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Abstract: Power converters can convert the electrical energy output by power source into specific
forms required by target device. They are widely used in various fields such as electrification,
transportation, and power systems, and are the core components of the systems. Power converters
are composed of power semiconductor devices (such as IGBTs), which are prone to failure due to
abnormal conditions and aging degradation, leading to power converter faults. Therefore, over the
past twenty years, extensive fault diagnosis methods for power converters have been studied and
proposed. Among them, symmetry-based methods have the characteristics of rapid diagnosis speed
and strong robustness, but so far there’s no systemic summary of such methods. Therefore, this
paper reviews the relevant research on fault diagnosis of power converters based on symmetry in
recent years, analyzes the mathematical principles of these methods, and compares their diagnostic
performance. In addition, two factors that may have an influence on the symmetry are pointed out.
This paper provides references and suggestions for the future development and research of power
converter fault diagnosis.

Keywords: power converter; symmetry; fault diagnosis

1. Introduction

Whether it is a spacecraft, high-speed train, or modern household appliance, power
converters are needed to convert the power from the supply into electric energy with a
specific amplitude, frequency, and other indicators that meet the requirements for use.
Focusing on the research in this paper, “power converter” mainly refers to multi-phase
rectifiers and inverters. Thanks to the development of power semiconductor devices and
control technology, various topology power converters have been developed, meeting the
needs of production and life [1]. However, at the same time, reliability has always been
a major issue in converters, despite significant progress in the technology used for the
preparation of power devices in recent decades. According to an industry-based survey,
power transistors are the most fragile components in power converters [2,3].

Power transistor faults are mainly categorized as SC (short-circuit) and OC (open-
circuit) faults. SC faults are often accompanied by overcurrent, which will trigger a circuit
breaker, fuse, or other hardware-protection circuits immediately and are easy to detect.
Whereas an OC fault will generally not cause the system to shutdown immediately, but
degrade the system’s performance, such as by creating voltage unbalance, harmonic dis-
tortions, and system fluctuations [4,5]. Even worse, if not dealt with in a timely manner,
such OC faults may lead to cascading failures or even system crashes, causing a loss of life
and property [6]. Therefore, in recent decades, various methods for the diagnosis of OC
faults in power converters have been proposed, especially for situations where reliability
and safety are highly valued, such as in a traction converter [7,8].

The method for the diagnosis of power transistor OC faults in converters can be mainly
divided into three categories: hardware-based, model-based, and signal-based methods.
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Hardware-based methods can detect and locate faults quickly but require additional devices
such as sensors or circuits, which in turn limits the application of the method [9–11].
Model-based fault diagnosis methods usually establish mathematical models for power
converters first and diagnose the fault by comparing the signal observed from the model
with actual measured values [12–14]. These methods have a short diagnosis time but
require knowledge and parameters related to system structure, operation model, and other
aspects. Signal-based methods usually extract features first and then use these features
to train the classifier or classify them directly by comparing the characteristic value with
thresholds [6,15]. Requiring neither additional sensors nor precise models and parameters
of the system, the signal-based methods have the advantage of a fast diagnostic speed and
low computational complexity. This is a key step is the selection of diagnostic features. It
should be pointed out that, although deep learning has developed rapidly in recent years,
there are still many limitations in utilizing raw data as the input of classifiers due to the
limited computing power of processors used in actual industrial scenarios [16].

Therefore, feature extraction is the key to signal-based fault diagnosis methods, which
is also the core of most research in recent years [6,17]. If the features are well selected,
good classification results can be obtained through a simple classifier; on the contrary, to
achieve an equivalent performance, complex classifiers are required, and sometimes it is
still difficult to obtain satisfactory results. This is because power converters often have
limited information available for diagnosis, but the fault patterns are complex, making
it difficult to effectively classify using a single, low dimensional feature. Taking a two-
level three-phase inverter with an induction motor as an example, this is the most basic
topology structure, but there are four categories and 21 types of single-transistor and
double-transistor faults. In addition, the motor has a huge difference in current during
the processes of starting, braking, load adjustment, acceleration, and deceleration, which
can easily be confused with fault situations [18]. The power converters usually work in a
complex electric-magnetic-mechanical-thermal coupling field, with numerous influencing
factors. Therefore, selecting features with high discrimination is of great significance for
power converter fault diagnosis. Many features, such as the average value, absolute value,
effective value, skewness, kurtosis in the time domain, and the transformed coefficients
such as Fourier transform and wavelet transform in the frequency domain, have been
selected as features for diagnosis and have achieved certain results [19]. In addition, a
widely adopted but not systematically studied feature is symmetry, which has achieved
remarkable results in power converter fault diagnosis [20,21].

“Symmetry” means “the quality of being very similar or equal” or “the exact match in
size and shape between two halves, parts or sides of something”. Symmetry is an important
attribute of power converters. Whether it is a two-level, three-level, or multi-level converter,
they all have a certain symmetry in structure. This topological symmetry means that
the voltage/current output from each phase of the converter are also symmetrical, with
only a specific phase angle difference [22]. But when there is a fault in the converter, the
topological symmetry will be disrupted, and the symmetry of the output signals of each
phase will also change accordingly [23]. So, how do we measure the change in symmetry?
At present, though there is no formula for directly quantifying “symmetry”, extensive
research has been conducted on “similarity”, “distance”, “entropy”, etc., and they are
essentially a quantification of symmetry. The above methods of measuring symmetry
and using it as a feature for diagnosis is collectively referred to as the “symmetry-based
method” in this paper. Now comes the question, when there are more than ten methods
for calculating distance, how do we choose which to use? And how effective are they in
measuring the symmetry and diagnosing the faults? The above issues also exist when
similarity and entropy are utilized to measure symmetry. In addition, are there any other
methods for measuring symmetry? At present, some scholars have summarized and
analyzed the methods use for diagnosing faults in power converters, which has promoted
the development of research on diagnosing the faults in power converters [4,16,24]. In [4],
a detailed analysis of the current path in NPC inverters under healthy and different fault
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conditions was conducted, and the performance of three types of diagnostic methods
was summarized in depth. However, there is currently no literature that systematically
summarizes the symmetry-based fault diagnosis methods.

Therefore, the main objective of this paper is to summarize the symmetry-based fault
diagnosis methods that have been used for power converters. The main contributions are
as follows:

1. Introduction and classification of the symmetry-based OC fault diagnostic methods
for power converters;

2. The performance of some symmetry-based OC fault diagnostic methods are compared,
and the advantages and disadvantages of distance, entropy, and similarity/correlation
are summarized;

3. Two factors that may have an influence on the symmetry of power converters are ana-
lyzed, and other functions or methods that may be feasible for measuring symmetry
are pointed out.

The paper is organized as follows. Section 2 presents an analysis of the symmetry
in power converters. Section 3 presents the classification of the symmetry-based OC
fault diagnosis method. The two aspects that have influence on symmetry and other
feasible symmetry measurement methods are discussed in Section 4. Section 5 provides the
conclusion to the overall paper.

2. Topology and Symmetry Analysis of Power Converters
2.1. Symmetry—A Common Property of Power Converters

Power conversion can usually be divided into four categories, namely rectification (AC-
DC), inversion (DC-AC), chopping (DC-DC), and AC-AC conversion. As mentioned before,
the power converters studied in this paper mainly include rectifiers and inverters. Figure 1
shows the topological structure of a variable frequency speed control system for an induction
motor, which includes a rectifier and an inverter. The three-phase AC power provided by
the left power supply is first converted into DC through the two-level rectifier, filtered by DC
bus capacitors, and then converted into specific AC by the inverter to drive the induction
motor (IM) on the right. Each phase of the power supply and IM corresponds to a leg, which
is composed of two power transistors. The control system generates gate signals through
control algorithms to control the conduction and shutdown of each power transistor, causing
the inverter to generate a specific amplitude, frequency, and phase currents. In the healthy
condition, the output three-phase currents ia, ib and ic are identical sine waves with only a
phase angle difference of 2π/3, so they are also called “three-phase symmetrical currents”.
After the three-phase symmetrical currents pass through the symmetrical three-phase stator
winding, a circular rotating magnetic field is generated, which drives the motor to rotate. This
concise and elegant symmetrical design reduces system complexity, and improves output
performance, which is of great significance [25].

Figure 1. A topological structure of variable frequency speed control system for induction motor,
including a rectifier and an inverter.
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In addition to two-level converters, symmetry is commonly present in power convert-
ers, as shown in the four types of three-level inverters in Figure 2, the multi-level cascaded
inverters in Figure 3, and the matrix converters in Figure 4. In Figure 1, in terms of the
overall structure, the two-level three-phase rectifier and the inverter are symmetrical, except
that their input and output are exactly opposite. Within the inverter and rectifier, the legs
corresponding to each phase are symmetrical, and for each leg, its upper and lower halves
are also symmetrical. Compared to two-level power converters, three-level converters have
multiple topologies. Figure 2 shows four typical three-level inverter topologies, namely, the
neutral point clamped (NPC), the flying clamped capacitor (FC) , the T-type, and the active
neutral point clamped (ANPC) three-level inverter. Though different from each other, the
four inverters are all highly symmetrical in structure. The same applies to other multi-level
power converters, which have more diverse topological structures but always share the
common property—symmetry.

(a) Topology of NPC three-level inverter (b) Topology of FC three-level inverter

(c) Topology of T-type three-level inverter (d) Topology of ANPC three-level inverter

Figure 2. The topological structures of four typical three-level inverters.
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Figure 3. A topological structure of cascaded H-bridge converter.

Figure 4. Matrix converter.

2.2. Symmetry Analysis in Different Situations—Taking a Two-Level Three-Phase
Voltage-Source-Inverter as an Example

The above shows the structures of power converters under healthy conditions. When
an OC fault occurs in power transistors, the symmetry in the converter tends to change.
And the degree of change varies with the number and location of the faulty transistors.
As the symmetry in the topological structure cannot be directly quantified and measured,
electrical signals such as voltage and current in the power converters are often collected
in practical applications. The information about the symmetry of power converters is
often contained in these collected time series. Taking the two-level three-phase inverter in
Figure 1 as an example, a detailed analysis is conducted below.
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Generally, unless there is a sharp decline in system performance or a shutdown, the
three-phase currents in the inverter are periodic under both healthy and faulty conditions.
Assuming that at instant t, the sampled three-phase current time series within a period is

Im(t) = [im(t − L + 1), im(t − L + 2), · · · , im(t)]T , m = a, b, c (1)

where L is the number of sampling points within a fundamental current period T. m refers
to a phase in the inverter. Let f be an abstract function for calculating the symmetry of time
series, Smn represents the symmetry between phase m and phase n, and Smn = f (Im, In).

Under healthy conditions, due to the fact that ia, ib, and ic are symmetrical sine waves,
as shown in Figure 5a, then qualitatively the below formula holds,

Sab = Sbc = Sac. (2)

Figure 5. Current waveforms of the inverter in different conditions.
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When an OC fault occurs in a power transistor such as T1, the current waveform will be
distorted. As shown in Figure 5b, in the later half of the period, it is T2’s turn to work and T1
should be turned off, so the T1 OC fault has no impact on the output. While in the former half
of the period, T1 should have been working. But due to the OC fault, the actual output current
in phase-a is 0. The waveforms of ib and ic will also undergo distortion due to the T1 fault, but
the degree of distortion is consistent and both are relatively small. Therefore,

Sab = Sac < Sbc. (3)

When an OC fault occurs in a multi-transistor such as T1 and T2, phase-a has no current
in the whole period, namely Ia = 0, as shown in Figure 5c. According to Kirchhoff’s current
law, ia + ib + ic = 0. Therefore, Ib = −Ic. Thus, though the current in phase-b and phase-c
have also undergone significant distortion, they are still symmetrical, with only opposite signs.
And Ia is always 0, without any symmetry with ib and ic. And there should be

Sab = Sac ≪ Sbc. (4)

Based on the above analysis, the symmetry of phase currents in power converters
varies under healthy and different fault conditions. Therefore, symmetry can be used as a
feature to distinguish different faults. Specifically, as mentioned before, distance, etc., have
a clear quantitative calculation formula and are all essentially a quantification of symmetry.
As such, these methods are summarized and analyzed in the next section.

3. Symmetry-Based Fault Diagnostic Methods for Power Converter

As pointed out in the introduction, symmetry is a relatively abstract concept and there
is currently no direct quantitative calculation formula. In the field of power converter
fault diagnosis, the distance, entropy, correlation/similarity, etc., in the timing signal are
essentially a reflection of symmetry. The formulae for distance, entropy, and the correlation
coefficient/similarity index can be seen as an instantiation of the abstract symmetric
function f . Therefore, this paper will provide an overview of these three types of methods.

3.1. Distance-Based Diagnostic Methods

Distance plays a critical role in many problems such as clustering and classification.
It is a good measurement of symmetry, and the higher the symmetry between two time
series, the smaller the distance between them. Conversely, the lower the symmetry, the
greater the distance.

• Euclidean Distance. Euclidean Distance (ED) is the most intuitive and widely used
calculation formula for distance. Based on Equation (1), The ED between two current
time series at instant t is

EDmn(t) =

√
L
∑

k=1
(Imk(t)− Ink(t))

2, m, n = a, b, c (5)

where Imk(t) is equal to im(t − L + k). In [26], based on zero-crossing-detection, the
phase current of inverters were reconstructed and the ED between reconstructed
signals under different health conditions was calculated. Then, a reasonable threshold
was selected to detect the fault by comparing the distance with the threshold. This
method has a low computational complexity and the diagnosis is very fast but the
signal reconstruction may bring errors. In [21], the concept of “allelic points” was pro-
posed, which was somewhat significant for power converter diagnosis. Its foundation
is still based on ED and Bray–Curtis distance.
Wavelet transform can remove noise from the signal, reduce the length of the sequence,
and make the features more prominent. In [27], the phase current signals of inverters
are decomposed by a wavelet into several layers. In layer k, after decomposition,
the approximate component Amk and the detail component Dmk were obtained, and
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they were both time series, containing a series of decomposed coefficients. Then A2
m3

was adopted as a measure of the energy in current signals. Finally, the ED between
the energy sequences of each phase was calculated, and the fault was diagnosed by
comparing this distance with the threshold. Under healthy conditions, although there
are phase differences in the signals of each phase, due to symmetry, they have the
same amplitude and period, and therefore contain the same energy. Therefore, the
ED of the energy sequence is 0. When an OC fault occurs in a leg, compared to the
healthy phase, the energy contained in the current in the corresponding phase will
decrease due to a decrease in conduction time. Thanks to the excellent property of
Wavelet transform, this paper achieved an accurate diagnosis of nine types of faults
solely through ED.
In addition, due to the limitation that ED is related to the amplitude of the signal, the
standardized Euclidean distance (SED) has been proposed,

SEDmn(t) =

√
L
∑

k=1
( Imk(t)

Sm(t) −
Ink(t)
Sn(t)

)
2
, m, n = a, b, c (6)

Among them, Sm(t) is the standard deviation of the sequence Im(t), sometimes re-
placed by the amplitude of the signal for convenience. In [12], the “Euclidean similarity
function” is used to measure the similarity between currents, which is also a variant
of ED. ED and its variants have a wide range of applications.

• Manhattan Distance. Manhattan distance (MhtD), also known as the L1 norm, is a
measure of the distance between two points on the plane. The MhtD between time
series Im(t) and In(t) is

MhtDmn(t) =
L
∑

k=1
|Imk(t)− Ink(t)| m, n = a, b, c (7)

In [28], an effective diagnostic method based on the MhtD of armature current was
proposed to diagnose the fault in the rotating rectifier. A similar method was also
adopted in [29] and a reasonable comparison threshold for MhtD was selected through
circuit model and symmetry analysis. In [15], the “similarity” between phase currents
in three-phase inverters is analyzed and adopted to determine the location of the faulty
leg. The “similarity” is calculated with the aid of the MhtD between normalized phase
currents. The MhtD- and similarity-based fault diagnosis algorithm was implemented
on the TMS320F2806 board. This paper demonstrates the significant advantages of
a symmetry-based fault diagnosis method, which is fast, computationally efficient,
and easy to implement in engineering. Since the similarity in the text is a reflection of
symmetry, we also point out two properties of similarity:

1. symmetry
Im(t) ≈ In(t) → In(t) ≈ Im(t) (8)

2. transitivity
Im(t) ≈ In(t)
Im(t) ≈ Ih(t)

}
→ In(t) ≈ Ih(t) (9)

• Cosine Distance. Cosine distance (CD) is the cosine value of the angle between two
vectors in the same dimensional space. For time series Im(t) and In(t),

CDmn(t) =

L
∑

k=1
Imk(t)Ink(t)√

L
∑

k=1
Imk(t)

2

√
L
∑

k=1
Ink(t)

2
, m, n = a, b, c. (10)

In [26], the final fault location is achieved by combining CD and ED. The range of CD
is [−1,1]. A larger distance indicates a smaller angle between two vectors, while a
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smaller distance indicates a larger angle between two vectors. When the directions of
two vectors coincide, CD = 1, and when the directions of two vectors are completely
opposite, CD = −1. CD is independent of the modulus of the vector; that is, it
is independent of the amplitude of the time series and is an excellent indicator for
symmetry measurement.

• Mahalanobis Distance. Mahalanobis distance (MalD) was proposed by Indian statis-
tician P. C. Mahalanobis as an effective method for calculating the distance between
two multidimensional samples. Similar to standardized ED, MalD not only is scale-
independent but also takes into account the connections between components. Con-
sider the time series collected at instant t as a multidimensional sample, for time series
Im(t) and In(t), there are

MalDmn(t) =
√
(Im(t)− In(t))S−1(Im(t)− In(t))⊤, m, n = a, b, c. (11)

where S is the covariance matrix of time series samples. In [30], the current and
topological symmetry of the inverter were analyzed, and the normalized covariance
between time series was selected to measure the symmetry of phase currents. This
method has a high robustness and no misdiagnoses under various working conditions.
But furthermore, a better diagnosis performance may be achieved if MalD is applied.
Most power converters experience a degradation in the operation process before a
fault occurs. For health monitoring and early fault diagnosis, extracting a unified
and effective health index is the key issue. This is because the signals of power
electronic circuits usually include various parameters in the time, frequency, and time–
frequency domain, which have different dimensions and scales, making it difficult
to determine the overall health status of the system through a single parameter.
In [31], the MalD between multiple evaluation indexes and the mean of samples was
calculated. Simulation experiments showed that MalD can effectively reflect the health
condition of the converter.

A comparison is given in Table 1 for [15,21,26,27,30], all of which have the same
research objectives. It can be seen that the distance-based methods have the advantage of
high robustness and low computational cost. In addition, the common distance calculation
methods include Chebyshev Distance, Minkowski Distance, Hamming Distance, Canberra
Distance, etc. [32]. In [33], “fuzzy similarity”, which is a variant of Minkowski Distance,
was used for fault diagnosis in dual buck inverter. But in summary, the researches on
using these distances to measure the symmetry for fault diagnosis are few, which may be a
feasible research point.

Table 1. A comparison of distance-based fault diagnosis methods.

Diagnostic Feature Diagnostic Time 1 Computational Cost Robustness 2 Diagnosable Fault Type 3

ED [21] T/4 − T/2 medium medium 21
WT + ED [27] T medium high 9
CD + ED [26] T/4 low high 21

MhtD [15] T low high 9
Normalized covariance [30] T/2 low high 9

1 The time from the occurrence of the fault to it is located, measured in current cycles T. 2 The independence to
transient disturbance such as load fluctuation. 3 The OC fault types that the method can diagnose.

3.2. Entropy-Based Diagnostic Methods

Information entropy is a concept put forward by Shannon, it is applied to measure
the uncertainty of information for a period of time [34]. Assuming that the phase current
data generated by the inverter at each time point are random, then the data generated
within a current period (i.e., time series Im(t)) contain L random samples. As is shown in
Figure 5a, [min

k
Imk(t), max

k
Imk(t)] is divided into n sub-intervals U1, U2, . . . , Un, and pi is

the frequency that Imk(t) belongs to Ui. The information entropy contained in Im(t) is



Symmetry 2024, 16, 204 10 of 20

H(X) =
n

∑
i=1

pi log pi (12)

where X represents the event that L random samples were generated within one current
period T from phase m of the power converter, log pi represents log2(pi) (for simplification,
the base 2 of the logarithm and () is omitted). The same applies below. Taking the two-level
three-phase inverter in Figure 1 as an example, under normal circumstances, the three-phase
symmetrical current only has phase differences, and its numerical distribution is the same.
The information entropy of phase-m can be denoted as H(m), there is H(a) = H(b) = H(c).
According to Figure 5b, when an OC fault occurs, the current waveform is distorted. The
fault phase has the greatest distortion, and its current amplitude distribution range is only
half of the original, so the degree of information entropy reduction is much greater than the
other normal phases, namely H(a) < H(b) = H(c). When an OC fault occurs in a multi
transistor such as T1 and T2, H(a) = 0 due to ia = 0. According to Figure 5c, the current of
phase-b and phase-c is not always 0, so H(a) ≪ H(b) = H(c). This is consistent with the
symmetry analysis results in Section 2, indicating that entropy can effectively characterize
the symmetry in the system.

• Information entropy. Information entropy is the basic form of entropy, and its calcula-
tion formula is Equation (12). In [35], based on topological symmetry, the information
entropy of current in Neutral Point Clamped Asymmetric-Half-Bridge converter un-
der normal and fault conditions was analyzed, and a normalized symmetry index was
proposed to diagnose SC and OC faults. In [36], wavelet packet decomposition and
empirical mode decomposition (EMD) were used to transform the current signals of
high-speed railway traction inverters. Then, the information entropy of the decom-
posed coefficient sequence was extracted. Combining information entropy with some
small improvements, the fault is accurately diagnosed within one current period. Sim-
ilarly, in [37], discrete wavelet transform was applied to inverter bus voltage signals
and the information entropy was calculated for diagnosis. While in [38], the short-term
wavelet packet was adopted, and then the information entropy was calculated as the
feature for further classification. Equation (12) is the first-order form of information
entropy. As a higher-order extension, the Renyi entropy was introduced with an order
parameter, as is shown below.

Hα(X) =
1

1 − α
log(∑

i
p(xi)

α). (13)

In [17], the Renyi entropy is adopted in the feature selection process to deal with the
hard fault and soft fault diagnosis in a superbuck converter circuit (SCC). The “signal
decomposition+information entropy” based methods were also adopted in [39–41],
demonstrating the simplicity and effectiveness of information entropy in fault diagno-
sis within multi-phase symmetric systems.

• Fuzzy Entropy. Fuzzy entropy is a method based on the concept of approximate en-
tropy and sample entropy which can be to measure the complexity of a time series [34].
For a given time series composed of L data, XL = [x(1), x(2), . . . , x(L)], its Fuzzy
entropy can be calculated as follows [42].
Step 1. Divide XL into a group of sub-sequences with a length of m(m ≤ L − 2).

Xm
i = [x(i), x(i + 1), . . . , x(i + m − 1)]− 1

m

m−1
∑

k=0
x(i + k),

i = 1, 2, · · · , L − m + 1.
(14)

Step 2. Calculate the Chebyshev Distance between two sub-sequences Xm
i and Xm

j .

dm
ij = max

k = 0,...,m−1
|x(i + k)− x(j + k)|. (15)
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Step 3. Calculate the similarity between Xm
i and Xm

j based on the Chebyshev Distance.
Give parameters n and r. The similarity is defined as

Dm
ij (n, r) = e− ln(2)(dm

ij

/
r)

2

, i, j = 1, 2, . . . , L − m + 1, i ̸= j. (16)

Step 4. Define the function Φm(n, r)

Φm(n, r) =
1

L − m + 1

L−m+1

∑
i=1

(
1

L − m

L−m+1

∑
j=1,j ̸=i

Dm
ij (n, r)) (17)

Step 5. The Fuzzy entropy of the time series XL is defined as:

FuzEn(m, r, n) = log Φm(n, r)− log Φm+1(n, r). (18)

In [43], the phase voltage signal of the grid-connected inverter is decomposed by EMD,
and the Fuzzy entropy of the decomposed signal is extracted. Then it is used as the
input feature for support vector machine for fault classification, ultimately achieving
high diagnostic accuracy. The drawback of Fuzzy entropy is that it requires extra
parameters and is sensitive to parameters.

• Joint Entropy and Conditional Entropy. Entropy is also known as self-information.
The information entropy and Fuzzy entropy of each phase only reflect the uncer-
tainty/symmetry of its own phase current. But the converter is a whole composed
of interconnected phases. As is shown in Figure 5, the fault in phase-a not only leads
to the distortion of ia, but also causes distortion in ib and ic. And the degree of fault
in phase-a varies, so does the impact on phase-b and phase-c. Considering these,
conditional entropy, joint entropy, mutual information, etc. have been proposed. Their
relationship is shown in Figure 6.

Figure 6. The relationship between information entropy, joint entropy, conditional entropy, and
mutual information.

Assuming X and Y are two correlated random events, their information entropy is
H(X) and H(Y), respectively. Then, their joint entropy is

H(X, Y) = −∑
x,y

p(x, y) log p(x, y) = −
n

∑
i=1

n

∑
j=1

p(xi, yj) logp(xi, yj). (19)
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where xi represents the sub event that Imk(t) belongs to Ui. (xi, yj) represents the sub
event that Imk(t) belongs to Ui and Ink(t) belongs to Uj at the same time. Thus the
conditional entropy is defined as

H(Y|X) = H(X, Y)− H(X) = H(Y)− I(X; Y), (20)

H(X|Y) = H(X, Y)− H(Y) = H(X)− I(X; Y). (21)

In [44], “mean conditional entropy” is proposed, which is actually an improved form
of conditional entropy. The fault is diagnosed by extracting the conditional entropy
between the two-phase currents of the inverter. Compared to information entropy,
conditional entropy reflects the relationship between two phases and is a very effective
measure of symmetry between phases.

• Mutual information. As is shown in Figure 6, mutual information is a kind of entropy,
which defines the degree of dependence between two almost random variables. It can
be regarded as the amount of information about another random variable contained
within a random variable, or in other words, the reduced uncertainty of a random
variable due to the knowledge of another random variable. For two discrete random
variables X and Y, their mutual information is

I(X, Y) =
n

∑
i=1

n

∑
j=1

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
. (22)

By analyzing the properties of conditional probability and combining Equations (19)–(22),
it can be concluded that

I(X, Y) = H(X) + H(Y)− H(X, Y). (23)

In [45], the mutual information between the phase currents was extracted, and then it
was used as a feature dataset to train the classifier. This method achieves an effective
diagnosis of motor bearing faults through mutual information of motor current signals,
which is highly innovative and practical. One reason for the good performance of this
study is that the motor itself and the inverter are both symmetrical structures, and
both mechanical and electrical faults can cause symmetry to be disrupted. Mutual
information effectively measures the symmetry of the system.

• Relative entropy. Relative entropy, also known as Kullback–Leibler Divergence, is
used to measure the difference between the probability distributions of two random
events. The larger the value, the greater the difference between the two probability
distributions; when two probability distributions are completely equal, the relative
entropy value is 0. For two random variables X and Y, the relative entropy between
them is defined as

KL(X||Y) = ∑
i

p(xi) log
p(xi)

p(yi)
= ∑

i
p(xi) log p(xi)−∑

i
p(xi) log p(yi). (24)

In [46], a relative entropy-based fault prognostic method was proposed for photo-
voltaic inverters. The relative entropy in this paper can be seen as a measure of the
overall symmetry between inverters. For power transistor faults inside the converter,
due to the fact that under healthy conditions, the current not only has a different
phase but the same distribution, it is easy to infer that KL(m||n) = 0 (m, n indicate
the phase-m and phase-n of the converter). When there is a malfunction, the normal
phase and the faulty phase are different, KL(m||n) > 0. Thus, compared to other
forms of entropy, relative entropy has a unique advantage. In addition, the latter term
∑
i

p(xi) log p(yi) in Equation (17) is usually known as “Cross Entropy”, which is often

used as the cost function in machine learning. For two time series composed of phase



Symmetry 2024, 16, 204 13 of 20

currents, cross entropy can reflect the differences between them, indirectly reflecting
the symmetry of power converters. Therefore, it can also be used for fault diagnosis.

“Entropy” has many other forms; they each have their strengths, and most of them can
be used as a measurement of symmetry in power converter fault diagnosis. In [47], several
kinds of entropy were analyzed and discussed, and the “multi-scale entropy” was proposed
by integrating several of them. It is noted that single-scale entropy is unable to describe the
complexity of the signal and does not distinguish the faults from different phases. While
multi-scale analysis can fully describe the micro-structural complexity and amplitude
information of the signal, making it more suitable for various time-series analyses. In
addition to the ones mentioned above, commonly used entropy include Cross entropy,
Fuzzy entropy, Bubble entropy, Phase Entropy, Jensen–Shannon Divergence, Entropy of
entropy, etc. Morel, etc. [34] further summarized a dozen types of entropy comprehensively,
and pointed out that some of them cannot be used for fault diagnosis. By introducing a
mathematical model to help select the appropriate entropy functions with proper parameter
values, good performance is obtained. The above researches indicate that entropy is highly
useful in fault diagnosis of power converters, and there are still many issues that need to
be further studied.

3.3. Similarity/Correlation-Based Diagnostic Methods

Similarity and correlation are two concepts similar to symmetry but with a broader
meaning. In power converters, the correlation and similarity between its output signals
come from the topological symmetry of the converter. When the topological symmetry of
the converter changes due to faults, the similarity/correlation between the signals output by
each phase of the converter will also change accordingly. Therefore, similarity/correlation
are often extracted as features for fault diagnosis. The similarity/correlation-based meth-
ods mentioned in this section include methods based on various similarity indexes and
correlation coefficients, as they are essentially a mapping of signal symmetry.

• Correlation. In statistics, various coefficients have been proposed to reflect the relation-
ships between variables. For power converters, some coefficients such as Pearson’s
correlation coefficient not only reflect the connections between signals, but also serve
as a mapping of the symmetry of the signal source. Therefore, various coefficients
have been adopted for fault diagnosis.
For power converters, if it is symmetrical between each phase, the correlation between
phase currents must be high. On the contrary, the converter may experience a de-
crease or even no correlation between the phases due to faults. In [48], an improved
variational mode decomposition (VMD) method was proposed for the three-phase
current signals to obtain an elementary function called the band-limited intrinsic mode
functions (BLIMFs). Then the Pearson correlation coefficients between the original
signals and theirs BLIMFs are utilized to detect and locate fault phase, ultimately
promoting effective fault diagnosis. The Pearson correlation coefficient between two
variables x and y is defined as the quotient of the covariance and standard deviation
between the two variables [49]:

ρxy =

n
∑

i=1
(xi − x̄)(yi − ȳ)√

n
∑

i=1
(xi − x̄)2

√
n
∑

i=1
(yi − ȳ)2

(25)

Similarly to [48], the VMD + Pearson correlation coefficient-based method was also
adopted in [50]. A variant form of the Pearson correlation coefficient was adopted
in [20,26]. In [51], the correlations of voltage signals between various sub-modules
of Modular multilevel converters (MMCs) were calculated to measure the symmetry
between sub-modules. In the paper, the residual voltage was used for fault detection
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and the correlation coefficients were used for localization. The two-stage method is
simple and practical.
In [52], the gray relation analysis (GRA) theory was introduced to the field of inverter
fault diagnosis and the “gray correlation” based on current signals was proposed.
For converter power transistor OC fault diagnosis, set the current reference sequence
as x0(k) and the current comparison sequence as xi(k), then the formula for the
calculation of gray correlation γ(x0, xi) is:

γ(x0(k), xi(k)) =
min

i
min

k
|x0(k)− xi(k)|+ ξ max

i
max

k
|x0(k)− xi(k)|

|x0(k)− xi(k)|+ ξ max
i

max
k

|x0(k)− xi(k)|
, (26)

γ(x0, xi) =
1
n

n

∑
k=1

γ(x0(k), xi(k)). (27)

By comparing the gray correlation coefficients of the reference sequence and the
comparison sequence, the fault was diagnosed. Compared to the Pearson correlation
coefficient, the gray correlation coefficient is susceptible to the influence of outliers
and extreme values. Therefore, from the results of this paper, it can be seen that
the coefficients calculated under various faults are very similar, which may affect
the accuracy of diagnosis. Various other coefficients have also been proposed in
research [14,21,53,54], but they are not widely applied.

• Structural Similarity. In [55], structural similarity (SSIM) and contour similarity were
successfully used for fault diagnosis in a T-type rectifier. SSIM was originally proposed
for image similarity evaluation and has achieved great success in measuring image
quality and classifying images [56]. Given two digital images x and y, the SSIM
between the two images is calculated as

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µx2 + µy2 + c1)(σx2 + σy2 + c2)
. (28)

where µx, µy are the mean of x and y; σx
2 and σy

2 are the variance of x and y, respec-
tively; σxy is the covariance of x and y; c1 and c2 are constants related to the pixel
range of the image. If the time series Im(t) is viewed as a one-dimensional image,
an SSIM indicator can be applied, which well reflects the similarity between the two
time series. Inspired by reference [55], there may be more indicators in image quality
assessment, such as contrast, that may be applied to measure the similarity/symmetry
of time series, which is worth further research.

• Distribution Similarity. In Section 3.2, the current generated at instant t is assumed
to be a random variable, and therefore Im(t) is a set of random variables with a
one-dimensional distribution. In fact, information entropy can be considered as a
statistical value of the distribution of random variables. In [57], the time series Im(t)
was transformed and expanded through Wigner–Ville distribution analysis, obtaining
the two-dimensional distribution of the signal in the time-frequency domain. Then
the two-dimensional distribution similarity between phase-a and phase-b was defined
as Equation (29),

Smn =

N′−1
∑

n=0

N−1
∑

k=0
MA(n, k) · MB(n, k)

N′−1
∑

n=0

N−1
∑

k=0
[MA(n, k)]2 · [MB(n, k)]2

, (29)

where MA and MB are the N × N′ two-dimensional distribution matrices of phase-a
and phase-b, respectively. The time series samples under six kinds of single transistor
faults are obtained. The fault was located by comparing the distribution similarity
between the current sequence and each standard fault sample. The distribution
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similarity-based method is innovative, but the drawback is that it can only diagnose
six types of faults.

In addition to the commonly used correlation coefficients/similarity indices mentioned
above, there are many other coefficients used for power converter fault diagnosis. Taking
the widely used kernel function in pattern recognition as an example, the Gaussian kernel
function is

k(x1, x2) = e−
∥x1−x2∥2

2σ2 . (30)

where x1 and x2 are two vectors of the same dimension, σ is bandwidth, controlling the
radial range of action, and ∥·∥ represents Euclidean distance. Similar to ED, for a time
series composed of phase current Im(t) and In(t) in a power converter, when there is no
fault, the current signal is symmetrical. After removing the phase difference, it is obvious
that kmn = k(Im(t), In(t)) = 1. When there is a fault in the converter, even if the phase
difference is removed, the current signal does not overlap, and 0 ≤ kmn < 1. This is the
principle of support vector machine (SVM)-based fault diagnosis methods. Therefore, k
is a good indicator for measuring symmetry and is independent of signal amplitude. In
this paper, it is defined as the “Gaussian kernel similarity” of the time series. In addition to
Gaussian functions, there are many other functions that can serve as kernel functions, so
many similar similarity/correlation coefficients can also be defined. In summary, methods
based on correlation and similarity coefficients have certain advantages and are still being
developed. Dozens of frequently used indexes and coefficients were introduced in [32],
some of which may help measure symmetry and are worthwhile for research.

4. Discussion

The above introduces and summarizes three types of fault diagnosis methods related
to symmetry–distance-based, entropy-based, and similarity/correlation-based diagnosis
methods, each of which has its advantages and disadvantages.

The distance-based methods are simple, but they are dependent on signal amplitude.
As was mentioned before, when the given values of motor speed and torque change, the
period and amplitude of the current output by the inverter will also change accordingly.
According to the calculation formula for distance, it is related to the length of the time series
(the amount of data sampled within a period) and the amplitude of the signal. So, in some
cases, distance-based methods may misdiagnose when the operating conditions change
rapidly. Even if subsequent research adopts improvement measures such as amplitude
normalization and resampling, the inherent shortcomings of distance-based methods
cannot be completely eliminated.

The advantage of entropy is that it is independent of the length of the time series
and mainly depends on the distribution form. Meanwhile, during a change in current
amplitude, the corresponding range of Ui will change, which may lead to fluctuations in
entropy and misdiagnosis. When the inverter works in a stable working state after the
change, the range corresponding to the Ui will also change proportionally with the signal
amplitude, and the entropy of the signal remains unchanged. Therefore, the impact of
signal amplitude changes on entropy-based methods is relatively small.

The similarity/correlation-based methods are flexible to use, and are independent of
the signal amplitude as their calculation formula itself contains an normalization process.
But sometimes the discrimination of similarity/correlation is not very high. Meanwhile,
the calculation of both distance and correlation/similarity require two time series to have
the same length, while the entropy-based method does not have this problem.

A qualitative comparison of the advantages and disadvantages of the three types of
methods are summarized in Table 2.



Symmetry 2024, 16, 204 16 of 20

Table 2. Comparison of the advantages and disadvantages of distance-based, entropy-based, and
similarity-based diagnosis methods.

Methods Computational Cost
Robustness to

Change of Signal
Amplitude

Robustness to
Change of Signal

Seriod

distance-based low low low
entropy-based medium medium high

similarity/correlation-based low high medium

The common advantages of these three types of symmetry-based methods are their
relatively small computational complexity, fast diagnosis, and ease of engineering appli-
cation. Through reviewing relevant research, it has been found that there are still many
forms of “distance”, “entropy”, “correlation coefficient”, and “similarity index” that have
not been applied to power converter fault diagnosis, which are worthy of further research.
Though these studies may not be original innovations, they are still incremental innovations
with significance.

In addition, further research may be needed in the following two aspects.

• Symmetry under different time series lengths. In previous studies, the length of time
series is usually chosen as the amount of current data sampled within a fundamental
current period. However, analyzing the characteristics of the output signal of the
power converter, it was found that the sequence length can actually be shorter. Taking
the current of the inverter under healthy conditions as an example, redraw Figure 5a
as shown in the Figure 7.

Figure 7. Current waveforms under healthy condition for analysis.

Divide the current in a period T into four sub-intervals I, II, III, and IV, with each
interval length T/4. Dashed lines ll , 12, and 13 are the dividing lines of the interval.
For current signals in phase-a, the waveforms located in sub intervals I and II are
symmetrical with symmetry axis ll . While the current waveform in intervals II and III
is centrally symmetrical about P(T/2, 0), and so is the waveform in the former half and
the latter half in a period. This paper refers to them as “quarter-wave symmetry (QWS)”
and “half-wave symmetry (HWS)”, respectively. Moreover, in the healthy condition,
in terms of the time dimension, the current waveform in the latter period is the same
as or symmetrical to the previous one. Therefore, not only are the three-phase currents
symmetrical, but each phase current itself is also symmetrical. Previous studies have
mostly focused on the symmetry between currents in two phases, with less research
on the symmetry of the current itself, which may be a worthwhile direction for further
investigation.

• The influence of reference frame on symmetry. In the time–current coordinate system,
as shown in Figure 5, the current waveform is half-wave symmetrical under healthy
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conditions but asymmetric when a fault occurs. But if the three-phase currents are
transformed into the α-β coordinate through Clark transformation, things will be
different. The formula of Clark transformation is given in Equation (31), where k is a
proportional coefficient. Clark transformation can transform the current in the three-
phase abc coordinate system into the Cartesian coordinate system. Figure 8 shows the
current trajectories in α-β coordinate under different conditions [58,59]. It can be seen
that the waveforms of current trajectories under fault conditions are still symmetrical.
Fault diagnosis can be performed through the axis of symmetry/center of symmetry.
In the two-dimensional current–current coordinate system, the current trajectories
are symmetrical for some types of faults, while others are not [60]. Therefore, it can
be concluded that the symmetry is related to the reference frame, and the symmetry
under different reference frames is also worth further research.

[
iα
iβ

]
= k

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
·

 ia
ib
ic

 (31)

(a)

(b)

(c)

(d)

Figure 8. The current trajectories in α-β coordinate of a two-level three-phase inverter under four types
of faults. (a) Single-transistor OC fault. (b) Double-transistor OC fault on the same leg. (c) Double-
transistor OC fault on different leg (one is in the upper, the other in the lower). (d) Double-transistor
OC fault occur on different leg (both are in the upper or lower).
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5. Conclusions

With the widespread application of various power converters and the increasing de-
mand for system reliability, diagnosing faults in power converters is becoming increasingly
important. Symmetry is a widely present characteristic in power converters with various
topological structures. Many methods such as the distance-based, entropy-based, and
similarity/correlation-based diagnosis methods are essentially based on symmetry but
have not been summarized and reviewed before. This paper summarizes these methods
and compares their performance. Two aspects that need to be studied in the diagnosis of
faults in power converters based on symmetry are pointed out. In addition to the above
three types of methods, if the phase current signals are converted into a two-dimensional
matrix, the rank of the matrix may be regarded as a abstract symmetric function. This
may have good application prospects in multiphase multilevel power converters. In con-
clusion, compared to general time-domain and frequency-domain features, symmetry is
directly related to the topology of power converters and contains more information. And
symmetry-based fault diagnosis methods will play an increasingly important role in power
converter fault diagnosis.
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