributions Pϕ(ϕ, s|u), Pφ(φ, s|v), and Pθ(θ, s|w) is defined
on the corresponding two-dimensional manifold. In other words, the additional six-
dimensional subspace Ξ6

{ϑ} in the limit of the statistical equilibrium can be represented as
the following decomposition:

Ξ6
{ϑ}

∼= Ξ2
{ϕ}

⊗
Ξ2
{φ}

⊗
Ξ2
{θ}. (29)

If the nucleons are free, then we assume that the powers of gluon fluctuations are
relatively small, i.e., ε̄

(r)
k , ε̄

(i)
k ∼ 1 for all k = 1, 2, 3. In this case, we can safely assume

that all additional two-dimensional subspaces are Euclidean; Ξ2
ϕ

∼= Ξ2
φ
∼= Ξ2

θ
∼= R2 =

(−∞,+∞)×(−∞,+∞).
An important feature of Equation (26), which describes the distribution of fields of

colored gluons—or rather, the sea of quarks–antiquarks- in the limit of statistical equilib-
rium, is that it is quantized. Recall that this follows from the dependence of the function
ak(ξ, sξ), (k = 1, 2, 3) on the quantum state of quarks (see the definition of the function (19)),
which is characterized by six quantum numbers.

6. Geometric and Topological Features of the Additional Two-Dimensional Subspaces

In the case when the fluctuation’s powers for some reason take on large values,
ε̄
(r)
k , ε̄

(i)
k ≫ 1 for all k = 1, 2, 3, it is necessary to conduct a comprehensive analysis to identify

the geometric and topological features of the two-dimensional manifolds: Ξ2
{χ}, (χ =

ϕ,φ, θ).

Theorem 1. A dynamical system described by any of the SDEs from (19) generates a functional
space Ξ{χ(s)}, {χ(s) = ϕ(s),φ(s), θ(s)}, which in the limit of statistical equilibrium compactifies
into a two-dimensional manifold Ξ2

{χ}, (χ = ϕ,φ, θ), characterized by non-commutative geometry.

Proof. We will consider the distribution of two-component gluon fields or color–anticolor
fields. In particular, the fields probability density equation ϕ = (ϕ1, ϕ2) can be represented
as the following (see Appendix A):

∂Pϕ

∂s
= L̂(0)

ϕ Pϕ, L̂(0)
ϕ =

{(
ε̄
(r)
1

∂2

∂ϕ2
1
+ ε̄

(i)
1

∂2

∂ϕ2
2

)
+

2

∑
j=1

∂

∂ϕj
σj(ϕ, s|u)

}
. (30)

Let us write the same Equation (30) in tensor form for further analysis [18,19]):

∂Pϕ

∂s
=

{
∇2 + kϕ(ϕ1, ϕ2, s)

}
Pϕ, ∇2 =

1√
|g|

2

∑
i,j=1

∂

∂ϕi

(√
|g|gij ∂

∂ϕj

)
, (31)

where ϕ1 = ϕ1 and ϕ2 = ϕ2; in addition, kϕ = 2a(r)1 + 4b1ϕ1.
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To find the elements of the metric tensor, we write the two-dimensional Laplace–
Beltrami operator ∇2 in explicit form:

∇2 = g11 ∂2

∂ϕ2
1
+

1√
|g|

[
∂

∂ϕ1

(√
|g|g11

)
+

∂

∂ϕ2

(√
|g|g21

)] ∂

∂ϕ1
+ g12 ∂2

∂ϕ1∂ϕ2

+ g22 ∂2

∂ϕ2
2
+

1√
|g|

[
∂

∂ϕ2

(√
|g|g22

)
+

∂

∂ϕ1

(√
|g|g12

)] ∂

∂ϕ2
+ g21 ∂2

∂ϕ2∂ϕ1
. (32)

Comparing the operator written in the forms (26) and (32), and requiring the equality
of the corresponding terms in the Equations, we find

g11 = ε̄(r), g22 = ε̄(i), g12 = −g21, g = g11g22 − g12g21 = ε̄(r) ε̄(i) +
(

g12)2. (33)

As can be seen from expression (33), the metric tensor of the additional sub-manifold
Ξ2
{ϕ} is antisymmetric, which implies that the corresponding geometry is noncommutative.

A similar comparison of Equations (26) and (32) allows us to obtain the following first-order
differential equations for the non-diagonal element of the metric tensor g12 = y:{

ε̄(r)η∂ϕ1 y − (1 + yη)∂ϕ2 y = σ1(ϕ, s|u),
ε̄(i)η∂ϕ2 y + (1 + yη)∂ϕ1 y = σ2(ϕ, s|u), ∂x = ∂/∂x,

(34)

where
η(y, s|u) = y

ε(r)ε(i) + y2
.

Now our main task will be to use (34) to obtain an algebraic equation that allows us to
determine the element of the metric tensor y.

Using Equation (34), we can find the following two expressions for the mixed second
derivatives of the antisymmetric element of the metric tensor:

y12 =
∂2 y

∂ϕ1∂ϕ2
=

ϵ̄(i)(σ1;2η + σ1η2) + σ2;2(1 + yη) + σ2(y2η + yη;2)

aη2 + (1 + yη)2

−2
ϵ̄(i)σ1η + σ2(1 + yη)

[aη2 + (1 + yη)2]2
[
aηη;2 + (1 + yη)(y2η + yη;2)

]
,

y21 =
∂2 y

∂ϕ2∂ϕ1
=

ϵ̄(r)(σ2;1η + σ2η;1)− σ1;1(1 + yη)− σ1(y1η + yη;1)

aη2 + (1 + yη)2

−2
ϵ̄(r)σ2η − σ1(1 + yη)

[aη2 + (1 + yη)2]2
[
aηη;1 + (1 + yη)(y1η + yη;1)

]
, (35)

where η;j = ∂η/∂ϕj and σi;j = ∂σi/∂ϕj, (i, j = 1, 2).
It is important to note that the antisymmetry of the nondiagonal elements of the metric

tensor arises at the stage of choosing a coordinate system and, accordingly, the orientation
of the sub-manifold under consideration Ξ2

{ϕ}.
Regarding the question of the symmetry of mixed second derivatives on any oriented

manifolds, then, based on the basic requirement of mathematical analysis, the following
identity must be satisfied at any point in four-dimensional Minkowski space (Schwartz’s
theorem, see [20]):

y12 =
∂2 y

∂ϕ1∂ϕ2
= y21 =

∂2 y
∂ϕ2∂ϕ1

, (36)

which is a necessary condition for a twice continuously differentiable function. In the
context of partial differential equations, it is called the Schwarz integrability condition.

Using Equations (32), (34), and (36), we can finally obtain the following fourth-degree
algebraic equation for the asymmetric element of the metric tensor g12 = −g21 = y:
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4

∑
n=0

An(ϕ1, ϕ2|u, s)yn = 0, (37)

where the coefficients of the algebraic equation An(ϕ1, ϕ2|u, s) are defined by the following
expressions:

A0 = ε(r)ε(i)
{

4ε(r)ε(i)b1ϕ1 − 2ε(r)[2a(i)1 b1ϕ1 + a(r)1 (a(i)1 + 2b1ϕ2)]ϕ1ϕ2 + 2a(i)1 b1ε(i)ϕ2(ϕ
2
1 − ϕ2

2)
}

−[a(i)1 ]2(ε(r)ϕ2
1 + ε(i)ϕ2

2)− [a(r)1 ]2(ε(i)ϕ2
1 + ε(r)ϕ2

2) + 2ε(i)a(r)
[
ε(r) + a(i)ϕ1ϕ2 − b1ϕ1(ϕ

2
1 − ϕ2

2)
]

−b2
1
[
4ε(r)ϕ2

1ϕ2
2 + ε(i)(ϕ2

1 − ϕ2
2)

2]},
A1 = −ϵ(r)ϵ(i)

(
ϵ(r) + ϵ(i)

)(
a(i) + 2b1ϕ2

)
,

A2 = 2
{

4ε(r) × a(i)1 b1ϕ2
1ϕ2 + [a(i)1 ]2(ε(r)ϕ2

1 + ε(i)ϕ2
2) + [a(r)1 ]2(ε(i)ϕ2

1 + ε(r)ϕ2
2)+

b2
1
[
4ε(r)ϕ2

1ϕ2
2 + ε(i)(ϕ2

1 − ϕ2
2)

2]+ 2b1ε(i)
[
6ε(r)ϕ1 − a(i)1 ϕ2(ϕ

2
1 − ϕ2

2)
]

+ 2a(r)
[
ε(r)ϕ1ϕ2(a(i)1 + 2b1ϕ2) + ε(i)(3ε(r) − a(i)ϕ1ϕ2 + b1ϕ1(ϕ

2
1 − ϕ2

2)
]}

,
A3 = −4

(
ε(r) + ε(i)

)(
a(i) + 2b1ϕ2

)
,

A4 = 16
(
a(r)1 + 2b1ϕ1

)
.

As can be seen, at each point of Minkowski space-time u ∈ R4, the coefficients of
Equation (37) are functions of two coordinates (ϕ1, ϕ2), which are the coordinates of the
tangent bundle of the two-dimensional sub-manifold Ξ2

{ϕ}. Note that the submanifold Ξ2
{ϕ}

generates the algebraic Equation (37) in the form of a two-dimensional quantized space
(again due to the dependence on the function ak(u, s), see (19)). In particular, depending on
the value of the fluctuation powers ε̄(r) and ε̄(i) in the continuum set of points defined by
the coordinates (ϕ1, ϕ2), the solution to the algebraic equation can be complex. In this case,
it is necessary to cut out such regions and leave only the regions in which the algebraic
equation has real solutions. As a result of this procedure, the resulting submanifold will
have topological features characterized by the Betti number n ≤ 4 (see Figures 3 and 4),
where 4 is the number of complex solutions of the algebraic Equation (37).

Figure 3. Left figure depicts a three-dimensional plot of the asymmetric element of the metric tensor
g12(ϕ1, ϕ2) in the s → ∞ limit, calculated in the nucleon ground state for the values of parameters
ε(r) = ε(i) = 1 and a(r) = 0, a(i) = b1 = 1. Right figure shows a two-dimensional projection of the
sub-manifold Ξ2

{ϕ}, where it is clearly seen that it has a singularity characterized by a Betti number
of 1.
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Figure 4. Left figure depicts a three-dimensional plot of the metric tensor element g12(ϕ1, ϕ2) in the
limit s → ∞, calculated in nucleon ground state for values of ε(r) = ε(i) = 1.5 and a(r) = 0, a(i) =
b1 = 1. Right figure shows a two-dimensional projection of the sub-manifold Ξ2

{ϕ}, where it is clearly
seen that the its has a singularity with a Betti number of 2.

Note that a similar proof can be carried out in the case of equations of distributions:
Pφ(φ, s|v) and Pθ(θ, s|w). It is obvious that generating the additional two-dimensional
submanifolds Ξ2

{φ} and Ξ2
{θ} will have similar geometric and topological features as the

sub-manifold Ξ2
{ϕ}.

7. Construction of a Measure of the Functional Subspace

To calculate the mathematical expectation of different parameters of a dynamical
system, we need to construct measures of three functional subspaces, Ξ{ϕ(s)}, Ξ{φ(s)},
and Ξ{θ(s)}. Since all these noted subspaces are similar in their geometric and topological
properties, below, we will study only one of these subspaces and construct its measure.

Let the probability distribution in each point of the Minkowski space-time u ∈ R4

satisfy the following limiting condition:

lim
s→s′

Pϕ(ϕ, s|ϕ′, s′) = δ(ϕ − ϕ′), s = s′ + ∆s, (38)

Taking into account (38) for small intervals of events, that is, for ∆s = s − s′ ≪ 1, we
can present the solution to Equations (25) and (26) in the following form (see also [18]):

Pϕ(ϕ, s; u|ϕ′, s′) =
1

2π
√
|det ε̄|∆s

×

exp

{
−
[
ϕ − ϕ′ − σ(ϕ, s|u)∆s

]T
ε̄−1[ϕ − ϕ′ − σ(ϕ, s|u)∆s

]
2∆s

}
, (39)

where ε̄ is the second-rank matrix with elements ε11 = ε̄(r), ε22 = ε̄(i), and ε12 = ε21 = 0,
while [· · ·]T denotes a vector transposition.

Additionally, in representation (39), a two-dimensional vector σ(ϕ, s|u) is defined as

σ(ϕ, s|u) =
{

σ1(ϕ, s|u) = a(r)1 ϕ1 − a(i)1 ϕ2 + b1[ϕ
2
1 − ϕ2

2 ],
σ2(ϕ, s|u) = a(i)1 ϕ1 + a(r)1 ϕ2 + 2b1ϕ1ϕ2,

(40)

where the functions σ1(ϕ, s|u) and σ2(ϕ, s|u) implicitly depend on the event interval “s”
and parametrically on the points in Minkowski space u ∈ R4.
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As can be seen from expression (39), the evolution of the system in the functional space
Ξ{ϕ(s)} is characterized by a regular shift with a speed σ(ϕ, s|u) against the background of
Gaussian fluctuations with the diffusion matrix εij. Concerning the trajectory ϕ(s) in the
functional space Ξ{ϕ(s)}, it is determined by the following Equations (see [21]):

ϕ(s) =

{
ϕ1(s + ∆s) = ϕ1(s) + σ1(ϕ, s|u)∆s + (∆s)1/2 f (r)(s),
ϕ2(s + ∆s) = ϕ2(s) + σ2(ϕ, s|u)∆s + (∆s)1/2 f (i)(s).

(41)

In order not to complicate the writing of formulas, we do not write the parametric
dependence of the functions ϕ1 and ϕ2 on the variable “u”.

As can be seen from (41), the trajectory ϕ(s) is continuous everywhere, since ϕ(s +
∆s)

∣∣
∆s→0= ϕ(s), but nevertheless, it is nondifferentiable everywhere due to the presence of

the term (∆s)1/2. If the interval of events is represented as ∆s = s/N, where N → ∞, then
expression (39) can be interpreted as the probability of transition from the vector field ϕl(s)
to the vector field ϕl+1(s) during of the interval ∆s within the Brownian motion model.

Finally, we can define the measure of the function space Ξ{ϕ(s)}, which we will
conventionally call the Fokker–Planck measure:

Dµ(ϕ) = dµ(ϕ0) lim
N→∞

{(
1

2π

N/s√
ε̄(r) ε̄(i)

)N N

∏
l= 0

dϕ1(l+1)dϕ2(l+1) exp

[
−N/s

2ε̄(r)

(
ϕ1(l+1)

−ϕ1(l) − σ1(l+1)
sl+1
N

)2

− N/s
2ε̄(i)

(
ϕ2(l+1) − ϕ2(l) − σ2(l+1)

sl+1
N

)2
]}

, (42)

where dµ(ϕ0) = δ(ϕ1 − ϕ1(0))δ(ϕ2 − ϕ2(0))dϕ1dϕ2 denotes the measure of the initial distri-
bution. In addition, in representation (42), the following notations are made:

ϕ1(l) = ϕ1(sl), ϕ2(l) = ϕ2(sl), σ1(l) = σ1(ϕ1(l), ϕ2(l), sl), σ2(l) = σ2(ϕ1(l), ϕ2(l), sl).

Thus, we have constructed a measure (42) of the functional subspace Ξ{ϕ(s)}, which
is necessary for further analytical constructions of the theory. In a similar way, we can
construct expressions for the measures of the subspaces Ξ{φ(s)} and Ξ{θ(s)}, respectively.

8. Mathematical Expectation of the Nucleon Wave Function

To calculate the mathematical expectation of the full wave function, we first need to
average the complex probabilistic process (17) over the functional sub-space Ξ{χ(s)}.

Definition 1. The mathematical expectation of a complex probabilistic process, taking into account
the influence of colored gluon fields, will be determined by the following integral representation:

Ψk(ξ) = E[Ψ̆k(ξ|χ)] =
Ψk(ξ)

αk(s, ξ)

∫
· · ·

∫
Ξ{χ(s)}

Dµ(χ) exp
(∫ s

0
Λk(s′; ξ)ds′

)
, (43)

where αk(s, ξ) =
∫
· · ·

∫
Ξ{χ(s)}

Dµ(χ) =
∫ ∫

Ξ2
{χ}

Pχ(χ, s)dχ1dχ2 is a normalizing constant.

Recall that we consider that Ψ̆k
(
ξ|λ1(sξ)

)
= Ψ̆k(ξ|χ) (see expression (16)).

Using the generalized Feynman–Katz theorem [18] and given the expression (17), we can
integrate the functional integral in (43) and find the following two-dimensional integral
representation for the mathematical expectation of the nucleon wave function:

Ψ1(u) = E[Ψ̆1(u|ϕ)] =
Ψ1(u)

α1(s, u)

∫ ∫
Ξ2
{ϕ}

Qϕ(ϕ, s|u)dϕ1dϕ2, (44)
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where the integrand function Qϕ(ϕ, s|u) is the solution of the following complex PDE:

∂Qϕ

∂s
=

{
L̂(0)

ϕ (ϕ, s|u) + ϕ1 + iϕ2
}

Qϕ. (45)

Let us represent the solution to Equation (45) as the sum of the real and imaginary parts

Qϕ(ϕ, s|u) = Q(r)
ϕ (ϕ, s|u) + iQ(i)

ϕ (ϕ, s|u). (46)

Substituting (46) into Equation (45), we obtain two real coupled PDEs:{
∂sQ(r)

ϕ =
{
L̂(0)

ϕ + ϕ1
}

Q(r)
ϕ − ϕ2Q(i)

ϕ ,

∂sQ(i)
ϕ =

{
L̂(0)

ϕ + ϕ1
}

Q(i)
ϕ + ϕ2Q(r)

ϕ .
(47)

Similar to definition (43), we can construct mathematical expectations of complex
probabilistic processes Ψ̆2(v|φ) and Ψ̆3(w|θ).

In particular, in averaging the wave function Ψ̆2(v|φ), we find the following expression:

Ψ2(v) = E[Ψ̆2(v|φ)] =
Ψ2(v)

α2(s, v)

∫ ∫
Ξ2
{φ}

[
Q(r)

φ (φ, s|v) + iQ(i)
φ (φ, s|v)

]
dφ1dφ2, (48)

where α2(s, v) =
∫
· · ·

∫
Ξ{φ(s)}

Dµ(φ) =
∫ ∫

Ξ2
{φ}

Pφ(φ, s)dφ1dφ2 and, accordingly, Q(r)
φ (φ, s|v)

and Q(i)
φ (φ, s|v) are solutions to the following PDEs’ system:{

∂sQ(r)
φ =

{
L̂(0)

φ + φ1
}

Q(r)
φ − φ2Q(i)

φ ,
∂sQ(i)

φ =
{
L̂(0)

φ + φ1
}

Q(i)
φ + φ2Q(r)

φ .
(49)

The procedure for functional averaging of the wave function Ψ̆3(w|θ) leads to the
following result:

Ψ3(w) = E[Ψ̆3(w|θ)] = Ψ3(w)

α3(s, w)

∫ ∫
Ξ2
{θ}

[
Q(r)

θ (θ, s|w) + iQ(i)
θ (θ, s|w)

]
dθ1dθ2, (50)

where α3(s, w) =
∫
· · ·

∫
Ξ{θ(s)}

Dµ(θ) =
∫ ∫

Ξ2
{θ}

Pθ(θ, s)dθ1dθ2; in addition, the functions

Q(r)
θ (θ, s|w) and Q(i)

θ (θ, s|w) are solutions to the following PDEs’ system:{
∂sQ(r)

θ =
{
L̂(0)

θ + θ1
}

Q(r)
θ − θ2Q(i)

θ ,
∂sQ(i)

θ =
{
L̂(0)

θ + θ1
}

Q(i)
θ + θ2Q(r)

θ .
(51)

Now, regarding the functions Q(υ)
χ (χ, s|ξ), where (υ = r, i), χ = (ϕ,φ, θ), and ξ =

(u, v, w), giving them the meaning of density probabilities, we can normalize them:

Q̄(υ)
χ (χ, s|ξ) = α−1

χ (ξ; s)Q(υ)
χ (χ, s|ξ), (52)

where αχ(ξ; s) =
∫ ∫

Ξ2
{χ}

∑υ=r,i Q(υ)
χ (χ, s|ξ)dχ1dχ2.

Obviously, for the normalized probability distributions, the following condition
will occur: ∫ ∫

Ξ2
{χ}

∑
υ=r,i

Q̄(υ)
χ (χ, s|ξ)dχ1dχ2 = 1.
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Finally, taking into account the obtained results (16), (44), (48), and (50), we write
down the mathematical expectation of the wave nucleon functions, taking into account the
continuous gluon exchange between quarks and the influence of the sea of colored quarks:

Ψ(u, v, w) = E[Ψ̆(u, v, w|{λ})] = Ψ1(u)Ψ2(v)Ψ3(w). (53)

By carrying out this type of normalization, we actually take into account two-quark
interactions in a three-quark system, which is a simplification of the real problem. To take
into account three-quark interactions that preserve the color of the nucleon, it is necessary
to carry out more complex three-color synchronization in the dynamical system, which will
be equivalent to taking into account three-quark interactions (see Appendix A for details).

In the end, we note that the mathematical algorithm for the numerical study of a
complex PDE of type (45) has been studied in detail in the works of the authors [14,18].

9. Mathematical Expectation of Nucleon Radius and Mass

The average radius and average mass of a nucleon are formed as mathematical expec-
tations of the corresponding quantities in the ground state of the nucleon.

Definition 2. Average value of the square root of the squared radii of quark displacements, calculated
in the ground state of the nucleon, will be called the nucleon radius:

Rnuc
(
ε
(r)
1 , · · ·, ε

(i)
3
)
= lim

s→∞

√∫
· · ·

∫
(v2 + w2)ϱ(u, v, w)d4vd4w, (54)

where v, w ∈ R3 denote the spatial three-dimensional vectors, ϱ0(u, v, w) = |Ψ0(u, v, w)|2 is the
probability density, and Ψ0(u, v, w) denotes the mathematical expectation of the wave function of
the nucleon in the ground state.

The fact that there is no integration over the coordinates of the four-dimensional vector
u is due to the fact that the system performs translational motion along these coordinates.
Expression (54) can be written explicitly:

Rnuc
(
ε
(r)
1 , · · ·, ε

(i)
3
)
=

lim
s→∞

√∫
· · ·

∫
e−

Ω0
3

(
v2

0+v2+w2
0+w2

)
(v2 + w2)

ϱ0(v, w, s)d4vd4w
α2

1(u, s)α2
2(v, s)α2

3(w, s)
, (55)

where the function of the probability density ϱ0(v, w, s) is defined as follows:

ϱ0(v, w, s) =
∣∣∣∣∫ ∫

Ξ2
{ϕ}

[
Q(r)

ϕ (ϕ, s|u) + iQ(i)
ϕ (ϕ, s|u)

]
dϕ1dϕ2 ×

∫ ∫
Ξ2
{φ}

[
Q(r)

φ (φ, s|v)

+ iQ(i)
φ (φ, s|v)

]
dφ1dφ2 ×

∫ ∫
Ξ2
{θ}

[
Q(r)

θ (θ, s|w) + iQ(i)
θ (θ, s|w)

]
dθ1dθ2

∣∣∣∣2. (56)

Finally, we can calculate an important parameter of the nucleon—its mass.

Definition 3. Following expression will be called the mathematical expectation of the nucleon mass
in the ground state

mnuc
(
ε
(r)
1 , · · ·, ε

(i)
3
)
= lim

s→∞

√∫
· · ·

∫ ∣∣∣Ψ∗
(u, v, w)

∂2

∂t2 Ψ(u, v, w)d4vd4w
∣∣∣. (57)

Having calculated (57), we obtain the following expression for the nucleon mass:
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mnuc
(
ε
(r)
1 , · · ·, ε

(i)
3
)
=

m0 lim
s→∞

√∫
· · ·

∫
e−

Ω0
3

(
v2

0+v2+w2
0+w2

)
ϱ0(v, w, s)d4vd4w

α2
1(u, s)α2

2(v, s)α2
3(w, s)

. (58)

After we have determined the radius and mass of the nucleon through the fluctuation
powers of the gluon fields (ε

(r)
1 , ..., ε

(i)
3 ), a natural question arises: can we find these con-

stants, knowing only the masses of the nucleon and quarks, respectively? Based on the fact
that two of the three quarks in a nucleon are the same and the fluctuation powers of the
gluon and antigluon fields are equal, we can conclude that there are only two independent
constants that characterize six-color gluon fields. The latter means that if the mass of a
nucleon in a free state is known, then in addition to Equation (58), another equation is
needed to completely determine these constants. The missing second equation in this case
may be the total energy of the colored gluon fields, which is equivalent to the effective
mass of the sea of quarks mqs = mnuc − m0 ≃ 0.99 · mnuc. This energy is determined by the
probability distributions on the corresponding two-dimensional sub-manifolds and can be
represented as a sum of three terms (see expression (A9)):

lim
s→∞ ∑

χ=ϕ,φ,θ
∑

υ=i,r

∫ ∫
Ξ2
{χ}

Q̄(υ)
χ (ϕ, s|ξ)dχ1dχ2 = mqs/mnuc ≃ 0.99. (59)

Thus, we have obtained the two Equations (58) and (59), which allow us to uniquely
determine two constants characterizing the powers of color gluon fluctuations in a free
nucleon when the nucleon is in the ground state.

10. Conclusions

Although it has long been known that nucleons consist of valence quarks and a quark–
antiquark sea, and although we know the rules of local gauge invariance with respect
to the SU(3) symmetry group, it can be argued that we are still far from a satisfactory
understanding of the problem [22]. This is largely due to the problem of the strong
nonlinearity of QCD, due to which perturbative methods are often inapplicable. In this
regard, new, especially nonperturbative theoretical studies on this topic remain highly
relevant and continue to serve as a source of ideas for new experiments in hadron physics.

The model of the nucleon as a three-quark relativistic system with the interaction
potentials of a four-dimensional harmonic oscillator, proposed by Feynman et al. [5], at one
time turned out to be very useful for studying the structure and properties of the internal
motion of the nucleon. However, as further experimental studies have shown, the rest
mass of a three-quark system is only a percentage of the total rest mass of the nucleon.
The missing main mass of the nucleon turns out to be due to the QCD binding energy,
which arises as a result of the breaking of QCD chiral symmetry. In other words, intense
interactions of valence quarks with colored gluon fields generate a sea of virtual quarks
and antiquarks, which is ultimately recorded by measuring instruments as the rest mass of
a nucleon.

To overcome this difficulty, we generalized the relativistic model [5], considering the
problem of the internal motion of a nucleon as a self-organization problem of a complex
three-quark dynamical system in a colored sea of quarks–antiquarks. We formulated the
mathematical problem within the framework of a complex probabilistic process, satisfying
an equation of the Langevin–Kline–Gordon–Fock type (see Equations (10)–(15)). Using this
equation, we obtained a system of SDEs that describes the motion of a six-color gluon field
under the influence of a valence three-quark system (see system of Equation (23)). Note
that the stochastic extension of the Klein–Gordon–Fock equation does not allow including
all eight gluons: in the quark–gluon interaction scheme due to the neglect of the spin part
of the motion. In this representation, the contributions of two colorless gluons are not taken
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into account. It is obvious that a complete description of the problem can only be achieved
by stochastic extension of the Yang–Mills equations within the framework of the gauge
symmetry group SU(3), similar to what was performed in the work of the author [23] for
the gauge symmetry group SU(2)

⊗
U(1). Recall that such work would be very important

for quantum field theory also because it would make it possible to theoretically substantiate
the existence of eight-color massless gluons, carriers of strong interactions.

One of the most interesting and important results of the developed approach is the
appearance of additional quantized subspaces with Betti topological singularities. By
averaging over these subspaces in order to calculate the mathematical expectation of the
nucleon wave function, the chiral symmetry is spontaneously broken, but most importantly,
effective interactions between valence quarks arise with respect to which the harmonic
interactions between these particles are only a background.

Thus, the developed approach represents a significant rethinking of the concept of the
relativistic quark model [5] and takes into account all the physical processes known to us
that lead to the formation of a nucleon in its modern understanding. In a mathematical
sense, this representation combines elements of complex probabilistic processes, relativistic
wave mechanics, path integrals, and noncommutative geometry with Betti singularities,
which makes it possible to overcome all known difficulties for a rigorous description of the
quantum state of the nucleon.

In the future, we plan to numerically study the features of nucleons depending on
these fluctuation powers. Recall that this will give us important information not only about
nucleons but also about macroscopic objects in which these particles are immersed. We
emphasize that this kind of information about nucleons and their environment can only be
obtained through the development of a nonperturbative theory.

Finally, it is important to note that all results obtained as the mathematical expectation
of various nucleon parameters are formed in times ∆t ≥ h̄/2∆E = 2, 19 · 10−24 sec, where
∆E ≈ mnucc2

0 is the energy of the quark–antiquark sea and c0 is the speed of light in vacuum.
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Appendix A

As mentioned above, Equations (25) and (26) describe the distribution of gluon fields
in the limit of statistical equilibrium, taking into account their interaction with the three-
quark dynamical system, as well as gluon–antigluon interactions (see terms σ2(ϕ, s|u),
π2(φ, s|u) and ω2(θ, s|u) in Equations (26) and (27)). This equation can be represented as

∂P
∂s

=

{(
ε̄
(r)
1

∂2

∂ϕ2
1
+ ε̄

(i)
1

∂2

∂ϕ2
2

)
+

(
ε̄
(r)
2

∂2

∂φ2
1
+ ε̄

(i)
2

∂2

∂φ2
2

)
+

(
ε̄
(r)
3

∂2

∂θ2
1
+ ε̄

(i)
3

∂2

∂θ2
2

)
+

2

∑
j=1

[ ∂

∂ϕj
σj(ϕ, s|u) + ∂

∂φj
πj(φ, s|v) + ∂

∂θj
ωj(θ, s|w)

]
+K(ϕ1, ϕ2; φ1, φ2; θ1, θ2)

}
P , (A1)

where K(ϕ1, ϕ2; φ1, φ2; θ1, θ2) = Kϕ +Kφ+Kθ ≡ 0 is the color-mixing member. In addition,

Kϕ = φ1 + φ2 − θ1 − θ2, Kθ = ϕ1 + ϕ2 − φ1 − φ2, Kφ = θ1 + θ2 − ϕ1 − ϕ2.
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Substituting the solution (28) into Equations (25) and (26), we find the following
system of three loosely coupled PDEs:

∂sPϕ = L̂ϕ(ϕ, s|u)Pϕ, L̂ϕ =
{(

ε̄
(r)
1

∂2

∂ϕ2
1
+ ε̄

(i)
1

∂2

∂ϕ2
2

)
+ ∑2

j=1
∂

∂ϕj
σj(ϕ, s|u) +Kϕ

}
,

∂sPφ = L̂φ(φ, s|v)Pφ, L̂φ =
{(

ε̄
(r)
2

∂2

∂φ2
1
+ ε̄

(i)
2

∂2

∂φ2
2

)
+ ∑2

j=1
∂

∂φj
πj(φ, s|v) +Kφ

}
,

∂sPθ = L̂θ(θ, s|w)Pθ, L̂θ =
{(

ε̄
(r)
3

∂2

∂θ2
1
+ ε̄

(i)
3

∂2

∂θ2
2

)
+ ∑2

j=1
∂

∂θj
σj(θ, s|w) +Kθ

}
.

(A2)

Now we can give the distributions Pϕ(ϕ, s|u), Pφ(φ, s|v), and Pθ(θ, s|w) the meaning
of probability densities and normalize them:

P̄ϕ(ϕ, s|u, v, w) = C−1(u, v, w, s)Pϕ(ϕ, s|u),
P̄φ(φ, s|u, v, w) = C−1(u, v, w, s)Pφ(φ, s|v),
P̄θ(θ, s|u, v, w) = C−1(u, v, w, s)Pθ(θ, s|w), (A3)

where C(u, v, w, s) is the normalization constant defined by the expression

C =
∫ ∫

Ξ2
{ϕ}

Pϕ(ϕ, s|u)dϕ1dϕ2 +
∫ ∫

Ξ2
{φ}

Pφ(φ, s|v)dφ1dφ2 +
∫ ∫

Ξ2
{θ}

Pθ(θ, s|w)dθ1dθ2.

Obviously, in this case, the following equality holds:∫ ∫
Ξ2
{ϕ}

P̄ϕ(ϕ, s|u, v, w)dϕ1dϕ2 +
∫ ∫

Ξ2
{φ}

P̄φ(φ, s|u, v, w)dφ1dφ2

+
∫ ∫

Ξ2
{θ}

P̄θ(θ, s|u, v, w)dθ1dθ2 = 1. (A4)

Now we can similarly construct a measure of the function space Ξ{χ(s)} and perform
functional integration of the full wave function (see Sections 7 and 8):

Ψ(u, v, w) = E[Ψ̆(u, v, w|{λ})] = Ψ1(u)Ψ2(v)Ψ3(w)

C(u, v, w, s)
×

∏
χ=ϕ,φ,θ

∫ ∫
Ξ2
{χ}

[
Q(r)

χ (χ, s|ξ) + iQ(i)
χ (χ, s|ξ)

]
dχ1dχ2, ξ = u, v, w, (A5)

where the solutions Q(r)
χ and Q(i)

χ satisfy the following system of PDEs:{
∂sQ(r)

χ =
{
L̂χ + χ1

}
Q(r)

χ − χ2Q(i)
χ ,

∂sQ(i)
χ =

{
L̂χ + χ1

}
Q(i)

χ + χ2Q(r)
χ .

(A6)

As in the case of functions Pϕ, Pφ, and Pθ, we can give these solutions the meaning
of probabilities density and normalize them. In particular, we can write

Q̄(r)
χ (χ, s|u, v, w) = C−1

∗ (u, v, w, s)Q(r)
χ (χ, s|ξ),

Q̄(i)
χ (χ, s|u, v, w) = C−1

∗ (u, v, w, s)Q(i)
χ (χ, s|ξ), (A7)

where C∗(u, v, w, s) is the normalization constant, which is defined as follows:

C∗(u, v, w, s) = ∑
χ=ϕ,φ,θ

∑
υ=i,r

∫ ∫
Ξ2
{χ}

Q(υ)
χ (ϕ, s|ξ)dχ1dχ2. (A8)

In addition, there will be conservation of total probability:

∑
χ=ϕ,φ,θ

∑
υ=i,r

∫ ∫
Ξ2
{χ}

Q̄(υ)
χ (ϕ, s|ξ)dχ1dχ2 = 1. (A9)
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Thus, we have combined and normalized the probability distributions of all quark
colors, which allows us to be confident that we have synchronized the quark colors so
that the nucleon color will be invariant with respect to the internal motion of the nucleon.
Obviously, such synchronization will mean taking into account three-quark interactions in
the system.

Note that the choice of a model for connecting the probabilities Q(r)
χ (χ, s|u, v, w) and

Q(i)
χ (χ, s|u, v, w) or the parameter K(ϕ1, ϕ2; φ1, φ2; θ1, θ2) is not limited by any physical

principle and therefore can be further refined, taking into account the requirements of the
considered problem. In the end, we note that if in the calculations we replace the operator
L̂χ with L̂(0)

χ = L̂χ

∣∣
Kχ=0 (see Equation (A2)), then our consideration of the problem will

have a two-particle approximation (see Section 8).
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