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Abstract: This paper presents a brief study of (2-dimensional, spacelike) wave surfaces to a null
direction l on a space-time (M, g) and studies how certain imposed symmetries on the set of such
wave surfaces can be used to describe other geometrical features of l and (M, g). It is mainly a review
of known material but contains some novelties. For example, the brief discussion of the nature of
wave surfaces (when viewed geometrically as wave fronts to a null ray direction) in Wave Surfaces
Section is new in the sense that although it appeared in the author’s work by the present author, it
has not, to the best of his knowledge, appeared in this form anywhere else. Further, the work on
conical symmetry and plane waves are, to the best of the author’s knowledge, original with him from
earlier papers and are reviewed here while the work on complete wave surface (sectional curvature-)
symmetry is believed to be entirely new. Geometrical use of the sectional curvature function is
employed in many places. The consequences of the various symmetry conditions imposed on the
collection of all wave surfaces to a null direction spanned by a null vector l are described in terms of
l spanning a principal null direction of the Weyl tensor (if non-zero) at the point concerned (in the
sense of Petrov and Bel).

Keywords: Petrov type; wave surfaces; symmetry sectional curvature

1. Introduction and Notation

In this paper, M is a 4-dimensional, smooth, connected, Hausdorff manifold with
smooth Lorentz metric g, and the pair (M, g) is called a space-time. Inner products formed
from g are denoted using the symbol ·. For m ∈ M, Tm M is the tangent space to M at m and
the set Λm M is the 6-dimensional vector space of two forms (referred to here as bivectors) at
m. A tetrad {l, n, x, y} of members of Tm M with l and n null, l · n = 1, x · x = y · y = 1, and
with all other inner products between members of this tetrad zero, is a basis for Tm M called
a (real) null tetrad, while the basis l, n, m, m̄, where m = 2−

1
2 (x + iy) and a bar denotes

complex conjugation, is the associated complex null tetrad. A 1-dimensional subspace of
Tm M, spanned by u ∈ Tm M, is called a direction and is a spacelike (respectively timelike,
null) direction if u is spacelike (respectively, timelike or null). A 2-dimensional subspace
V ⊂ Tm M (referred to as a 2-space at m) is called spacelike if each non-zero member of V is
spacelike, timelike if V contains exactly two distinct null directions and null if V contains
exactly one null direction. It is easily shown that any 2-space at m is either spacelike,
timelike, or null. A bivector F ∈ Λm M necessarily has an even matrix rank and is called
simple if this rank is 2 and non-simple if it is 4. A simple bivector F may be written, in some
basis at m, as Fab = paqb − qa pb for independent p, q ∈ Tm M, and the 2-space spanned
by p and q is uniquely determined by F and called the blade of F. Sometimes one writes,
symbolically, F = p ∧ q for F or its blade or just for the 2-space spanned by p and q and,
for calculations, p ∧ q is the above expression for Fab (or, with an abuse of notation, for Fab).
If this blade is spacelike (respectively, timelike or null), F is called spacelike (respectively,

timelike or null). The usual (Hodge) dual of a bivector F is denoted by
∗
F and F is simple if

and only if
∗
F is simple (and their blades are orthogonal). Always F and

∗
F are independent

in Λm M. This latter result is a consequence of Lorentz signature and is false for the other
two signatures for a 4-dimensional manifold.
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The Levi-Civita connection ∇ of g leads to a curvature tensor denoted Riem with
components Ra

bcd and then to the Ricci tensor Ricc given in components by Rab = Rc
acb

and to the Ricci scalar R = Rabgab. From this, one obtains the Weyl (conformal) tensor C
with components Ca

bcd given by

Rabcd = Cabcd + Eabcd +
R
6

Babcd, (1)

where

Eabcd =
1
2
(R̃acgdb − R̃adgbc + R̃bdgac − R̃bcgad), Babcd =

1
2
(gacgbd − gadgbc), (2)

B is the bivector metric with components Babcd and where R̃ab = Rab − R
4 gab are the

components of the tracefree Ricci tensor R̃. It is easily checked that the Einstein space
condition R̃(m) = 0 at m ∈ M is equivalent to the condition E(m) = 0. (M, g) is called flat
if Riem ≡ 0 on M, conformally flat if C ≡ 0 on M, and vacuum (or Ricci-flat) if it is not flat but
Ricc ≡ 0 on M. Thus, a vacuum space-time is an Einstein space.

Einstein’s field equations take the form

Gab ≡ Rab −
R
2

gab = Tab (3)

where G is the Einstein tensor and T is (up to a constant scaling) the energy–momentum
tensor. The symmetry of T in its indices means that it may be classified using Jordan
form/Segre type theory as, for example, in [1]. The only forms for T required here are
the situations T ≡ 0(⇔ Ricc ≡ 0) on M, which is the vacuum condition on M, and the
case when T is the outer product of a null vector field l on M with itself (in components,
Tab = λlalb on M for some real-valued function λ on M—the “null fluid” condition).

In this paper, the concept of a wave surface (introduced originally in [2]) is studied and
which is a spacelike 2-space S at p ∈ M interpreted as a wave front for a wave disturbance,
the latter represented by one of the two independent null directions orthogonal to S
at p (Section 3). The idea is to choose one such null direction l at p and to explore the
consequences for l of imposing certain symmetry conditions on the collection of all such
wave surfaces at p orthogonal to l (the wave fronts of an observer at p) usually in terms
of the sectional curvature of the wave surface. On the other hand, at each p ∈ M, certain
null directions at p will, in general, be picked out naturally by the geometry of (M, g).
The main ones are those arising from the Weyl tensor if it is non-zero (but there are some
from the energy–momentum tensor) and which, through the Einstein field equations,
may have a significant physical interpretation. Those from the Weyl tensor (the so-called
principal null directions of the Weyl tensor) are closely related to the Petrov classification
of the Weyl tensor and are described in the next section. The problem is to see if these
latter (principal) null directions coincide with those whose wave surfaces satisfy the above
imposed symmetry condition. The geometry of the null directions arising from the Weyl
tensor will be described in the next section. The first theorem in this direction arises in
Section 5, where a type of conical symmetry will be imposed on the wave surfaces. This
was first considered by the present author some years ago [3], while a similar symmetry of
wave surfaces is described in Section 6 and is believed to be new. Finally, a more restrictive
(but perhaps more interesting) Killing type symmetry on wave surfaces, first given in [4], is
considered in Section 8.

2. The Petrov Classification And Principal Null Directions

An algebraic classification of the Weyl tensor C at m ∈ M was given by Petrov [5]

and arises by considering the associated complex Weyl tensor
+
C = C + i

∗
C, where again

∗ denotes the Hodge dual operator (for the notation, see, e.g., [1]). This is then regarded
as a linear map on the complexification of Λm M. This classification may be shown to be
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equivalent to a similar procedure on the real tensor C(m) but with shorter calculations.
The possible Jordan forms arising then lead to the well-known Petrov types I, D, II, N,
III, and O at m, where type O signifies that C(m) = 0 (full details may be found in [1,5]).
For Petrov types N, III, and O (and only for these types), each eigenvalue of this linear map
is zero. The Petrov types will, in general, vary from point to point in M (subject, of course,
to continuity restrictions) but this will not be important for the purposes of this paper and
mostly only the Petrov type at a certain m ∈ M is required. It is thus convenient to assume
that (M, g) has the same Petrov type at every point and this is then referred to as the Petrov
type of (M, g). If (M, g) has Petrov type I, it is referred to as algebraically general, while for
each of the other types, (M, g) is called algebraically special.

An alternative view of this classification emerged soon after Petrov’s scheme mainly
(but not entirely) through the work of Bel [6] (see [1,7,8] for details) and which is, perhaps,
more relevant here and often more convenient for calculations. It is noted that for each

Petrov type at m, a study of the algebraic structure of C(m) ̸= 0 (or, alternatively,
+
C(m))

leads to certain special null directions being “picked out” by C(m). There are finitely many
distinct such null directions at m for each (non-zero) Petrov type (in fact, at most four) and
each member of this finite set is itself one of two distinct types. To proceed further, let

0 ̸= k ∈ Tm M be real and consider the following two equations at m for
+
C(m), where square

brackets (respectively, round brackets) denote the usual skew-symmetrization (respectively,
symmetrization) of indices and where q is some complex 1-form at m,

k[e
+
Ca]bc[dk f ]k

bkc = 0,
+
Cabcdkbkc = kaqd + qakd. (4)

By using the intermediate (complex) symmetric tensor Tad ≡
+
Cabcdkbkc, it is straightfor-

ward to check that the two conditions in Equation (4) are equivalent. Further, Equation (4)
in fact implies that k is null, and if q ̸= 0, it is orthogonal to k. A (null) vector k satis-
fying Equation (4) is called a principal null direction (pnd) for C at m. Next, suppose that

0 ̸= k ∈ Tm M is real and α ∈ C, and consider the following two equations at m for
+
C(m),

k[e
+
Ca]bcdkbkc = 0,

+
Cabcdkbkc = αkakd. (5)

Again, these two equations are equivalent, and again, k is necessarily null. A vector
such as k is called a repeated principal null direction (repeated pnd) for C at m. (The reason for
this nomenclature can be found in [6,8].)

These conditions for a null direction being a pnd or a repeated pnd can be simplified
by noting that, since k is real, the conditions in Equation (4) and Equation (5) can each be

replaced by two analogous real conditions on the tensors C(m) and
∗
C(m) and to which

they are obviously equivalent. These are

k[eCa]bc[dk f ]k
bkc = 0, Cabcdkbkc = kaq′d + q′akd, (6)

and
k[e

∗
Ca]bc[dk f ]k

bkc = 0,
∗
Cabcdkbkc = kaq′′d + q′′a kd, (7)

where q′ and q′′ are real 1-forms with q = q′ + iq′′, (and if q′ ̸= 0 (respectively, q′′ ̸= 0)
l · q′ = 0 (respectively, l · q′′ = 0)) and

k[eCa]bcdkbkc = 0, Cabcdkbkc = α′kakd, (8)

and
k[e

∗
Ca]bcdkbkc = 0,

∗
Cabcdkbkc = α′′kakd, (9)
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where α = α′ + iα′′ with α′, α′′ ∈ R. However, one can go further and show that if k ∈ Tm M
is assumed to be null, the (equivalent) conditions in Equation (4) are equivalent to either of the
two conditions in Equation (6) (these being equivalent) and to either of the two conditions
in Equation (7) (these also being equivalent), and thus one achieves the simplification that
the condition Equation (4) for a pnd can be replaced by the first equation in Equation (6)
if k is assumed to be null. This is often more convenient for calculations. Similarly, the
equivalent conditions in Equation (5) are equivalent to either of the two conditions in
Equation (8), (these being equivalent) and to either of the two conditions in Equation (9)
(these also being equivalent), and so Equation (5) can be replaced by the (more convenient)
first equation in Equation (8) if k is assumed to be null. These results can be established by

considering the general expression (and notation) for
+
C in [8] (or Equation (7.67) in [1]) in

terms of a complex null tetrad l, n, m, m̄ with k = l (since k is assumed to be null) and its

associated complex bivectors and computing k[e
+
Ca]bc[dk f ]kbkc and separating it into its real

and imaginary parts. That the first equations in each of Equations (6) and (7) are equivalent
then follows a simple calculation. A similar argument shows the equivalence of the first
equations in each of Equations (8) and (9).

It is clear how a repeated pnd is the special case of a pnd when q in Equation (4) is a
(complex) multiple of k (and the fact that pnds arise as roots of a certain quadric equation
with repeated pnds corresponding to repeated roots justifies the notation). A pnd which is
not a repeated pnd is referred to as a general pnd, and general and repeated pnds give the
two distinct types of “special” null directions mentioned above. Each individual Petrov
type may be characterized by the number of repeated and non-repeated principal null
directions it admits at the point in question, the further details of which are not needed here.
They are collectively referred to as the Bel criteria. The necessity to be careful about whether
k is assumed null or not here can be seen from the following example. Consider the general

expression (and notation) for
+
C in [8] above in terms of a real null tetrad l, n, m, m̄ with

C1 = C2 = C4 = C5 = 0 and 0 ̸= C3 pure imaginary. Then r ≡ l − n is real and timelike

but satisfies Cabcdrarc = 0 (but
+
Cabcdrarc is not (complex) proportional to rbrd).

For later reference, it is remarked that a similar analysis may be undertaken regarding
the tensor E in Equations (1) and (2). In fact, there exists a similar set of criteria for E (or for

an analogous complex tensor
+
E constructed from E in a similar fashion to the progression

from C to
+
C [1]). This leads to a set of results for E which can be rather useful in calculations

involving the tensor Ricc. If Equation (6) holds with C replaced by E and for k null, call
k a principal null direction (pnd) for E, whereas if Equation (8) holds with C replaced by E
and for k null, call k a repeated principal null direction (repeated pnd) for E. Then it can be
shown that a (real) null vector k is a repeated pnd for E if and only if it is a (real) Ricci
eigenvector, that is, Rabkb = αgabkb = αka holds at m for α ∈ R, and that k is a pnd for E
if and only if Rabkakb = 0 at m [1]. It is also noted that, from Equation (2) and for k null,
Babcdkakc = − 1

2 kbkd.

3. Wave Surfaces

Let l ∈ Tm M be null. A wave surface to l at m is a spacelike 2-space at m, each non-zero
member of which is orthogonal to l. There are infinitely many wave surfaces to l at m and
these can be described in terms of a null tetrad {l, n, x, y} containing l. First, for p, q ∈ Tm M,
p ∧ q is a wave surface to l if and only if p and q are spacelike and p · l = q · l = 0. Thus,
p and q are linear combinations of l, x, and y, p = ax + by + cl and q = αx + βy + γl for
a, b, c, α, β, γ ∈ R. One may assume that p · p = q · q = 1 and p · q = 0 (as one always can
without changing the 2-space p ∧ q), which gives a2 + b2 = α2 + β2 = 1 and aα + bβ = 0.
If b = β = 0, then one achieves the contradiction that p ∧ q, if defined, is the 2-space l ∧ x,
which is null. Therefore, at least one of b and β is non-zero. By taking linear combinations of
p and q (again without changing the 2-space p∧ q), it follows that we may choose b = 0 ̸= β
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and then p = a′x + c′l and q = α′x + β′y + γ′l for a′, c′, α′, β′, γ′ ∈ R. Clearly, a′ ̸= 0 and
so one can arrange that α′ = 0 and then β′ ̸= 0. Thus, one may write p = x + c′′l and
q = y + γ′′l (c′′, γ′′ ∈ R). It follows that, for the given null tetrad l, n, x, y, any wave surface
may be written as (x + al) ∧ (y + bl) for a, b ∈ R. Further, when taken in this form with
the tetrad fixed, the ordered pair (a, b) is uniquely determined by the wave surface and
the collection of all such wave surfaces to l at m, denoted by Wl(m), is in a one-to-one
correspondence with R2. (In fact, Wl(m) is a 2-dimensional, connected submanifold of the
Grassmann manifold of 2-spaces at m diffeomorphic to R2 (but not a closed one since it
does not contain its null limit points) [1]).

Some properties of this collection can now be described. First, if u ∈ Tm M is timelike,
the 2-space u ∧ l is a timelike 2-space and its orthogonal complement, W, is a wave surface
to l uniquely determined by l and u and called the instantaneous wave surface to l for (an
observer represented by) u at m, that is, u is orthogonal to each non-zero member of W.
Another instantaneous wave surface to l at m arising, as above, from a timelike vector u′, is
the same as W if and only if l, u and u′ are coplanar (see e.g., [9]).

A simple geometrical interpretation of wave surfaces can be seen as follows. Consider
an orthonormal reference frame (“observer”) I = {x, y, z, t} at m with x, y, z unit orthogonal
spacelike vectors and t a unit timelike vector orthogonal to x, y, and z and a null vector
l at m with components la = (1, 0, 0, 1) in I. Under a Lorentz transformation to a new
orthonormal frame I′ related to I by a spatial rotation in the xz plane and then to yet another
orthonormal frame I′′ obtained from I′ by a Lorentz boost in the z′ direction, one sees that
the rotation and boost may be chosen so that, in the frame I′′, the components of l are a
multiple of those in I (that is, l appears to be in the same coordinate direction). The observer
I clearly sees (in an obvious notation) y ∧ z as its unique instantaneous wave surface to l at
m, whereas I′′ sees a different instantaneous wave surface of the form y ∧ (z + cl) (c ∈ R).
In fact, one can find transformations which reveal observers with instantaneous wave
surfaces of the general form (y + dl) ∧ (z + el) (d, e ∈ R). However, starting with the frame
I, a Lorentz boost along the x direction to a frame I′′′ reveals that the components of l in
I′′′ are a multiple of those in I and also that the instantaneous wave surface for I′′′ is the
same as that for I, that is, the null direction and the timelike vectors representing these
observers are coplanar. Thus, one obtains the two-parameter collection of distinct wave
surfaces to l described earlier as the 2-dimensional submanifold Wl(m), each of which is
an instantaneous wave surface for some (in fact, infinitely many) observers at m. It is thus
clear that Wl(m) can be generated by one wave surface to l, say x ∧ y, where x, y are unit
orthogonal spacelike vectors at m orthogonal to l, and the action on it by the 2-dimensional
subgroup of the Lorentz group given on the null tetrad {l, n, x, y} by l → l, x → x + αl,
y → y + βl, n → n − 1

2 (α
2 + β2)l − αx − βy for α, β ∈ R. Hence, in order to make sense

of a claimed property of a general wave surface to a null direction l, such a property must
be “invariant” under the above Lorentz subgroup. Then, from the first paragraph of this
section, these transformations have the transitivity property that for any wave surfaces
W, W ′ ∈ Wl(m) some such transformation maps W to W ′.

4. Sectional Curvature

Let m ∈ M, let V be a non-null 2-space at m, and let F be a simple bivector at m whose
blade equals V. The sectional curvature σm(V) of V is defined as

σm(V) =
RabcdFabFcd

2BabcdFabFcd =
RabcdFabFcd

2FabFab (10)

where, since V is non-null, the denominator in Equation (10) is not zero. The term sectional
curvature comes from the fact that one can show the existence of an open neighborhood U
of m such that the subset N of all points on those geodesics in U starting from m, whose
tangent vector at m lies in V is a 2-dimensional submanifold of N and hence of M. One
may then choose U so that the tangent plane to N is everywhere non-null and so N admits
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an induced metric g′ from g. The Gauss curvature of (N, g′) at m is then equal to σm(V).
(For further details on sectional curvature see, for example, [1,10]).

5. Conical Symmetry

Considering m ∈ M, choose a orthonormal frame I = {x, y, z, t} at m and choose a null
vector l at m with components la = (1, 0, 0, 1) in I. With an abuse of notation, consider the
“cone” of vectors {r : ra = Axa + µya + νza} “about l in I” at m for a fixed 0 ̸= A ∈ R and
for µ, ν ∈ R with µ2 + ν2 = 1. Then consider the timelike 2-space V = l ∧ r at m spanned
by l and r. The sectional curvature of V is, thus, from Equation (10), with Fab = 2l[arb],

σm(V) =
−Rabcdlalcrbrd

A2 . (11)

Now suppose the “conical symmetry” condition holds at m, that is, σm(V) is indepen-
dent of µ and ν. Thus, σm(V) is unchanged by “rotating” r about the spatial direction x of l
in I. Then, defining the symmetric tensor T at m by the components Tbd = Rabcdlalc, one
sees that Tablb = 0 and that in the frame I, from Equation (11),

A2T11 + 2AµT12 + 2AνT13 + µ2T22 + 2µνT23 + ν2T33 (12)

(with µ2 + ν2 = 1) is independent of µ and ν and that Ta1 + Ta4 = 0. It follows that
T12 = T13 = T23 = T24 = T34 = 0, T22 = T33, and that T11 = T44 = −T14. Thus, one obtains
at m

Rabcdlalc(= Tbd) = T11lbld + T22(ybyd + zbzd) (13)

and so T22 = Rab la lb

2 . If one constructs a null tetrad {l, n, y, z} from the original l, y, and z
and uses the completeness relation gab = 2l(anb) + yayb + zazb, one finally obtains

Rabcdlalc = T11lbld +
1
2

Rcdlcld[gbd − 2l(bnd)]. (14)

Moreover, (see the end of Section 2) one has, for any null vector k, Babcdkakc = − 1
2 kbkd.

Finally, one obtains from Equation (2)

Eabcdlalc =
1
2
(Raclalc)gbd −

1
2
(ldl′b + l′dlb) (15)

where l′a = R̃ablb. Collecting these results together, it then follows from Equation (1) that

Cabcdlalc = κlbld + lbq′d + q′bld = lbqd + qbld (16)

for κ ∈ R and for covectors q′ and q at m with l · q = l · q′ = 0. Then Equation (6) shows
that l is a pnd for C at m. Thus, one achieves the following result.

Theorem 1. The conical symmetry assumption on l at m leads to the consequence that l spans a
pnd of C(m).

If, in addition, one has a vacuum or a null fluid energy–momentum tensor at m, l that
is a Ricci eigenvector with zero eigenvalue, Rablb = 0, and so Rablalb = 0, and l′, q and q′

become multiples of l. Thus, Equation (8) holds for C(m) and l spans a repeated pnd for
C(m) [3]. The common sectional curvature of the 2-spaces involved is −T11 − b

2A2 , where
b = Rablalb. In the event where Rablb = 0 (⇒ b = 0), the common sectional curvature
is −T11.

6. Wave Surface Symmetry

Suppose now that for m ∈ M, l is a null member of Tm M. Another possible geometrical
symmetry is the statement that the sectional curvatures of each of the wave surfaces to l, that
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is, of the members of Wl(m), are equal. Thus, for V ∈ Wl(m), σm(V) is “invariant” under
the null rotations given at the end of Section 3. Choosing a null tetrad {l, n, y, z} about l
and an “initial” wave surface V ≡ y ∧ z, this statement is σm(V) = σm[(y + al) ∧ (z + bl)]
for each a, b ∈ R. That is, from Equation (10),

Rabcdyazbyczd = Rabcd(ya + ala)(zb + blb)(yc + alc)(zd + bld). (17)

This can be unraveled by first taking b = 0 (but a arbitrary) and expanding to obtain

Rabcdlazblczd = Rabcdlazbyczd = 0. (18)

Similarly, with a = 0 and b being arbitrary, one obtains

Rabcdlayblcyd = Rabcdlaybzcyd = 0. (19)

A back substitution of Equations (18) and (19) into Equation (17) then gives Rabcdlayblczd = 0.
Next, define the symmetric tensor T by Tbd ≡ Rabcdlalc = Tdb which, from the above, satisfies
Tabyayb = Tabzazb = Tabyazb = 0, and of course, Tablb = 0. These conditions imply that, at m,

Rabcdlalc = Tbd = αlbld + 2βl(byd) + 2γl(bzd) (20)

for α, β, γ ∈ R. From Equation (20), one sees that Rablalb = 0. It thus follows that l
spans a pnd for E (see the end of Section 2), that is, l[eEa]bc[dl f ]lblc = 0. In addition,
one has Babcdlalc = − 1

2 lbld and, hence, l[eBa]bc[dl f ]lblc = 0. But Equation (20) shows that
l[eRa]bc[dl f ]lblc = 0 and so, as Equations (1) and (6) hold for C, show that l spans a pnd
for C.

Theorem 2. A null direction each of whose wave surfaces has the same sectional curvature at
m ∈ M is a pnd for C(m).

7. A Brief Discussion of Symmetry in General Relativity

In order to proceed further, one requires some brief introduction to mathematical
symmetry in Einstein’s theory. For the space-time (M, g), a global smooth vector field X
is called Killing if, using a semi-colon to denote a covariant derivative with respect to the
Levi-Civita connection arising from g,

Xa;b ≡ Fab = −Fba, (21)

where F is the Killing bivector. The collection of all Killing vector fields on M is denoted
by K(M) and is a (finite-dimensional) Lie algebra under the usual Lie bracket operation.
If X ∈ K(M), let ϕt be a (necessarily smooth) local flow of X (see, e.g., [1]). Then the pullback
ϕ∗

t g = g and so ϕt is a local isometry on M. The following results can be deduced from the
theory of Killing vector fields (see, e.g., [1]). First, the subset of points W ⊂ M at which the
subspace {X(m) : X ∈ K(M)} of Tm M is trivial is closed and has an empty interior (in the
manifold topology of M). Then for a positive integer k, let X1, . . . , Xk ∈ K(M) with local
flow maps ϕ1

t , . . . , ϕk
t . There is a local diffeomorphism between open subsets of M (where

defined) given for m ∈ M by

m → ϕ1
t1
(ϕ2

t2
(· · ·ϕk

tk
(m) · ··)) (22)

for all choices of k, X1, . . . , Xk and (t1, . . . , tk) ∈ Rk under the usual rules of composition and
inverses. Then define an equivalence relation ∼ on M given for m1, m2 ∈ M by m1 ∼ m2 ⇔
some map of the form Equation (22) maps m1 to m2. The equivalence classes under ∼ are
called the (Killing) orbits in M and each is a submanifold of M. The orbit through m ∈ M is
labeled Om.
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Next, consider the subspace
∗
Km ⊂ K(M) defined by

∗
Km = {X ∈ K(M) : X(m) = 0}.

∗
Km is easily checked to be a subalgebra of K(M) and is called the isotropy algebra of K(M)
at m. Thus, the orbits connect points which are metrically indistinguishable, whereas if

ϕt arises from X ∈
∗
Km, ϕt(m) = m and the pushforward maps ϕt∗ give isomorphisms on

Tm M, linking metrically indistinguishable tangent vectors. Each such ϕt∗ is then a member

of the Lorentz group at m since g(u, v)(= ϕ∗
t g(u, v)) = g(ϕt∗u, ϕt∗v) and

∗
Km is a subalgebra

of the Lorentz algebra. The tangent space to Om, {X(m) : X ∈ K(M)}, has dimension
equal to that of Om and so, from a consideration of the linear map K(M) → Tm M given by

X → X(m), elementary linear algebra reveals that dimOm+dim
∗
Km =dimK(M). An orbit

O is called proper if 1 ≤ dimO ≤ 3 and dimensionally stable if, given m ∈ O, there exists an
open neighborhood U ⊂ M of m with the property that the Killing orbit through any point
of U has dimension equal to that of O (that is, if “nearby” orbits have the same dimension
as O). If dimOm = 4, for each m ∈ M there is a single (4-dimensional) orbit and K(M) is
called transitive and (M, g) is called homogeneous.

It is remarked for future use the well-known result that if dim
∗
Km ≥ 3, the Weyl tensor

vanishes at m (see, e.g., [1]).

8. Plane Waves

Let M be R4 with global coordinates u, v, x, y and consider the metric given by

ds2 = H(x, y, u)du2 + 2dudv + dx2 + dy2 (23)

where H(x, y, u) = a(u)x2 + b(u)y2 + c(u)xy for functions a, b, and c of u only. It can
be checked that the Ricci tensor Ricc satisfies the null fluid condition (possibly vacuum
form) Rab = d(u)lalb for some function d. Such metrics are usually known as plane waves
and have been widely discussed (see [1,2,4,7,9] and references contained therein). They
are intended to describe a wave motion along the null direction l with local expression
l = ∂/∂v (la = u,a). The wave surfaces to l at m ∈ M represent the “plane wave surfaces”
to l and contain the instantaneous wave surface to l for each observer at m. The vacuum
condition Ricc ≡ 0 on M (that is, d ≡ 0 on M) is equivalent to a + b ≡ 0 on M white the
conformally flat condition C ≡ 0 on M is equivalent to a ≡ b and c ≡ 0, on M. Each of
these possibilities can occur [7].

Next, suppose that (M, g) is a space-time which is not flat and which admits a Killing
algebra K(M) such that at each m ∈ M there exists a unique null direction spanned by a
null vector l ∈ Tm M (referred to as the wave direction) and which has the property that the

transformations ϕt∗ arising from the members of the isotropy algebra
∗
Km at m are transitive

on the set of all wave surfaces Wl(m) to l at m. By this, it is meant that given any two wave
surfaces W1 and W2 to l at m, some such ϕt∗ maps W1 to W2. This can be shown to force
ϕt∗l to be a multiple of l (and that l spans the only direction at m with this property) and
expresses the condition that the members of Wl(m) are metrically indistinguishable, and
hence, that they have the same sectional curvature (and it then follows from the work of
Section 6 that l must span a pnd of the Weyl tensor C(m) at m if this latter is non-zero).
In order to remove possibly pathological examples, it will be assumed that all Killing orbits
are either 4-dimensional or, if proper, that they are dimensionally stable, and that at no
m ∈ M does Riem satisfy the constant curvature condition Riem(m) = R(m)

6 B(m) (see
Section 1).

Suppose also that C(m) ̸= 0 so that l is a pnd of C(m). If X ∈
∗
Km, then the local

flow maps ϕt associated with X satisfy ϕt(m) = m and LX g = g, and so LXC = 0 and
LXRicc = 0. Since the pnds for C(m) form a finite (discrete) subset of Tm M, the condition
LXC = 0 reveals (again) that ϕt∗l is a multiple of l. In the case that C(m) = 0, it will
be seen that a null fluid form for the Ricci/energy–momentum tensor results with null
fluid direction l′, say, and that this direction is unique. Thus, again, one obtains from the



Symmetry 2024, 16, 230 9 of 10

condition LXRicc = 0 that ϕt∗l′ is a multiple of l′ (and from this it can be shown that if,
in addition, C(m) ̸= 0 with pnd l, the directions l′ and l coincide). One can now, with a
little effort and using the information of this and the last paragraph, rule out, systematically,

many of the subalgebras of the Lorentz algebra as possibilities for
∗
Km, and it can be shown

that any proper orbit of K(M) is 3-dimensional and null. Thus, any orbit is either 3-

dimensional and null, or 4-dimensional. The subalgebra
∗
Km is either 2-dimensional or

3-dimensional and dimK(M) ≥ 5. The possibilities remaining are that

(i) M admits a single 4-dimensional orbit (and so (M, g) is homogeneous) and for m ∈ M

either dim
∗
Km = 2 and dimK(M) = 6, or dim

∗
Km = 3 and dimK(M) = 7; or

(ii) Each orbit is 3-dimensional and null with normal everywhere parallel to the wave

direction and either dim
∗
Km = 2 and dimK(M) = 5, or dim

∗
Km = 3 and dimK(M) = 6.

The space-times in (ii) above are the non-homogeneous plane waves and satisfy R = 0
and admit a local, covariantly constant, null vector field l parallel at each point to the
wave direction. The energy–momentum tensor is either zero (the vacuum case) or of the
null fluid form, and in this latter case the unique null direction of this fluid is parallel to l.
In the case dimK(M) = 5 (respectively, dimK(M) = 6), C is either zero or of Petrov type N
(respectively, C ≡ 0 on M). If C(m) is Petrov type N, then its repeated pnd is parallel to l.

For the space-times in (i), if the (necessarily constant) R vanishes, either dim
∗
Km = 2

and dimK(M) = 6 (with Petrov type N or O), or dim
∗
Km = 3 and dimK(M) = 7 (and

Petrov type O) and a local covariantly constant, null vector field l is admitted parallel at
each point to the wave direction. The space-time is either vacuum or of the null fluid type,
and in this latter case, the null fluid direction is proportional to l. If C is type N, then the
unique pnd is parallel to l. These are the homogeneous plane waves. If, however, R ̸= 0,
the homogeneous metrics of Defrise are encountered [11] (see also [7]), which are null fluids

with a cosmological constant. They are of Petrov type N with dimK(M) = 6, dim
∗
Km = 2

for each m ∈ M and they admit no (local or global) covariantly constant vector fields.
Thus, the assumption of transitivity of ϕt∗ on the collection of wave surfaces to l leads,

apart from the Defrise metrics, to the plane waves. Conversely, any of the above plane

waves has an isotropy algebra
∗
Km at any m ∈ M of dimension 2 or 3 and also gives rise to

a locally smooth null vector field on M, either through the (unique repeated) pnd of the
Weyl tensor (if this latter is non-zero) or the (unique) null eigendirection of the null fluid
energy–momentum tensor (if not vacuum) and which, if each is defined, coincide. These
then collectively define the wave direction on M and which is preserved by the associated

maps ϕt∗ from
∗
Km. If the Killing orbits are dimensionally stable, 3-dimensional, and null,

the normal to them is, by inspection, parallel to the wave direction defined above, and say

spanned by a local null vector field l. Then for any X ∈
∗
Km, Xala = 0 (since X is tangent to

this orbit) and X(m) = 0, and a differentiation gives Fablb = 0 at m for each Killing bivector

associated with a member of
∗
Km. A consideration of the bivector representations of the

subalgebras of the Lorentz algebra (see, e.g., the table of such subalgebras in [1]) shows that

this leads to
∗
Km being either the 2-dimensional subgroup described at the end of Section 3

or to a 3-dimensional subgroup which contains it as a subgroup, and hence to the wave
surface transitivity property on Wl(m).

If the orbits are 4-dimensional (the homogeneous case, including the Defrise met-

ric [11]) and if dimK(M) = 6, then
∗
Km is the subgroup described at the end of Section 3

(since the other possible subgroups would not allow for a type N Weyl tensor or a null

fluid type energy–momentum tensor ([1], p. 302)). If dimK(M) = 7, then dim
∗
Km = 3 and

the Weyl tensor must vanish everywhere and a (non-trivial) null fluid results (to avoid
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flatness). The isotropy algebra must then contain the subalgebra from Section 3 ([1], p. 302).
Again, transitivity holds.

In this sense, the above assumption of transitivity on wave surfaces to a null direction
is (roughly speaking and recalling the clauses to remove pathological cases) equivalent
to the plane wave assumption (and including the Defrise metrics [11] in the latter). It is
remarked here that in [9] it was claimed (see the beginning of Section 6 of that reference)
that a certain assumption on a function occurring in the expression for the Weyl tensor was
sufficient for the metric discussed there to be a plane wave. This assumption should, in fact,
be augmented by an assumption on the Ricci tensor analogous to the condition d = d(u)
given at the beginning of this section.

9. Conclusions

In conclusion, it has been shown that certain “continuous” symmetries applied to
the wave surfaces of a given null direction at p force that null direction to be a special
(that is, a principal) null direction of the Weyl tensor at p. In addition, it is shown that the
well-known plane waves are essentially characterized by the extreme (Killing) symmetry
condition on wave surfaces described above.
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