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Abstract: Numerical algorithms for calculating the left- and right-sided Riemann–Liouville frac-
tional integrals and the left- and right-sided fractional derivatives in the Caputo sense using spline
interpolation techniques are derived. The spline of the fifth degree (the so-called quintic spline)
is mainly taken into account, but the linear and cubic splines are also considered to compare the
quality of the developed method and numerical calculations. The estimation of errors for the derived
approximation algorithms is presented. Examples of the numerical evaluation of the fractional inte-
grals and derivatives are executed using 128-bit floating-point numbers and arithmetic routines. For
each derived algorithm, the experimental orders of convergence are calculated. Also, an illustrative
computational example showing the action of the considered fractional operators on the symmetric
function in the interval is presented.

Keywords: fractional calculus; numerical integration; numerical differentiation; spline interpolation

1. Introduction

Fractional integral and differential operators are the most important elements of
fractional calculus [1–4]. Many researchers are still looking for physical and geometrical
interpretations for these operators. Fractional-order differential and/or integral equations
are naturally related to modeling systems with memory (history), because the fractional
operators used in them are usually nonlocal operators. In order to calculate, for example,
the time or space fractional integrals and/or derivatives at a given time or a given point,
then knowledge of the function at all previous times or positions is required. There are
many applications of fractional calculus in the fields of science and engineering (see, e.g.,
recent works [5–11]), and it is impossible to list all their applications.

There are many kinds of definitions for fractional integrals and derivatives [1–4,12,13]. It is
impossible to mention and characterize all of them. Generally speaking, these definitions
are not equivalent to each other. This work focuses exclusively on the definitions of the
left- and right-sided Riemann–Liouville fractional integrals (Iα

a+ and Iα
b− ) and the left- and

right-sided Caputo fractional derivatives (CDα
a+ and CDα

b− ). The mentioned operators of
order α > 0 acting on a function y(x) on the interval [a, b] are defined as follows:

Iα
a+y(x) =

1
Γ(α)

x∫
a

y(ξ)

(x − ξ)1−α
dξ, for x > a, (1)

Iα
b−y(x) =

1
Γ(α)

b∫
x

y(ξ)

(ξ − x)1−α
dξ, for x < b, (2)
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CDα
a+y(x) := In−α

a+ y(n)(x) =


1

Γ(n − α)

x∫
a

y(n)(ξ)

(x − ξ)α−n+1 dξ, for n − 1 < α < n,

y(n)(x), for α = n,

(3)

CDα
b−y(x) := (−1)n In−α

b− y(n)(x) =


(−1)n

Γ(n − α)

b∫
x

y(n)(ξ)

(ξ − x)α−n+1 dξ, for n − 1 < α < n,

(−1)ny(n)(x), for α = n,

(4)

where n ∈ N, and Γ denotes the Euler Gamma function. If α = 0, then I0
a+y(x) = I0

b−y(x) =
CD0

a+y(x) = CD0
b−y(x) = y(x).

With the development of fractional calculus, there is a need to develop more and more
accurate methods for calculating the values of fractional operators for the given functions.
If the exact forms of fractional operators (derivatives and integrals) acting on a function are
not known, then their approximate values can be determined using numerical methods.
The general rule in approximate calculations of the values of these operators is to replace
the integrand function with simple interpolation functions for which known analytical
forms of the fractional operators can be used. Often, piecewise-polynomial interpolants on
the grid of points are used for this purpose. The fractional integration or differentiation
of the polynomial interpolant instead of the given function has the consequence that
approximation errors may occur, and hence, the errors must also be estimated.

The development of new and more accurate numerical methods for the approximation
of fractional operators has been very popular in recent years. Here, it is worth mentioning
the book written in 1974 by Oldham and Spanier [1], which describes several numerical
schemes known as, for example, the L1, L2, R1 and R2 formulas. In later years, numeri-
cal methods of fractional integration and differentiation were developed and improved;
reviews of different methods can be found in [13–18].

The polynomial interpolation of a finite set of data points resulting from the discretiza-
tion of integrand functions is most often used in interpolating algorithms. This can lead to
the construction of high-degree polynomials that, however, have a tendency to oscillate.
Hence, splines [19–22] become useful for this purpose, especially those of odd degree. By
definition, a spline is a set of combined piecewise polynomials. The most commonly used
splines are of degree 3, but higher-degree splines allow more flexibility, and more data are
required to determine them. However, such splines have a higher degree of smoothness,
and it is worth using them in the interpolation. The application of second-degree splines for
the approximation of fractional integral operators was considered, for example, in [18,23].
Ciesielski and Grodzki [24] developed numerical integration schemes for the left- and
right-sided Riemann–Liouville and Riesz fractional integrals using, among other methods,
cubic spline interpolation techniques. Also, the computational errors were estimated using
analytical methods and then validated on examples by determining the experimental or-
ders of convergence. In [25], numerical algorithms for evaluating the left- and right-sided
Riemann–Liouville fractional integrals using Akima cubic spline interpolations [26] were
derived. The coefficients of spline segments for the Akima cubic spline are determined
locally, and there is no need to solve the system of linear equations to determine the
spline coefficients.

The main contribution of this work consists of providing numerical algorithms for
the approximation of the previously mentioned fractional integrals and derivatives (1)–(4),
which are based on quintic spline interpolation, because it seems necessary to develop
numerical algorithms with high accuracy and fast convergence. After this introduction, in
Section 2, a general introduction to splines of any degree is presented, and three algorithms
for constructing interpolation splines of the first, third and fifth degrees are derived in
detail, along with an analysis of approximation errors. Section 3 presents numerical ap-
proaches to the fractional integration and differentiation of the considered kinds of splines.
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In Section 4, sample numerical calculations of the fractional operators, along with compu-
tational errors and experimental orders of convergence, are presented. Finally, Section 5
provides concluding remarks.

2. Algorithms for Spline Interpolation

Suppose that the integrand function y(x) in Equations (1)–(4) is defined on the in-
terval [a, b] and is sufficiently smooth. Let us assume that the considered interval [a, b]
is split into N equispaced sub-intervals [xi, xi+1] for i = 0, 1, ..., N − 1, with the length
∆x = (b − a)/N. The coordinates of the nodal points are equal to xi = a + i∆x for
i = 0, 1, ..., N, wherein xN = b. The values of the function y(x) at the set of nodal points xi
are tabulated as yi = y(xi) for i = 0, 1, ..., N.

The function y(x) is replaced by an interpolation spline [26,27] that is a set of piecewise
polynomials linked in the set of points (x0, y0), (x1, y1), ..., (xN , yN), defined as

y(x) ∼= s(x) =



s0(x), if x ∈ [x0, x1],

s1(x), if x ∈ [x1, x2],

. . .

si(x), if x ∈ [xi, xi+1],

. . .

sN−1(x), if x ∈ [xN−1, xN ],

(5)

where

si(x) =
p

∑
k=0

ck,i(x − xi)
k, for x ∈ [xi, xi+1], i = 0, 1, ..., N − 1, (6)

are polynomials of degree p in each sub-interval. The coefficients ck,i, for k = 0, 1, ..., p, are
the coefficients of polynomial si(x) in the i-th sub-interval [xi, xi+1]. In further considera-
tions, the number of segments (i.e., equispaced sub-intervals) N, the spline degree p, the
location of nodes xi, for i = 0, ..., N, and the tabulated function values yi are assumed to be
known. It is easy to see that (for xi+1 − xi = ∆x)

si(xi) = c0,i, for i = 0, 1, ..., N − 1, (7)

si(xi+1) =
p

∑
k=0

ck,i(xi+1 − xi)
k =

p

∑
k=0

ck,i(∆x)k, for i = 0, 1, ..., N − 1. (8)

An important feature of the spline s(x) is the fulfillment of the following interpolation
conditions:

si(xi) = yi and si(xi+1) = yi+1, for i = 0, 1, ..., N − 1. (9)

In addition, the spline s(x) ∈ Cm[a, b] is m-times (m ≥ 0) continuously differentiable
at the nodal points. In this paper, three kinds of splines are considered, depending on the
degree p:

p = 1: The particular polynomials si are line segments (linear spline), and m = 0;
p = 3: The particular polynomials si are polynomials of degree 3 (cubic spline), and m = 2;
p = 5: The particular polynomials si are polynomials of degree 5 (quintic spline), and
m = 4.

The determination of the spline coefficients ck,i in Equation (6) depends on the degree
of spline interpolation that is used. For splines of degree p > 1, the following continuity
conditions (also known as smoothness conditions) at the nonboundary data points

s(l)i (xi+1) = s(l)i+1(xi+1) (10)

for i = 0, ..., N − 2 and l = 1, ..., p − 1 must be satisfied. The l-th derivative of the spline
segments si of degree p is defined as
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s(l)i (x) =


p

∑
k=l

k!
(k − l)!

ck,i(x − xi)
k−l , if l = 1, ..., p,

0, if l > p.

(11)

In order to construct the complete spline s(x) (5) of degree p, a total of N · (p + 1)
coefficients ck,i, for i = 0, ..., N − 1 and k = 0, 1, ..., p, need to be determined, and hence,
the same number of equations should be created. The interpolation conditions (10) and
the values si(xi) = yi and si(xi+1) = yi+1, for i = 1, ..., N − 1, provide (N − 1) · (p + 1)
equations in total from the nonboundary data points. The p + 1 missing equations are
formed on the basis of the colloquially named endpoint conditions, where two of them
result from the relations s0(x0) = y0 and sN−1(xN) = yN . The p − 1 remaining equations
can be provided by the choice of some derivatives of the polynomials at the boundary
points, i.e., s(l)0 (x0) and s(l)N−1(xN), for l = 1, ..., p − 1. Such spline constructions, in which
derivative information is involved, are called clamped spline interpolations. In the case of
the quintic spline (p = 5), it is necessary to set the values of four additional derivatives,
and in this research, s′0(x0), s′N−1(xN), s′′0 (x0) and s′′N−1(xN) are selected. Similarly, in
the case of the cubic spline (p = 3), the values of two additional derivatives of the first
order s′0(x0) and s′N−1(xN) are chosen. In contrast, for the linear spline, there is no need
to specify additional dependencies. Often, in scientific and engineering works, the so-
called natural splines are considered. Such splines are built by setting the highest-order
derivatives to zero at the boundary nodes up to the required number of equations (e.g.,
for the quintic spline, s(3)0 (x0) = s(4)0 (x0) = s(3)N−1(xN) = s(4)N−1(xN) = 0). Basically, natural
splines are characterized by lower approximation accuracy than the so-called clamped
splines, and therefore, their consideration is omitted in this work. The appropriate choice of
the endpoint conditions plays an important role in the quality of the spline approximation.

In the definition of the spline segment (6), one can also take (xi+1 − x) instead of
(x − xi) using the property of symmetry on the i-th interval [xi, xi+1]. The shapes of both
complete splines will be the same, but the coefficients creating the particular segments of
splines will have different values.

Below, detailed methods for constructing each kind of spline are presented. Based
on the theoretical considerations in [26,27], certain simplifications were made, and the
mathematical formulas were adapted for fractional integration and differentiation.

2.1. Quintic Spline Interpolation

First, the construction of the spline of degree five (p = 5) is considered. In general, the
values of 6N coefficients ck,i (for k = 0, ..., 5 and i = 0, ..., N − 1) need to be determined. In
accordance with the above-mentioned considerations, here, a system of 6N linear equations
is constructed that satisfies both dependencies defined by Equation (9), written out using
(7) and (8) as

c0,i = yi, (12)

c0,i + c1,i∆x + c2,i(∆x)2 + c3,i(∆x)3 + c4,i(∆x)4 + c5,i(∆x)5 = yi+1, (13)

and dependencies (10), for l = 1, ..., 4, as

l = 1 : c1,i + 2c2,i∆x + 3c3,i(∆x)2 + 4c4,i(∆x)3 + 5c5,i(∆x)4 = c1,i+1, (14)

l = 2 : 2c2,i + 6c3,i∆x + 12c4,i(∆x)2 + 20c5,i(∆x)3 = 2c2,i+1, (15)

l = 3 : 6c3,i + 24c4,i∆x + 60c5,i(∆x)2 = 6c3,i+1, (16)

l = 4 : 24c4,i + 120c5,i∆x = 24c4,i+1, (17)

for i = 0, 1, ..., N − 1.
To solve a system of 6N equations, four endpoint conditions also need to be taken into ac-

count:
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s′0(x0) = y′0, s′′0 (x0) = y′′0 , (18)

s′N−1(xN) = y′N , s′′N−1(xN) = y′′N , (19)

but the details of their implementation will be provided later.
The system of Equations (12)–(17) is first reduced to a smaller number of equations

by applying substitutions. Taking Equations (13)–(15) (where the coefficients c0,i from
Equation (12) are first inserted into Equation (13)), the following system of equations
is obtained:

c1,i + c2,i∆x + c3,i(∆x)2 + c4,i(∆x)3 + c5,i(∆x)4 =
yi+1 − yi

∆x
, (20)

c1,i + 2c2,i∆x + 3c3,i(∆x)2 + 4c4,i(∆x)3 + 5c5,i(∆x)4 = c1,i+1, (21)

c2,i + 3c3,i∆x + 6c4,i(∆x)2 + 10c5,i(∆x)3 = c2,i+1, (22)

for i = 0, ..., N − 1. The solution of this system for the assumed unknowns c3,i, c4,i and c5,i
is as follows:

c3,i =
−6c1,i − 4c1,i+1

(∆x)2 +
−3c2,i + c2,i+1

∆x
+ 10

yi+1 − yi

(∆x)3 , (23)

c4,i =
8c1,i + 7c1,i+1

(∆x)3 +
3c2,i − 2c2,i+1

(∆x)2 − 15
yi+1 − yi

(∆x)4 , (24)

c5,i =
−3c1,i − 3c1,i+1

(∆x)4 +
−c2,i + c2,i+1

(∆x)3 + 6
yi+1 − yi

(∆x)5 . (25)

Replacing i by i − 1 in Equations (16) and (17) and reducing the constant numbers,
these equations take the form

c3,i−1 + 4c4,i−1∆x + 10c5,i−1(∆x)2 = c3,i, (26)

c4,i−1 + 5c5,i−1∆x = c4,i. (27)

Substituting Equations (23)–(25) into Equations (26) and (27), after simplifications, the
following system of equations is obtained:

−4c1,i−1 + 4c1,i+1 − c2,i−1∆x + 6c2,i∆x − c2,i+1∆x = 10
yi+1 − 2yi + yi−1

∆x
, (28)

7c1,i−1 + 16c1,i + 7c1,i+1 + 2c2,i−1∆x − 2c2,i+1∆x = 15
yi+1 − yi−1

∆x
, (29)

for i = 1, ..., N − 1. This can also be written in the matrix form:

[
−4 −∆x
7 2∆x

]
·
[

c1,i−1
c2,i−1

]
+

[
0 6∆x

16 0

]
·
[

c1,i
c2,i

]
+

[
4 −∆x
7 −2∆x

]
·
[

c1,i+1
c2,i+1

]

=

 10
∆x

(yi+1 − 2yi + yi−1)

15
∆x

(yi+1 − yi−1)

. (30)

The above system of equations consists of 2(N − 1) equations and 2(N + 1) unknown
coefficients c1,i and c2,i for i = 0, 1, ..., N. The missing four equations result from the
endpoint conditions (18) and (19). By inserting Equation (11) into Equation (18), for node
x0, one directly obtains

c1,0 = y′0, 2c2,0 = y′′0 , (31)
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while, for node xN , one obtains

c1,N−1 + 2c2,N−1∆x + 3c3,N−1(∆x)2 + 4c4,N−1(∆x)3 + 5c5,N−1(∆x)4 = y′N , (32)

2c2,N−1 + 6c3,N−1∆x + 12c4,N−1(∆x)2 + 20c5,N−1(∆x)3 = y′′N . (33)

Next, by inserting Equations (23)–(25), for i = N − 1, into Equations (32) and (33), after
simplifications, these equations are reduced to the following forms :

c1,N = y′N , 2c2,N = y′′N . (34)

Both relationships (31) and (34) can also be written in matrix form as[
1 0
0 1

]
·
[

c1,0
c2,0

]
=

[
y′0

y′′0 /2

]
,
[

1 0
0 1

]
·
[

c1,N
c2,N

]
=

[
y′N

y′′N/2

]
. (35)

In summary, based on the above relationships, the particular coefficients of the quintic
spline segment si, for p = 5 in Equation (6), are as follows: coefficients c0,i result directly
from Equation (12), and the values of coefficients c1,i and c2,i, for i = 0, ..., N, result from
solving the following system of linear equations:

I 0 0 0 · · · 0 0 0
A1 A2 A3 0 0 0 0
0 A1 A2 A3 0 0 0
0 0 A1 A2 0 0 0
...

. . .
...

0 0 0 0 A2 A3 0
0 0 0 0 A1 A2 A3
0 0 0 0 · · · 0 0 I


·



C0
C1
C2
C3
...

CN−2
CN−1

CN


=



D0
D1
D2
D3

...
DN−2
DN−1

DN


, (36)

where

I =
[

1 0
0 1

]
, A1 =

[
−4 −∆x
7 2∆x

]
, A2 =

[
0 6∆x
16 0

]
, A3 =

[
4 −∆x
7 −2∆x

]
, (37)

Ci =

[
c1,i
c2,i

]
, for i = 0, 1, ..., N, (38)

D0 =

[
y′0

y′′0 /2

]
, DN =

[
y′N

y′′N/2

]
,

Di =

 10
∆x

(yi+1 − 2yi + yi−1)

15
∆x

(yi+1 − yi−1)

, for i = 1, 2, ..., N − 1,
(39)

whereas the remaining coefficients, c3,i, c4,i and c5,i, can be calculated on the basis of prior
knowledge of coefficients c1,i and c2,i using Equations (23)–(25).

The above system of equations (36) is characterized by a block tridiagonal and diagonal
dominant matrix of coefficients. Such a construction of the system of equations in which
two sets of coefficients, c1,i and c2,i, are simultaneously determined makes it difficult to
create a symmetric matrix of coefficients. One can notice an important feature of this matrix:
it is a block tridiagonal-constant matrix (except the first and last rows) that involves 2 ×
2-block sub-matrices. To numerically solve such a system of equations, one can use, e.g.,
the Thomas algorithm [20,21], which can be adapted to block tridiagonal matrices, or the
Gaussian elimination algorithm with necessary pivoting (because the coefficient matrix
contains zeros on the main diagonal resulting from matrix A2). The additional coefficients
c1,N and c2,N (not occurring in the general spline construction) are only used to determine
the remaining coefficients c.
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One can also notice in D0 and DN (39) that the values of the first and second derivatives
of the function y at the boundary nodes (i.e., y′0, y′N , y′′0 and y′′N) need to be specified and
inserted into the system of equations. These values can be assumed as exact (if they can be
calculated analytically for any functions whose first and second derivatives are known) or
can be determined numerically based on the known values of the function yi, for i = 0, ..., N,
in each node (e.g., in the case of functions having complicated forms). In the case of a
numerical approach, the forward and backward finite difference schemes of sixth-order
accuracy (with uniform grid spacing) [28] are proposed to be used as follows:

y′0 ∼=
1

∆x

(
−49

20
y0 + 6y1 −

15
2

y2 +
20
3

y3 −
15
4

y4 +
6
5

y5 −
1
6

y6

)
+ O

(
(∆x)6

)
, (40)

y′N ∼=
1

∆x

(
49
20

yN − 6yN−1 +
15
2

yN−2 −
20
3

yN−3 +
15
4

yN−4 −
6
5

yN−5 +
1
6

yN−6

)
+O

(
(∆x)6

)
, (41)

y′′0 ∼=
1

(∆x)2

(
469
90

y0 −
223
10

y1 +
879
20

y2 −
949
18

y3 + 41y4 −
201
10

y5 +
1019
180

y6 −
7
10

y7

)
+O

(
(∆x)6

)
, (42)

y′′N ∼=
1

(∆x)2

(
469
90

yN − 223
10

yN−1 +
879
20

yN−2 −
949
18

yN−3 + 41yN−4 −
201
10

yN−5

+
1019
180

yN−6 −
7
10

yN−7

)
+O

(
(∆x)6

)
, (43)

for N ≥ 7.

2.2. Cubic Spline Interpolation

Compared to the quintic spline construction approach, the construction of the cubic
spline (p = 3) is a bit simpler because the method requires taking into account fewer interpo-
lation conditions, as well as fewer terms of the interpolation polynomial. Other approaches
to the construction of systems of equations for determining cubic spline coefficients have
been presented in, e.g., [24,26].

In the case of cubic spline interpolation, the values of 4N coefficients ck,i (for k = 0, ..., 3
and i = 0, ..., N − 1) in Equation (6) should be determined. Hence, a system of 4N linear
equations should be built based on the conditions (9)

c0,i = yi, (44)

c0,i + c1,i∆x + c2,i(∆x)2 + c3,i(∆x)3 = yi+1, (45)

and on two relations (10), for l = 1, 2,

l = 1 : c1,i + 2c2,i∆x + 3c3,i(∆x)2 = c1,i+1, (46)

l = 2 : 2c2,i + 6c3,i∆x = 2c2,i+1, (47)

for i = 0, 1, ..., N − 1.
Additionally, the following two endpoint conditions are included:

s′0(x0) = y′0, (48)

s′N−1(xN) = y′N . (49)
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Here, the method of solving the system of equations is much simpler. From
Equations (45) and (46) (after the previous insertion of the coefficients c0,i from Equation (44)
into Equation (45)), the following system of linear equations is created:

c1,i + c2,i∆x + c3,i(∆x)2 =
yi+1 − yi

∆x
, (50)

c1,i + 2c2,i∆x + 3c3,i(∆x)2 = c1,i+1, (51)

for i = 0, ..., N − 1, whose solution with respect to the unknowns c2,i and c3,i has the form

c2,i =
−2c1,i − c1,i+1

∆x
+ 3

yi+1 − yi

(∆x)2 , (52)

c3,i =
c1,i + c1,i+1

(∆x)2 − 2
yi+1 − yi

(∆x)3 . (53)

Next, the index i is replaced by i − 1 in Equation (47) and hence yields

c2,i−1 + 3c3,i−1∆x = c2,i. (54)

After inserting Equations (52) and (53) into Equation (54) and after performing simpli-
fications, the following system of N − 1 equations is obtained:

c1,i−1 + 4c1,i + c1,i+1 = 3
yi+1 − yi−1

∆x
, for i = 1, . . . , N − 1 (55)

with N + 1 unknown coefficients c1. Based on the endpoint conditions (48) and (49), two
missing equations can be created (using a principle similar to that in the quintic spline
construction), which finally take the form

c1,0 = y′0, (56)

c1,N = y′N . (57)

Equations (55)–(57) constitute the system of equations written in the matrix form:

1 0 0 0 · · · 0 0 0
1 4 1 0 0 0 0
0 1 4 1 0 0 0
0 0 1 4 0 0 0
...

. . .
...

0 0 0 0 4 1 0
0 0 0 0 1 4 1
0 0 0 0 · · · 0 0 1


·



c1,0
c1,1
c1,2
c1,3

...
c1,N−2
c1,N−1

c1,N


=



d0
d1
d2
d3
...

dN−2
dN−1

dN


, (58)

where

di =


y′0, for i = 0,
3

∆x
(yi+1 − yi−1), for i = 1, 2, ..., N − 1,

y′N , for i = N.

(59)

One can notice that the coefficient matrix of system (58) is positive definite. Moreover,
when omitting the first and last rows and columns of this matrix, it is symmetric and tridiagonal,
in which the non-zero entries are on only the diagonal and adjacent sub-diagonals.

The values of the coefficients c1,i, for i = 0, ..., N, are determined on the basis of the
solution of the above system of equations, and the coefficients c0,i, for i = 0, ..., N − 1, are
given in Equation (44), while the remaining coefficients c2,i and c3,i are calculated using
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Equations (52) and (53), knowing the values of the coefficients c1,i. In order to solve the
tridiagonal system of equations, the Thomas algorithm is best to use in practice and has the
computational complexity O(N). There is also one additional coefficient c1,N here, which is
used to calculate the remaining coefficients. Therefore, the knowledge of all coefficients is
sufficient to construct the complete cubic spline s(x) for p = 3.

The values of the derivatives y′0 and y′N occurring in (59) can be inserted directly if
the first derivatives of the function y(x) in the nodes x0 and xN can be derived analytically.
Otherwise, numerical methods can be used. Here, the forward/backward finite difference
schemes of fourth-order accuracy (with uniform grid spacing) in the form [28]

y′0 ∼=
1

∆x

(
−25

12
y0 + 4y1 − 3y2 +

4
3

y3 −
1
4

y4

)
+ O

(
(∆x)4

)
, (60)

y′N ∼=
1

∆x

(
25
12

yN − 4yN−1 + 3yN−2 −
4
3

yN−3 +
1
4

yN−4

)
+ O

(
(∆x)4

)
, (61)

for the grid size N ≥ 4 are proposed for the application. Finite difference schemes of
sixth-order accuracy (40) and (41) can also be used here, or even higher orders of accuracy,
while a lower order of accuracy significantly reduces the accuracy of the approximation of
the complete spline.

2.3. Linear Spline Interpolation

This kind of spline is the simplest form of interpolation. The linear interpolation
polynomial in the sub-interval x ∈ [xi, xi+1], for i = 0, 1, ..., N − 1, passes through the data
points (xi, yi) and (xi+1, yi+1), which means that the adjacent data points are connected by
straight lines. Maintaining the same spline construction methodology as for the previous
kinds of splines, based on (9) for p = 1, one obtains

c0,i = yi, (62)

c0,i + c1,i∆x = yi+1, (63)

for i = 0, 1, ..., N − 1. However, the dependencies (10) for p = 1 are omitted here. From the
above system of equations, it directly follows that

c1,i =
yi+1 − yi

∆x
. (64)

Therefore, the set of 2N coefficients ck,i (for k = 0, 1 and i = 0, ..., N − 1) in the complete
spline is established.

2.4. Errors of Spline Interpolations

Based on the theorems in [29,30], one can determine the interpolation errors for the
presented spline approximations. Here, the contents of these theorems have been adapted
to a uniform grid and to the considered endpoint conditions for every kind of spline. The
detailed proofs are quite lengthy, but the reader can deduce them from the proofs in [29].

Theorem 1. Let s(x) be the quintic spline that interpolates the function y(x) ∈ C6[a, b] on a
uniform mesh with the step size ∆x, fulfilling the endpoint conditions (18) and (19). Then,∥∥∥y(r)(x)− s(r)(x)

∥∥∥ ≤ γ5,r

∥∥∥y(6)(x)
∥∥∥(∆x)6−r, for r = 0, 1, ..., 5, (65)

where

γ5,0 =
1

15360
, γ5,1 =

√
5

30000
+

√
3

12960
, γ5,2 =

11
5760

, γ5,3 =
1
40

, γ5,4 =
11
60

, γ5,5 =
2
3

. (66)
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Theorem 2. Let (x) be the cubic spline that interpolates the function y(x) ∈ C4[a, b] on a uniform
mesh with the step size ∆x, fulfilling the endpoint conditions (48) and (49). Then,∥∥∥y(r)(x)− s(r)(x)

∥∥∥ ≤ γ3,r

∥∥∥y(4)(x)
∥∥∥(∆x)4−r, for r = 0, 1, 2, 3, (67)

where

γ3,0 =
5

384
, γ3,1 =

9 +
√

3
216

, γ3,2 =
1
3

, γ3,3 = 1. (68)

Theorem 3. Let s(x) be the linear spline that interpolates the function y(x) ∈ C2[a, b] on a
uniform mesh with the step size ∆x. Then,∥∥∥y(r)(x)− s(r)(x)

∥∥∥ ≤ γ1,r

∥∥∥y(2)(x)
∥∥∥(∆x)2−r, for r = 0, 1, (69)

where
γ1,0 =

1
8

, γ1,1 =
1
2

. (70)

The above relations (65), (67) and (69) can be collectively written as∥∥∥y(r)(x)− s(r)(x)
∥∥∥ ≤ γp,r

∥∥∥y(p+1)(x)
∥∥∥(∆x)p+1−r, for r = 0, 1, ..., p, (71)

where p ∈ {1, 3, 5}.

3. Numerical Approximations of Fractional Operators

After specifying the splines of various degrees (p ∈ {1, 3, 5}) that approximate the
finite set of values of the function, the integrand functions in fractional operators (1)–(4) are
replaced by piecewise-polynomial interpolants defined on the given grid of N + 1 points.
Next, instead of the fractional integration or differentiation of the original function y(x), the
spline s(x) is integrated or differentiated. At this stage, these calculations of the fractional
integrals and derivatives have already been performed analytically (i.e., the exact values
have been obtained). Numerical errors in the calculation of these operators mainly result
from the quality of the approximation of the integrand functions by the splines.

The numerical values of fractional calculus operators are determined in the set of data
points x ∈ x0, x1, ..., xN . Let xR, for R = 0, 1, ..., N, denote any data point from this set.

3.1. Left- and Right-Sided Riemann–Liouville Fractional Integrals

The fractional integrals (1) and (2) are replaced by the formulas

Iα
a+y(x) ∼= Iα

a+ s(x) =
1

Γ(α)

x∫
a

s(ξ)

(x − ξ)1−α
dξ, (72)

Iα
b−y(x) ∼= Iα

b− s(x) =
1

Γ(α)

b∫
x

s(ξ)

(ξ − x)1−α
dξ, (73)

and then, substituting the general form of the spline (5) into Equations (72) and (73) for
x = xR, one obtains

Iα
a+ s(x)

∣∣
x=xR

=


0, for R = 0,

R−1

∑
i=0

1
Γ(α)

xi+1∫
xi

si(ξ)

(xR − ξ)1−α
dξ, for R = 1, ..., N,

(74)
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Iα
b− s(x)

∣∣
x=xR

=


N−1

∑
i=R

1
Γ(α)

xi+1∫
xi

si(ξ)

(ξ − xR)
1−α

dξ, for R = 0, ..., N − 1,

0, for R = N.

(75)

In further considerations, the cases in which the values of integrals are equal to zero
are omitted.

By inserting Equation (6) into Equations (74) and (75), the formulas become

Iα
a+ s(x)

∣∣
x=xR

=
R−1

∑
i=0

1
Γ(α)

xi+1∫
xi

1

(xR − ξ)1−α

p

∑
k=0

ck,i(ξ − xi)
kdξ

=
R−1

∑
i=0

p

∑
k=0

ck,i
1

Γ(α)

xi+1∫
xi

(ξ − xi)
k

(xR − ξ)1−α
dξ, (76)

Iα
b− s(x)

∣∣
x=xR

=
N−1

∑
i=R

1
Γ(α)

xi+1∫
xi

1

(ξ − xR)
1−α

p

∑
k=0

ck,i(ξ − xi)
kdξ

=
N−1

∑
i=R

p

∑
k=0

ck,i
1

Γ(α)

xi+1∫
xi

(ξ − xi)
k

(ξ − xR)
1−α

dξ, (77)

or are written in the form

Iα
a+ s(x)

∣∣
x=xR

=
R−1

∑
i=0

p

∑
k=0

ck,iΦ
α,k,i,R
a+ , for R = 1, ..., N, (78)

Iα
b− s(x)

∣∣
x=xR

=
N−1

∑
i=M

p

∑
k=0

ck,iΦ
α,k,i,R
b− , for R = 0, ..., N − 1, (79)

where the integrals Φα,k,i,R
a+ and Φα,k,i,R

b− , for k = 0, 1, ..., p, relating to the point xR in the i-th
sub-interval, can be determined analytically as

Φα,k,i,R
a+ = k!(∆x)α+k

(
(R − i)α+k

Γ(α + k + 1)
−

k

∑
m=0

(R − i − 1)m+α

(k − m)!Γ(α + m + 1)

)
, (80)

Φα,k,i,R
b− = k!(∆x)α+k

(
(−1)k+1(i − R)α+k

Γ(α + k + 1)
+

k

∑
m=0

(−1)m(i − R + 1)m+α

(k − m)!Γ(α + m + 1)

)
. (81)

Remark: For example, in the case of Φα,k,i,R
a+ , the particular integrals can be written by

using the appropriate substitution:

Φα,k,i,R
a+ =

1
Γ(α)

xi+1∫
xi

(ξ − xi)
k

(xR − ξ)1−α
dξ

ξ=xi+η∆x
= (∆x)α+k 1

Γ(α)

1∫
0

ηk

(R − i − η)1−α
dη. (82)

Next, integration by reduction is used; i.e., k-times (repeated) integration by parts takes
place until η raised to a power becomes one. Finally, one obtains (80). Calculations for (81)
are performed in a similar way.

3.2. Left- and Right-Sided Caputo Fractional Derivatives

Here, two cases are considered, depending on the value of α.
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3.2.1. Case of n − 1 < α < n, n ∈ N
Both fractional derivatives (3) and (4) are approximated as follows:

CDα
a+y(x) ∼= CDα

a+ s(x) = In−α
a+ s(n)(x) =

1
Γ(n − α)

x∫
a

s(n)(ξ)

(x − ξ)α−n+1 dξ, (83)

CDα
b−y(x) ∼= CDα

b− s(x) = (−1)n In−α
b− s(n)(x) =

(−1)n

Γ(n − α)

b∫
x

s(n)(ξ)

(ξ − x)α−n+1 dξ. (84)

Putting formula (5) into Equations (83) and (84) for x = xR, one obtains

CDα
a+ s(x)

∣∣∣
x=xR

=


0, for R = 0,

R−1

∑
i=0

1
Γ(n − α)

xi+1∫
xi

s(n)i (ξ)

(xR − ξ)α−n+1 dξ, for R = 1, ..., N,
(85)

CDα
b− s(x)

∣∣∣
x=xR

=


N−1

∑
i=R

(−1)n

Γ(n − α)

xi+1∫
xi

s(n)i (ξ)

(ξ − xR)
α−n+1 dξ, for R = 0, ..., N − 1,

0, for R = N.

(86)

Further, the appropriate cases for R = 0 and R = N are omitted. Here, the n-th-
order derivative of the spline defined by Equation (11) is inserted in place of s(n)i into
Equations (85) and (86). Hence, the approximations of the fractional differential operators
take the form

CDα
a+s(x)

∣∣∣
x=xR

=
R−1

∑
i=0

1
Γ(n − α)

xi+1∫
xi

1

(xR − ξ)α−n+1

p

∑
k=n

k!
(k − n)!

ck,i(ξ − xi)
k−ndξ

=
R−1

∑
i=0

p

∑
k=n

ck,i
k!

(k − n)!
1

Γ(n − α)

xi+1∫
xi

(ξ − xi)
k−n

(xR − ξ)α−n+1 dξ, (87)

CDα
b−s(x)

∣∣∣
x=xR

=
N−1

∑
i=R

(−1)n

Γ(n − α)

xi+1∫
xi

1

(ξ − xR)
α−n+1

p

∑
k=n

k!
(k − n)!

ck,i(ξ − xi)
k−ndξ

=
N−1

∑
i=R

p

∑
k=n

ck,i
k!

(k − n)!
(−1)n

Γ(n − α)

xi+1∫
xi

(ξ − xi)
k−n

(ξ − xR)
α−n+1 dξ, (88)

or are written as

CDα
a+ s(x)

∣∣∣
x=xR

=
R−1

∑
i=0

p

∑
k=n

ck,i
k!

(k − n)!
Φn−α,k−n,i,R

a+ , (89)

CDα
b− s(x)

∣∣∣
x=xR

=
N−1

∑
i=R

p

∑
k=n

ck,i
(−1)nk!
(k − n)!

Φn−α,k−n,i,R
b− , (90)

where the integrals Φa+ and Φb− are defined by Equations (80) and (81), respectively.
For the linear spline (p = 1) and 0 ≤ α < 1, the numerical scheme (89) corresponds to

the algorithm named L1 in [1].
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3.2.2. Case of α = n ∈ N
Here, the Caputo fractional derivatives (3) and (4) correspond to the dependencies

CDα
a+y(x) = CDn

a+y(x) ∼= CDn
a+ s(x) = s(n)(x), (91)

CDα
b−y(x) = CDn

b−y(x) ∼= CDn
b− s(x) = (−1)ns(n)(x). (92)

Hence, taking x = xR, it follows that

CDn
a+ s(x)

∣∣∣
x=xR

=


n!cn,R, for R = 0, 1, ..., N − 1,

p

∑
k=n

k!
(k − n)!

ck,R−1(∆x)k−n, for R = N,
(93)

CDn
b− s(x)

∣∣∣
x=xR

= (−1)n ·


n!cn,R, for R = 0, ..., N − 1,

p

∑
k=n

k!
(k − n)!

ck,R−1(∆x)k−n, for R = N.
(94)

The application of splines for the approximation of Caputo fractional derivatives has
some limitations. As can be seen, if the order of this derivative is α > p, then the (n + 1)-th-
order derivative of the spline, where n − 1 < α < n, n ∈ N (as well as when α = n ∈ N),
and higher-order derivatives are equal to zero. Hence, the choice of the appropriate kind of
spline (here, p ∈ {1, 3, 5}), depending on the derivative order α that satisfies the condition
α ≤ p, is important.

3.3. Error Estimates for the Numerical Schemes

As is widely known, numerical methods may contain computational errors. Based
on knowledge of the approximation errors of functions by using splines (see previous
section), the error estimations for the calculation of fractional integrals and derivatives can
be determined.

The approximation error for the left-sided Riemann–Liouville fractional integral
Iα
a+y(x)

∣∣
x=xR

(for R ≥ 1) can be determined in the following way:

Err =
∥∥∥ Iα

a+y(x)
∣∣
x=xR

− Iα
a+ s(x)

∣∣
x=xR

∥∥∥ =
∥∥∥(Iα

a+(y(x)− s(x))
)∣∣

x=xR

∥∥∥
=

∥∥∥∥∥∥ 1
Γ(α)

R−1

∑
i=0

xi+1∫
xi

y(ξ)− s(ξ)

(xR − ξ)1−α
dξ

∥∥∥∥∥∥ ≤ 1
Γ(α)

R−1

∑
i=0

xi+1∫
xi

∥y(ξ)− s(ξ)∥
(xR − ξ)1−α

dξ

≤ 1
Γ(α)

R−1

∑
i=0

∥y(x̄i)− s(x̄i)∥
xi+1∫
xi

1

(xR − ξ)1−α
dξ

, (95)

where x̄i ∈ [xi, xi+1]. Assuming that ∥y(x̄)− s(x̄)∥ = max
i=0,1,...,R−1

∥y(x̄i)− s(x̄i)∥, for x̄ ∈

[x0, xR], the further estimation of Err takes the form

Err ≤ ∥y(x̄)− s(x̄)∥ 1
Γ(α)

R−1

∑
i=0

xi+1∫
xi

1

(xR − ξ)1−α
dξ

= ∥y(x̄)− s(x̄)∥ 1
Γ(α)

xR∫
x0

1

(xR − ξ)1−α
dξ = ∥y(x̄)− s(x̄)∥ (xR − x0)

α

Γ(1 + α)
. (96)

After the insertion of relationship (71), for r = 0, into Equation (96), one obtains

Err ≤ γp,0

∥∥∥y(p+1)(x̄)
∥∥∥(∆x)p+1 (xR − x0)

α

Γ(1 + α)
, for p ∈ {1, 3, 5}, (97)
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where
∥∥∥y(p+1)(x̄)

∥∥∥ = max
i=0,1,...,R−1

∣∣∣y(p+1)(x̄i)
∣∣∣. In the particular case of xR = xN , the term

(xR − x0)
α in the above equation is replaced by (b − a)α, and then the error value is the

highest.
On the other hand, the approximation error for the calculation of the left-sided Caputo

fractional derivative at the nodes x = xR, R = 1, ..., N, is estimated as

Err =
∥∥∥∥CDα

a+y(x)
∣∣∣
x=xR

− CDα
a+ s(x)

∣∣∣
x=xR

∥∥∥∥ =

∥∥∥∥(CDα
a+(y(x)− s(x))

)∣∣∣
x=xR

∥∥∥∥
=

∥∥∥∥(In−α
a+

(
y(n)(x)− s(n)(x)

))∣∣∣
x=xR

∥∥∥∥ =

∥∥∥∥∥∥ 1
Γ(n − α)

R−1

∑
i=0

xi+1∫
xi

y(n)(ξ)− s(n)(ξ)

(xR − ξ)α−n+1 dξ

∥∥∥∥∥∥
=

1
Γ(n − α)

∥∥∥∥∥∥
R−2

∑
i=0

xi+1∫
xi

y(n)(ξ)− s(n)(ξ)

(xR − ξ)α−n+1 dξ

∥∥∥∥∥∥+ 1
Γ(n − α)

∥∥∥∥∥∥
xR∫

xR−1

y(n)(ξ)− s(n)(ξ)

(xR − ξ)α−n+1 dξ

∥∥∥∥∥∥
= Err1 + Err2, (98)

By using the concept of repeated integration by parts, the integral in the interval
[xi, xi+1] can be written as

xi+1∫
xi

y(n)(ξ)− s(n)(ξ)

(xR − ξ)α−n+1 dξ =
n−1

∑
k=0

[
(−1)k Γ(n − α)

Γ(n − k − α)

y(n−1−k)(ξ)− s(n−1−k)(ξ)

(xR − ξ)α−n+k+1

]xi+1

ξ=xi

− (−1)n Γ(n − α)

Γ(−α)

xi+1∫
xi

y(ξ)− s(ξ)

(xR − ξ)α+1 dξ, (99)

and when the properties y(l)(xi) = s(l)(xi), for i = 0, ..., R − 1 and l = 0, ..., n − 1, are
applied, then all terms under the sum sign disappear. Taking advantage of this fact, the
error Err1 can be estimated as

Err1 =
1

Γ(n − α)

∥∥∥∥∥∥
R−2

∑
i=0

xi+1∫
xi

y(n)(ξ)− s(n)(ξ)

(xR − ξ)α−n+1 dξ

∥∥∥∥∥∥
≤ −1

Γ(n − α)

∥∥∥∥∥∥
R−2

∑
i=0

(−1)n Γ(n − α)

Γ(−α)

xi+1∫
xi

y(ξ)− s(ξ)

(xR − ξ)α+1 dξ

∥∥∥∥∥∥
=

(−1)n+1

Γ(−α)

∥∥∥∥∥∥
R−2

∑
i=0

xi+1∫
xi

y(ξ)− s(ξ)

(xR − ξ)α+1 dξ

∥∥∥∥∥∥ ≤ (−1)n+1

Γ(−α)

R−2

∑
i=0

xi+1∫
xi

∥y(ξ)− s(ξ)∥
(xR − ξ)α+1 dξ

≤ (−1)n+1

Γ(−α)

R−2

∑
i=0

∥y(x̄i)− s(x̄i)∥
xi+1∫
xi

1

(xR − ξ)α+1 dξ, (100)

where x̄i ∈ [xi, xi+1]. Assuming that ∥y(x̄)− s(x̄)∥ = max
i=0,...,R−2

∥y(x̄i)− s(x̄i)∥, x̄ ∈ [x0, xR−1],

the further estimation of Err1 takes the form
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Err1 ≤ ∥y(x̄)− s(x̄)∥ (−1)n+1

Γ(−α)

R−2

∑
i=0

xi+1∫
xi

1

(xR − ξ)α+1 dξ

= ∥y(x̄)− s(x̄)∥ (−1)n+1

Γ(−α)

xR−1∫
x0

1

(xR − ξ)α+1 dξ

= ∥y(x̄)− s(x̄)∥ (−1)n+1(∆x)−α

Γ(1 − α)

(
1 − R−α

)
< ∥y(x̄)− s(x̄)∥ (−1)n+1(∆x)−α

Γ(1 − α)
. (101)

In the case of the second part of the error (98), the following estimation is used:

Err2 =

∥∥∥∥∥∥ 1
Γ(n − α)

xR∫
xR−1

y(n)(ξ)− s(n)(ξ)

(xR − ξ)α−n+1 dξ

∥∥∥∥∥∥ ≤ 1
Γ(n − α)

xR∫
xR−1

∥∥∥y(n)(ξ)− s(n)(ξ)
∥∥∥

(xR − ξ)α−n+1 dξ

≤
∥∥∥y(n)(x̄R−1)− s(n)(x̄R−1)

∥∥∥ 1
Γ(n − α)

xR∫
xR−1

1

(xR − ξ)α−n+1 dξ

=
∥∥∥y(n)(x̄R−1)− s(n)(x̄R−1)

∥∥∥ (∆x)n−α

Γ(n − α + 1)
. (102)

By inserting Err1 and Err2 into Equation (98) and using relationship (71), for r = 0
and r = n, respectively, the following formula for error estimation is obtained:

Err < ∥y(x)− s(x)∥ (−1)n+1(∆x)−α

Γ(1 − α)
+
∥∥∥y(n)(x)− s(n)(x)

∥∥∥ (∆x)n−α

Γ(n − α + 1)

≤ γp,0

∥∥∥y(p+1)(x)
∥∥∥(∆x)p+1 (−1)n+1(∆x)−α

Γ(1 − α)
+ γp,n

∥∥∥y(p+1)(x)
∥∥∥(∆x)p+1−n (∆x)n−α

Γ(n − α + 1)

=
∥∥∥y(p+1)(x)

∥∥∥(∆x)p+1−α
(
(−1)n+1 γp,0

Γ(1 − α)
+

γp,n

Γ(n − α + 1)

)
, (103)

for p ∈ {1, 3, 5}.
If α = n ≥ 1, then 1/Γ(1 − n) = 0, and hence, Err ≤ γp,n

∥∥∥y(p+1)(x)
∥∥∥(∆x)p+1−n.

For the right-sided fractional operators, the formulas are analogous.

4. Examples of Computations

The correctness and quality of the proposed numerical schemes have been verified
on the first computational example. A polynomial of the seventh degree as the integrand
function y(x) in all fractional operators is taken into account in the form

y(x) = x7 − 3x6 − 11x5 + 27x4 + 47x3 − 60x2 − 72x + 18. (104)

This polynomial is of a higher degree than the quintic spline. The endpoints of the
considered interval [a, b] are as follows: a = −2 and b = 3. The values of the function y(x)
and its first and second derivatives at these endpoints are equal to y(a) = 10, y′(a) = 12,
y′′(a) = −412, y(b) = 45, y′(b) = 27 and y′′(b) = 618. These values can be used directly in
the proposed methods, but in the computational example, they are calculated numerically
using the finite difference schemes (60) and (61) or (40)–(43).

For functions of the polynomial type, one can easily find the analytical forms of the left-
and right-sided Riemann–Liouville fractional integrals and Caputo fractional derivatives.
For this purpose, the properties of the fractional integration and differentiation of the power
functions (x − a)β and (b − x)β, for β > −1 and α > 0, are recalled [3,13]:
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Iα
a+(x − a)β = Υβ

α+β(x − a)β+α, (105)

Iα
b−(b − x)β = Υβ

α+β(b − x)β+α, (106)

CDα
a+(x − a)β =


0, if β ∈ {0, 1, ..., n − 1},

Υβ
β−α(x − a)β−α, if β ∈ N and β ≥ n

or β /∈ N and β > n − 1,

(107)

CDα
b−(b − x)β =


0, if β ∈ {0, 1, ..., n − 1},

Υβ
β−α(b − x)β−α, if β ∈ N and β ≥ n

or β /∈ N and β > n − 1,

(108)

where n = ⌈α⌉, n ≥ 0 and

Υβ
γ =

Γ(β + 1)
Γ(γ + 1)

. (109)

It should be noted that the values of Υβ
γ, for γ = −1,−2,−3, ..., are equal to zero.

In order to apply properties (105)–(108), the function y(x) (104) should be transformed
and rewritten to include the expressions (x − a) and (b − x) (here, a = −1 and b = 3,
respectively) as

y(x) =(x + 2)7 − 17(x + 2)6 + 109(x + 2)5 − 323(x + 2)4 + 431(x + 2)3

− 206(x + 2)2 + 12(x + 2) + 10, (110)

y(x) =− (3 − x)7 + 18(3 − x)6 − 124(3 − x)5 + 402(3 − x)4 − 596(3 − x)3

+ 309(3 − x)2 − 27(3 − x) + 45, (111)

and then, using (105)–(108), the analytical forms of all fractional operators are as follows:

Iα
−2+y(x) =Υ7

7+α(x + 2)7+α − 17Υ6
6+α(x + 2)6+α + 109Υ5

5+α(x + 2)5+α

− 323Υ4
4+α(x + 2)4+α + 431Υ3

3+α(x + 2)3+α − 206Υ2
2+α(x + 2)2+α

+ 12Υ1
1+α(x + 2)1+α + 10Υ0

α(x + 2)α, (112)

Iα
3−y(x) =− Υ7

7+α(3 − x)7+α + 18Υ6
6+α(3 − x)6+α − 124Υ5

5+α(3 − x)5+α

+ 402Υ4
4+α(3 − x)4+α − 596Υ3

3+α(3 − x)3+α + 309Υ2
2+α(3 − x)2+α

− 27Υ1
1+α(3 − x)1+α + 45Υ0

α(3 − x)α, (113)

CDα
−2+y(x) =Ῡ7

7−α(x + 2)7−α − 17Ῡ6
6−α(x + 2)6−α + 109Ῡ5

5−α(x + 2)5−α

− 323Ῡ4
4−α(x + 2)4−α + 431Ῡ3

3−α(x + 2)3−α − 206Ῡ2
2−α(x + 2)2−α

+ 12Ῡ1
1−α(x + 2)1−α + 10Ῡ0

−α(x + 2)−α, (114)

CDα
3−y(x) =− Ῡ7

7−α(3 − x)7−α + 18Ῡ6
6−α(3 − x)6−α − 124Ῡ5

5−α(3 − x)5−α

+ 402Ῡ4
4−α(3 − x)4−α − 596Ῡ3

3−α(3 − x)3−α + 309Ῡ2
2−α(3 − x)2−α

− 27Ῡ1
1−α(3 − x)1−α + 45Ῡ0

−α(3 − x)−α, (115)

where

Ῡk
γ =

{
0, if k ∈ {0, 1, ..., n − 1},

Υk
γ, otherwise,

for n − 1 ≤ α < n, n ∈ N, k ∈ N. (116)
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Hence, certain terms in Equations (114) and (115) may vanish.
In Figure 1, the plots of the left- and right-sided fractional integrals Iα

−2+y(x) and
Iα
3−y(x), (112) and (113), respectively, for α ∈ {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}, are

shown. The cases for α = 0 correspond to the plot of the function y(x) (i.e., I0
−2+y(x) =

I0
3−y(x) = y(x)), and, e.g., for α = 1: I1

−2+y(x)|x=3 = I1
3−y(x)|x=−2, which is identical to

the classical integration of the function y(x) in the interval [−2, 3]. Also, it can be seen
that, for α > 0, Iα

−2+y(x)|x=−2 = 0 and Iα
3−y(x)|x=3 = 0 hold. In Figure 2, the plots related

to the fractional derivatives CDα
−2+y(x) and CDα

3−y(x) are presented. As before, it can
be noted that CD0

−2+y(x) = CD0
3−y(x) = y(x). On the other hand, for, e.g., α ∈ {1, 2},

CD1
−2+y(x) = y′(x), CD2

−2+y(x) = y′′(x) and CD1
3−y(x) = −y′(x), CD2

3−y(x) = y′′(x)
occur. Moreover, for α ̸= N, CDα

−2+y(x)|x=−2 = 0 and CDα
3−y(x)|x=3 = 0 occur.
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Figure 1. Plots of integrals Iα
−2+y(x) and Iα

3−y(x) for function (104) and different orders of α.
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Figure 2. Plots of derivatives CDα
−2+y(x) and CDα

3−y(x) for function (104) and different orders of α.

For each derived numerical scheme, the experimental order of convergence has been
examined. Such tests make it possible to show the correctness and quality of these schemes
based on sample calculations depending on, among other factors, the grid size N and order
α. If the exact/analytical solutions of fractional integrals and derivatives are known, then
one can determine the computational error of the numerical scheme. In the case of Iα

a+y(x),
the error is as follows:

errorN = Iα
a+y(x)

∣∣
x=xR

− Iα
a+ s(x)

∣∣
x=xR

, (117)

where Iα
a+ s(x)|x=xR denotes the approximate value of Iα

a+y(x)|x=xR that has been obtained
on a grid of size N at a given data point xR by using the spline constructed by polynomials
of degree p. The errors for the remaining operators are defined similarly. Based on the
determined error values, the experimental order of convergence can be calculated using the
following formula:

orderN = log2
|errorN/2|
|errorN |

. (118)
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In Table 1, the numerical errors (117) and the experimental orders of convergence (118)
for the calculations of Iα

−2+y(x)|x=3 and Iα
3−y(x)|x=−2, for α ∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5,

1.75, 2.0} and N = 125, 250, 500, 1000, 2000, 4000, using three kinds of splines are shown.
Additionally, this table also provides the exact values of the calculated integrals. When
α = 1, then the values of the left- and right-sided fractional integrals are identical. On
the other hand, Table 2 contains the same set of data for the left- and right-sided Caputo
fractional derivatives, but they are calculated for the same internal point x = 1, i.e.,
CDα

−2+y(x)|x=1 and CDα
3−y(x)|x=1 (which corresponds to x = xR, R = N · 3/5). It is not

possible to calculate fractional derivatives of order α > 1 in the case of the linear spline
(p = 1) or, analogously, α > 3 using the cubic spline and α > 5 using the quintic spline.
Calculations for α > 2 have also been performed, but the results are omitted from both
tables (due to lack of space).

Remarks on numerical calculations: All calculations were performed with quadruple
floating-point precision. The numerical algorithms were implemented in C++11 using
the quadmath library and compiled in the GCC (MinGW-w64) compiler. The mentioned
library enables the use of the 128-bit floating-point type __float128 for real variables and
allows calculations with 34 significant decimal digits. This is mainly visible in the case of
calculations for N = 4000 using the quintic spline, where the error values are at the level
of 10−18. When the single or double floating-point precision types were used, then the
calculations (especially regarding the order of convergence) were imprecise.

In the second example, for all fractional operators, the integrand function y(x) is of
the form

y(x) =
sin
(

3π

2
(x − 3)

)
3π

2
(x − 3)

. (119)

Here, in the considered interval [a, b], for a = 1 and b = 5, this function is symmetric
about the midpoint of the interval ((a + b)/2 = 3), i.e., y(x) = y(a + b − x), and moreover,
y(a) = y(b) = 0. So far, the analytical forms of fractional integrals and derivatives for
the above function y(x) are not known. In Figure 3, the plots of the fractional integrals
Iα
1+y(x) and Iα

5−y(x), for α ∈ {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}, are shown. To create these
plots, numerical values calculated by the method using the quintic spline for the grid size
N = 1000 were used. The plots of the integrand function y(x) are represented by the case
for α = 0. As can be seen in the presented plots of the left- and right-sided fractional
integrals of the symmetric function about the midpoint of the interval [a, b], both solutions
are symmetrical; i.e., the following relationship occurs:

Iα
a+y(x)

∣∣
x=u = Iα

b−y(x)
∣∣
x=a+b−u , for u ∈ [a, b], (120)

or in the discrete form as Iα
a+y(x)|x=xR = Iα

b−y(x)|x=xN−R , for R = 0, ..., N. By analogy, in
Figure 4, the plots related to the fractional derivatives CDα

1+y(x) and CDα
5−y(x) are shown.

Here, one can also notice the presence of symmetry, i.e.,

CDα
a+y(x)

∣∣∣
x=u

= CDα
b−y(x)

∣∣∣
x=a+b−u

, for u ∈ [a, b]. (121)

Moreover, for α ∈ {1, 2}, one can see that CD1
1+y(x) = −CD1

5−y(x) = y′(x) and
CD2

1+y(x) = CD2
5−y(x) = y′′(x).
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Table 1. Results related to Riemann–Liouville fractional integrals.

α N
Left-Sided Riemann–Liouville Fractional Integral Iα

−2+y(x)
∣∣∣
x=3

Right-Sided Riemann–Liouville Fractional Integral Iα
3−y(x)

∣∣
x=−2

Linear Spline Cubic Spline Quintic Spline Linear Spline Cubic Spline Quintic Spline
Error Order Error Order Error Order Error Order Error Order Error Order

0.25

125 −2.41675× 10−2 - 1.04535 × 10−5 - −5.69516 × 10−9 - 1.57811 × 10−2 - 6.80603 × 10−6 - 5.57276 × 10−9 -
250 −6.86729× 10−3 1.815 1.03230 × 10−6 3.340 −4.90212 × 10−11 6.860 4.49869 × 10−3 1.811 −7.49419 × 10−7 3.183 4.70124 × 10−11 6.889
500 −1.88377× 10−3 1.866 7.71362 × 10−8 3.742 −5.13316 × 10−13 6.577 1.23635 × 10−3 1.863 −5.75466 × 10−8 3.703 4.80667 × 10−13 6.612
1000 −5.05293× 10−4 1.898 5.27856 × 10−9 3.869 −6.50363 × 10−15 6.302 3.32029 × 10−4 1.897 −3.98006 × 10−9 3.854 5.97696 × 10−15 6.329
2000 −1.33463× 10−4 1.921 3.48367 × 10−10 3.921 −9.35790 × 10−17 6.119 8.77715 × 10−5 1.919 −2.64009 × 10−10 3.914 8.51330 × 10−17 6.134
4000 −3.48577× 10−5 1.937 2.25936 × 10−11 3.947 −1.43484 × 10−18 6.027 2.29381 × 10−5 1.936 −1.71712 × 10−11 3.943 1.30003 × 10−18 6.033

0.50

125 −1.63053× 10−2 - 1.32582 × 10−5 - −4.13856 × 10−9 - 1.01751 × 10−2 - −8.06872 × 10−6 - 3.90697 × 10−9 -
250 −4.39242× 10−3 1.892 1.06143 × 10−6 3.643 −3.74296 × 10−11 6.789 2.75606 × 103 1.884 −7.02674 × 10−7 3.521 3.37436 × 10−11 6.855
500 −1.15081× 10−3 1.932 7.24796 × 10−8 3.872 −4.38185 × 10−13 6.416 7.24321 × 10−4 1.928 −4.91460 × 10−8 3.838 3.79855 × 10−13 6.473
1000 −2.96714× 10−4 1.956 4.70229 × 10−9 3.946 −6.09673 × 10−15 6.167 1.87104 × 10−4 1.953 −3.21722 × 10−9 3.933 5.17726 × 10−15 6.197
2000 −7.57427× 10−5 1.970 2.99228 × 10−10 3.974 −9.18566 × 10−17 6.053 4.78204 × 10−5 1.968 −2.05529 × 10−10 3.968 7.74015 × 10−17 6.064
4000 −1.92095× 10−5 1.979 1.88860 × 10−11 3.986 −1.42490 × 10−18 6.010 1.21378 × 10−5 1.978 −1.29974 × 10−11 3.983 1.19807 × 10−18 6.014

0.75

125 −7.12111× 10−3 - 9.97799 × 10−6 - −2.05688 × 10−9 - 3.09092 × 10−3 - −4.01756 × 10−6 - 1.70773 × 10−9 -
250 −1.84844× 10−3 1.946 7.14034 × 10−7 3.805 −2.10930 × 10−11 6.608 8.18172 × 10−4 1.918 −3.23904 × 10−7 3.633 1.56005 × 10−11 6.774
500 −4.71369× 10−4 1.971 4.65613 × 10−8 3.939 −2.78012 × 10−13 6.245 2.10729 × 10−4 1.957 −2.18291 × 10−8 3.891 1.91856 × 10−13 6.345
1000 −1.19146× 10−4 1.984 2.95257 × 10−9 3.979 −4.11580 × 10−15 6.078 5.35530 × 10−5 1.976 −1.39945 × 10−9 3.963 2.76659 × 10−15 6.116
2000 −2.99742× 10−5 1.991 1.85532 × 10−10 3.992 −6.34116 × 10−17 6.020 1.35137 × 10−5 1.987 −8.82904 × 10−11 3.986 4.23025 × 10−17 6.031
4000 −7.52101× 10−6 1.995 1.16215 × 10−11 3.997 −9.88375 × 10−19 6.004 3.39674 × 10−6 1.992 −5.53936 × 10−12 3.994 6.58293 × 10−19 6.006

1.00

125 −1.99648× 10−3 - 3.40015 × 10−6 - −2.42291 × 10−10 - −1.99648× 10−3 - 3.40015 × 10−6 - −2.42291 × 10−10 -
250 −4.99780× 10−4 1.998 2.18102 × 10−7 3.963 −3.79766 × 10−12 5.995 −4.99780× 10−4 1.998 2.18102 × 10−7 3.963 −3.79766 × 10−12 5.995
500 −1.24986× 10−4 2.000 1.37201 × 10−8 3.991 −5.94311 × 10−14 5.998 −1.24986× 10−4 2.000 1.37201 × 10−8 3.991 −5.94311 × 10−14 5.998
1000 −3.12491× 10−5 2.000 8.58907 × 10−10 3.998 −9.29335 × 10−16 5.999 −3.12491× 10−5 2.000 8.58907 × 10−10 3.998 −9.29335 × 10−16 5.999
2000 −7.81245× 10−6 2.000 5.37036 × 10−11 3.999 −1.45265 × 10−17 5.999 −7.81245× 10−6 2.000 5.37036 × 10−11 3.999 −1.45265 × 10−17 5.999
4000 −1.95312× 10−6 2.000 3.35682 × 10−12 4.000 −2.27021 × 10−19 6.000 −1.95312× 10−6 2.000 3.35682 × 10−12 4.000 −2.27021 × 10−19 6.000

1.25

125 2.94905 × 10−5 - −5.04636 × 10−6 - 1.57623 × 10−9 - −5.49391× 10−3 - 1.31980 × 10−5 - −2.21686 × 10−9 -
250 8.21939 × 10−6 1.843 −3.63161 × 10−7 3.797 1.70155 × 10−11 6.533 −1.38221× 10−3 1.991 8.83867 × 10−7 3.900 −2.70488 × 10−11 6.357
500 2.18938 × 10−6 1.909 −2.35242 × 10−8 3.948 2.35877 × 10−13 6.173 −3.46277× 10−4 1.997 5.62397 × 10−8 3.974 −3.92826 × 10−13 6.106
1000 5.78985 × 10−7 1.919 −1.48421 × 10−9 3.986 3.57289 × 10−15 6.045 −8.66327× 10−5 1.999 3.53152 × 10−9 3.993 −6.02658 × 10−15 6.026
2000 1.51795 × 10−7 1.931 −9.29967 × 10−11 3.996 5.54430 × 10−17 6.010 −2.16640× 10−5 2.000 2.20992 × 10−10 3.998 −9.37923 × 10−17 6.006
4000 3.87101 × 10−8 1.971 −5.81622 × 10−12 3.999 8.65318 × 10−19 6.002 −5.41656× 10−6 2.000 1.38165 × 10−11 4.000 −1.46461 × 10−18 6.001
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Table 1. Cont.

α N
Left-Sided Riemann–Liouville Fractional Integral Iα

−2+y(x)
∣∣∣
x=3

Right-Sided Riemann–Liouville Fractional Integral Iα
3−y(x)

∣∣
x=−2

Linear Spline Cubic Spline Quintic Spline Linear Spline Cubic Spline Quintic Spline
Error Order Error Order Error Order Error Order Error Order Error Order

1.50

125 6.47994 × 10−4 - −1.48482 × 10−5 - 3.65727 × 10−9 - −8.25052× 10−3 - 2.50930 × 10−5 - −4.47356 × 10−9 −
250 1.71560 × 10−4 1.917 −1.02016 × 10−6 3.863 4.29330 × 10−11 6.413 −2.07231× 10−3 1.993 1.67526 × 10−6 3.905 −5.57184 × 10−11 6.327
500 4.35821 × 10−5 1.977 −6.52856 × 10−8 3.966 6.16466 × 10−13 6.122 −5.18747× 10−4 1.998 1.06460 × 10−7 3.976 −8.16477 × 10−13 6.093
1000 1.09467 × 10−5 1.993 −4.10500 × 10−9 3.991 9.43308 × 10−15 6.030 −1.29734× 10−4 1.999 6.68202 × 10−9 3.994 −1.25601 × 10−14 6.022
2000 2.74055 × 10−6 1.998 −2.56956 × 10−10 3.998 1.46728 × 10−16 6.007 −3.24368× 10−5 2.000 4.18075 × 10−10 3.998 −1.95603 × 10−16 6.005
4000 6.85440 × 10−7 1.999 −1.60660 × 10−11 3.999 2.29096 × 10−18 6.001 −8.10946× 10−6 2.000 2.61368 × 10−11 4.000 −3.05474 × 10−18 6.001

1.75

125 1.46683 × 10−3 - −2.58868 × 10−5 - 6.11752 × 10−9 - −1.07883× 10−2 - 3.90746 × 10−5 - −7.12572 × 10−9 -
250 3.76033 × 10−4 1.964 −1.75690 × 10−6 3.881 7.43135 × 10−11 6.363 −2.70816× 10−3 1.994 2.60169 × 10−6 3.909 −9.01099 × 10−11 6.305
500 9.46089 × 10−5 1.991 −1.12075 × 10−7 3.970 1.08058 × 10−12 6.104 −6.77746× 10−4 1.998 1.65199 × 10−7 3.977 −1.32774 × 10−12 6.085
1000 2.36910 × 10−5 1.998 −7.04090 × 10−9 3.993 1.65911 × 10−14 6.025 −1.69481× 10−4 2.000 1.03663 × 10−8 3.994 −2.04555 × 10−14 6.020
2000 5.92525 × 10−6 1.999 −4.40629 × 10−10 3.998 2.58264 × 10−16 6.005 −4.23732× 10−5 2.000 6.48547 × 10−10 3.999 −3.18667 × 10−16 6.004
4000 1.48148 × 10−6 2.000 −2.75483 × 10−11 4.000 4.03294 × 10−18 6.001 −1.05935× 10−5 2.000 4.05444 × 10−11 4.000 −4.97689 × 10−18 6.001

2.00

125 3.27639 × 10−3 - −3.81492 × 10−5 - 8.97159 × 10−9 - −1.32588× 10−2 - 5.51500 × 10−5 - −1.01830 × 10−8 -
250 8.29774 × 10−4 1.981 −2.57717 × 10−6 3.888 1.10742 × 10−10 6.340 −3.32867× 10−3 1.994 3.66768 × 10−6 3.910 −1.29731 × 10−10 6.295
500 2.08111 × 10−4 1.995 −1.64209 × 10−7 3.972 1.61914 × 10−12 6.096 −8.33042× 10−4 1.998 2.32809 × 10−7 3.978 −1.91630 × 10−12 6.081
1000 5.20694 × 10−5 1.999 −1.03130 × 10−8 3.993 2.48952 × 10−14 6.023 −2.08315× 10−4 2.000 1.46076 × 10−8 3.994 −2.95419 × 10−14 6.019
2000 1.30200 × 10−5 2.000 −6.45352 × 10−10 3.998 3.87650 × 10−16 6.005 −5.20822× 10−5 2.000 9.13870 × 10−10 3.999 −4.60283 × 10−16 6.004
4000 3.25515 × 10−6 2.000 −4.03469 × 10−11 4.000 6.05369 × 10−18 6.001 −1.30208× 10−5 2.000 5.71310 × 10−11 4.000 −7.18879 × 10−18 6.001

α Analytical values of Iα
−2+y(x)

∣∣∣
x=3

calculated using (112) Analytical values of Iα
3−y(x)

∣∣
x=−2 calculated using (113)

0.25 47.231705520698452904374875899367 13.548112447243133497964663253209
0.50 44.959314436662925135432890756581 18.729546832067732625877247675307
0.75 40.207326196989011686391620773830 25.873320468390417138456826053977
1.00 35.565476190476190476190476190354 35.565476190476190476190476190594
1.25 33.495522685430899963086433632447 48.724522699297574882594335266746
1.50 35.883958339131400674417388236684 66.494895409838463421125458683182
1.75 43.817498620131802938994234913290 90.037106096993660710700647449116
2.00 57.539682539682539682539682539625 120.287698412698412698412698412756
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Table 2. Results related to Caputo fractional derivatives.

α N
Left-Sided Caputo Fractional Derivative C Dα

−2+y(x)
∣∣∣
x=1

Right-Sided Caputo Fractional Derivative C Dα
3−y(x)

∣∣
x=1

Linear Spline Cubic Spline Quintic Spline Linear Spline Cubic Spline Quintic Spline
Error Order Error Order Error Order Error Order Error Order Error Order

0.25

125 7.84165 × 10−2 - 6.98882 × 10−6 - 5.55910 × 10−10 - 8.46350 × 10−2 - 6.83433 × 10−6 - 1.40106 × 10−9 -
250 2.49924 × 10−2 1.650 5.68971 × 10−7 3.619 1.29900 × 10−11 5.419 2.65102 × 10−2 1.675 5.47833 × 10−7 3.641 2.49565 × 10−11 5.811
500 7.84618 × 10−3 1.671 4.51782 × 10−8 3.655 2.76433 × 10−13 5.554 8.22011 × 10−3 1.689 4.35584 × 10−8 3.653 4.56394 × 10−13 5.773
1000 2.43616 × 10−3 1.687 3.53309 × 10−9 3.677 5.64871 × 10−15 5.613 2.52882 × 10−3 1.701 3.42284 × 10−9 3.670 8.41279 × 10−15 5.762
2000 7.50076 × 10−4 1.700 2.73386 × 10−10 3.692 1.12730 × 10−16 5.647 7.73116 × 10−4 1.710 2.66193 × 10−10 3.685 1.55540 × 10−16 5.757
4000 2.29439 × 10−4 1.709 2.09882 × 10−11 3.703 2.21425 × 10−18 5.670 2.35181 × 10−4 1.717 2.05280 × 10−11 3.697 2.87991 × 10−18 5.755

0.50

125 3.71896 × 10−1 - 2.50923 × 10−5 - 2.45199 × 10−9 - 3.87777 × 10−1 - 2.74995 × 10−5 - 4.13307 × 10−9 -
250 1.35444 × 10−1 1.457 2.35615 × 10−6 3.413 6.21460 × 10−11 5.302 1.39254 × 10−1 1.478 2.47549 × 10−6 3.474 8.55722 × 10−11 5.594
500 4.88554 × 10−2 1.471 2.16262 × 10−7 3.446 1.48114 × 10−12 5.391 4.97795 × 10−2 1.484 2.22544 × 10−7 3.476 1.82243 × 10−12 5.553
1000 1.75120 × 10−2 1.480 1.95907 × 10−8 3.465 3.42745 × 10−14 5.433 1.77380 × 10−2 1.489 1.99345 × 10−8 3.481 3.93594 × 10−14 5.533
2000 6.25069 × 10−3 1.486 1.76026 × 10−9 3.476 7.80135 × 10−16 5.457 6.30629 × 10−3 1.492 1.77965 × 10−9 3.486 8.56945 × 10−16 5.521
4000 2.22468 × 10−3 1.490 1.57333 × 10−10 3.484 1.75798 × 10−17 5.472 2.23842 × 10−3 1.494 1.58453 × 10−10 3.489 1.87511 × 10−17 5.514

0.75

125 1.34310 - 5.19229 × 10−5 - 4.97092 × 10−9 - 1.37524 - 6.14400 × 10−5 - 8.28007 × 10−9 -
250 5.71054 × 10−1 1.234 5.78626 × 10−6 3.166 1.51641 × 10−10 5.035 5.78725 × 10−1 1.249 6.31959 × 10−6 3.281 1.98166 × 10−10 5.385
500 2.41617 × 10−1 1.241 6.27234 × 10−7 3.206 4.27870 × 10−12 5.147 2.43458 × 10−1 1.249 6.57509 × 10−7 3.265 4.94268 × 10−12 5.325
1000 1.01956 × 10−1 1.245 6.70419 × 10−8 3.226 1.16612 × 10−13 5.197 1.02400 × 10−1 1.249 6.87761 × 10−8 3.257 1.26179 × 10−13 5.292
2000 4.29571 × 10−2 1.247 7.11235 × 10−9 3.237 3.12427 × 10−15 5.222 4.30647 × 10−2 1.250 7.21248 × 10−9 3.253 3.26321 × 10−15 5.273
4000 1.80834 × 10−2 1.248 7.51469 × 10−10 3.243 8.29667 × 10−17 5.235 1.81095 × 10−2 1.250 7.57293 × 10−10 3.252 8.49994 × 10−17 5.263

1.00

125 −4.38955 - −1.36670 × 10−5 - −4.09600 × 10−9 - 4.38955 - 1.36670 × 10−5 - 4.09600 × 10−9 -
250 −2.18769 1.005 −8.53547 × 10−7 4.001 −6.40000 × 10−11 6.000 2.18769 1.005 8.53547 × 10−7 4.001 6.40000 × 10−11 6.000
500 −1.09196 1.002 −5.33367 × 10−8 4.000 −1.00000 × 10−12 6.000 1.09196 1.002 5.33367 × 10−8 4.000 1.00000 × 10−12 6.000
1000 −5.4549 × 10−1 1.001 −3.33339 × 10−9 4.000 −1.56250 × 10−14 6.000 5.45495 × 10−1 1.001 3.33339 × 10−9 4.000 1.56250 × 10−14 6.000
2000 −2.72624× 10−1 1.001 −2.08334 × 10−10 4.000 −2.44141 × 10−16 6.000 2.72624 × 10−1 1.001 2.08334 × 10−10 4.000 2.44141 × 10−16 6.000
4000 −1.36281× 10−1 1.000 −1.30208 × 10−11 4.000 −3.81470 × 10−18 6.000 1.36281 × 10−1 1.000 1.30208 × 10−11 4.000 3.81470 × 10−18 6.000

1.25

125 - - −8.36678 × 10−4 - −9.64146 × 10−8 - - - −7.65038 × 10−4 - −7.39989 × 10−8 -
250 - - −1.21870 × 10−4 2.779 −3.37429 × 10−9 4.837 - - −1.16655 × 10−4 2.713 −2.96113 × 10−9 4.643
500 - - −1.79335 × 10−5 2.765 −1.21552 × 10−10 4.795 - - −1.75527 × 10−5 2.732 −1.13927 × 10−10 4.700
1000 - - −2.65243 × 10−6 2.757 −4.44624 × 10−12 4.773 - - −2.62455 × 10−6 2.742 −4.30538 × 10−12 4.726
2000 - - −3.93299 × 10−7 2.754 −1.63924 × 10−13 4.761 - - −3.91253 × 10−7 2.746 −1.61319 × 10−13 4.738
4000 - - −5.83913 × 10−8 2.752 −6.06763 × 10−15 4.756 - - −5.82409 × 10−8 2.748 −6.01943 × 10−15 4.744
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Table 2. Cont.

α N
Left-Sided Caputo Fractional Derivative C Dα

−2+y(x)
∣∣∣
x=1

Right-Sided Caputo Fractional Derivative C Dα
3−y(x)

∣∣
x=1

Linear Spline Cubic Spline Quintic Spline Linear Spline Cubic Spline Quintic Spline
Error Order Error Order Error Order Error Order Error Order Error Order

1.50

125 - - −7.72196 × 10−3 - −5.90738 × 10−7 - - - −5.50777 × 10−3 - −5.35105 × 10−7 -
250 - - −1.12814 × 10−3 2.775 −2.54920 × 10−8 4.534 - - −9.81527 × 10−4 2.488 −2.42676 × 10−8 4.463
500 - - −1.83845 × 10−4 2.617 −1.11306 × 10−9 4.517 - - −1.74190 × 10−4 2.494 −1.08608 × 10−9 4.482
1000 - - −3.14907 × 10−5 2.545 −4.88926 × 10−11 4.509 - - −3.08513 × 10−5 2.497 −4.82977 × 10−11 4.491
2000 - - −5.50177 × 10−6 2.517 −2.15419 × 10−12 4.504 - - −5.45886 × 10−6 2.499 −2.14107 × 10−12 4.496
4000 - - −9.68377 × 10−7 2.506 −9.50577 × 10−14 4.502 - - −9.65442 × 10−7 2.499 −9.47679 × 10−14 4.498

1.75

125 - - −2.90741 × 10−2 - −3.04121 × 10−6 - - - −2.68499 × 10−2 - −2.10060 × 10−6 -
250 - - −5.98591 × 10−3 2.280 −1.45340 × 10−7 4.387 - - −5.83124 × 10−3 2.203 −1.29579 × 10−7 4.019
500 - - −1.24961 × 10−3 2.260 −7.39805 × 10−9 4.296 - - −1.23857 × 10−3 2.235 −7.12385 × 10−9 4.185
1000 - - −2.62077 × 10−4 2.253 −3.84688 × 10−10 4.265 - - −2.61252 × 10−4 2.245 −3.79670 × 10−10 4.230
2000 - - −5.50488 × 10−5 2.251 −2.01436 × 10−11 4.255 - - −5.49833 × 10−5 2.248 −2.00459 × 10−11 4.243
4000 - - −1.15690 × 10−5 2.250 −1.05726 × 10−12 4.252 - - −1.15634 × 10−5 2.249 −1.05522 × 10−12 4.248

2.00

125 - - −1.21620 × 10−1 - −1.02400 × 10−5 - - - −1.21620 × 10−1 - −1.02400 × 10−5 -
250 - - −3.04013 × 10−2 2.000 −6.40000 × 10−7 4.000 - - −3.04013 × 10−2 2.000 −6.40000 × 10−7 4.000
500 - - −7.60008 × 10−3 2.000 −4.00000 × 10−8 4.000 - - −7.60008 × 10−3 2.000 −4.00000 × 10−8 4.000
1000 - - −1.90001 × 10−3 2.000 −2.50000 × 10−9 4.000 - - −1.90001 × 10−3 2.000 −2.50000 × 10−9 4.000
2000 - - −4.75000 × 10−4 2.000 −1.56250 × 10−10 4.000 - - −4.75000 × 10−4 2.000 −1.56250 × 10−9 4.000
4000 - - −1.18750 × 10−4 2.000 −9.76562 × 10−12 4.000 - - 1.18750 × 10−4 2.000 −9.76562 × 10−12 4.000

α Analytical values of CDα
−2+y(x)

∣∣∣
x=1

calculated using (114) Analytical values of CDα
3−y(x)

∣∣
x=1 calculated using (115)

0.25 −65.695900671274686868366861533907 −89.684783620466897066778246346165
0.50 −59.331281245578144164503719955315 −69.874990609212284201036182289303
0.75 −41.076691104317504450100614025998 −36.962637833302769019389855861950
1.00 −9.000000000000000000000000000000 9.000000000000000000000000000000
1.25 29.666322127181412268762909469963 83.928086254218424666184559890907
1.50 90.928292916416640368366975213304 137.009559059007698495559102959142
1.75 156.918453309420023096180630755186 186.059723786166269221860579765927
2.00 218.000000000000000000000000000000 218.000000000000000000000000000000
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Figure 3. Plots of integrals Iα
1+y(x) and Iα

5−y(x) for function (119) and different orders of α.
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Figure 4. Plots of derivatives CDα
1+y(x) and CDα

5−y(x) for function (119) and different orders of α.

5. Conclusions

Numerical schemes for evaluating the left- and right-sided integrals and derivatives
of fractional order based on the interpolation of the integrand function by splines have
been derived. The primary purpose of this work was to research the application of the
quintic spline, but two remaining lower-degree splines (linear and cubic) were used for
comparison purposes. The quintic spline creates a curve that appears to be seamless and
has smooth characteristics compared to the cubic spline. Generally, if the spline is built
with higher degrees of polynomials, then the curve is smoother and the approximation of
the function by such a spline has smaller differences.

The analysis of the sample results presented in two tables (and others, but not shown
in this paper) allows the conclusion that the absolute values of numerical errors tend to
0 as the grid size N increases in all cases, which means that the numerical results are in
good agreement with the exact analytical solutions. Moreover, one can observe that as N
increases, the values of the experimental order of convergence are stabilized and take the
specified values: see Table 3. It should be pointed out that the numerical schemes that use
the quintic spline give a higher order of convergence than other schemes. For example,
the scheme of sixth order means that by doubling the number of nodes in the grid, the
calculation errors decrease by 26 = 64 times, which significantly affects the quality of the
calculations compared to other schemes. Furthermore, it can be stated that the experimental
orders of convergence are consistent with analytical estimates (97) and (103).

In the case of schemes that use the quintic and cubic splines, a system of linear
equations (in order to determine the spline interpolation coefficients) needs to be solved.
From the computational point of view, such a procedure can be computationally time-
consuming, which may indicate a disadvantage of these schemes. But one can use the
Thomas algorithm of linear complexity to solve the block tridiagonal system of equations.
Moreover, the global approximation properties of the cubic and quintic splines mean that
the polynomial coefficients in each segment of any spline depend on all data points. The
perturbation of one arbitrary data point or a slight change in the values of the endpoint
conditions affect the construction of the whole spline s(x). Hence, it is worth taking more
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precise numerical values of the endpoint conditions or, preferably, taking their exact values
in the considered systems of linear equations.

Table 3. Experimental orders of convergence of numerical schemes that use different kinds of splines.

Kind of Spline Experimental Order of Convergence
Riemann–Liouville Fractional Integrals Caputo Fractional Derivatives

linear spline (p = 1) 2 2 − α (for α ≤ 1)
cubic spline (p = 3) 4 4 − α (for α ≤ 3)
quintic spline (p = 5) 6 6 − α (for α ≤ 5)

Summing up, the developed approximation methods for the considered fractional
operators that use the quintic spline interpolation seem to be correct, and they have a
qualitative advantage over methods that use other splines of lower degrees. This confirms
the efficiency and applicability of the derived methods. In future works, it will be worth
focusing on applications of the developed numerical methods to solve differential or
integral equations.
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