
Citation: Khan, M.A.; Al-Dayel, I.;

Aloui, F.; Hui, S.K. Contact

CR-Warped Product Submanifold of a

Sasakian Space Form with a

Semi-Symmetric Metric Connection.

Symmetry 2024, 16, 190. https://

doi.org/10.3390/sym16020190

Academic Editor: Abraham A. Ungar

Received: 8 January 2024

Revised: 21 January 2024

Accepted: 24 January 2024

Published: 6 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Contact CR-Warped Product Submanifold of a Sasakian Space
Form with a Semi-Symmetric Metric Connection
Meraj Ali Khan 1,* , Ibrahim Al-Dayel 1 , Foued Aloui 1 and Shyamal Kumar Hui 2

1 Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University
(IMSIU), P.O. Box 65892, Riyadh 11566, Saudi Arabia; iaaldayel@imamu.edu.sa (I.A.-D.);
fyaloui@imamu.edu.sa (F.A.)

2 Department of Mathematics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India;
skhui@math.buruniv.ac.in

* Correspondence: mskhan@imamu.edu.sa

Abstract: The main goal of this research paper is to investigate contact CR-warped product subman-
ifolds within Sasakian space forms, utilizing a semi-symmetric metric connection. We conduct a
comprehensive analysis of these submanifolds and establish several significant results. Additionally,
we formulate an inequality that establishes a relationship between the squared norm of the second
fundamental form and the warping function. Lastly, we present a number of geometric applications
derived from our findings.
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1. Introduction

The concept of a semi-symmetric linear connection on a Riemannian manifold was
initially introduced in the publication mentioned as [1]. In a subsequent work, the au-
thor of [2] provided a precise definition for a semi-symmetric connection within the con-
text of a linear connection, denoted as ∇, on an n-dimensional Riemannian manifold
(M, g). This definition states that the torsion tensor, denoted as T, satisfies the condition
T(Λ1, Λ2) = π(Λ2)Λ1 − π(Λ1)Λ2, where π represents a 1-form and Λ1, Λ2 ∈ TM.

The properties of semi-symmetric metric connections were further explored by K.
Yano in [3]. In this work, it was demonstrated that a conformally flat Riemannian manifold
equipped with a semi-symmetric connection exhibits a curvature tensor that vanishes. This
observation highlights a notable characteristic of such manifolds and contributes to our
understanding of the interplay between conformal flatness, semi-symmetric connections,
and the curvature properties of Riemannian manifolds. Overall, the developments dis-
cussed in these papers provide a foundation for the study of semi-symmetric connections
on Riemannian manifolds. They introduce the concept, define its properties, and explore
the implications of such connections in relation to the curvature and conformal flatness of
the manifold.

On the other hand, warped product manifolds present an intriguing geometric frame-
work for studying the behavior of spacetime near black holes and objects with power-
ful gravitational fields. Bishop and O’Neill initially introduced these manifolds to ex-
plore spaces with negative curvature, but they have since evolved to incorporate warping
functions, expanding on the concept of Riemannian product manifolds. By combining
two pseudo-Riemannian manifolds—a base manifold (B, gB) and a fiber (F, gF)—using
a smooth function, b, defined on the base manifold, warped product manifolds are con-
structed. The resulting metric tensor, denoted as g = gB × b2gF, reflects the amalgamation
of the two manifolds. In this construction, the base manifold represents the underlying
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space, while the fiber represents an additional space that is warped or scaled by the warping
function, b. Each point in the base manifold is assigned a positive value by the warping
function, which influences the manifold’s geometry. When a conformal Killing vector is
present in a warped product manifold, it has been extensively studied in the context of
Einstein–Weyl geometry, where the warping function acts as a conformal factor, altering
the manifold’s geometry. The geometry of these manifolds is determined by a conformal
class of metrics, capturing the fundamental geometric properties shared by metrics re-
lated through conformal transformations. Leistner and Nurowski’s works [4,5] provide
comprehensive information and insights on this topic. Furthermore, the use of warped
product manifolds has facilitated the exploration of various instances of Ricci solitons,
which represent self-similar solutions to the equation governing Ricci flow. These solitons
offer valuable insights into the dynamics and evolution of Riemannian manifolds. No-
tably, extensive research and analysis have focused on investigating "cigar solitons" within
Euclidean space [6,7].

The investigation of warped products in submanifold theory initially originated from
the pioneering work of B. Y. Chen, as referenced in [8]. Chen’s research primarily focused
on CR-warped product submanifolds within the framework of almost Hermitian man-
ifolds. In his seminal work, Chen introduced an estimation for the norm of the second
fundamental form by incorporating a warping function. This concept played a crucial role
in understanding the geometry of CR-warped product submanifolds.

Expanding upon Chen’s ideas, Hesigawa and Mihai, as mentioned in [9], delved
further into the contact form of these submanifolds. They explored the properties of contact
CR-warped product submanifolds embedded within Sasakian space forms. In their study,
Hesigawa and Mihai derived a similar approximation for the second fundamental form
of such submanifolds. This approximation provided valuable insights into the geometric
characteristics and behavior of contact CR-warped product submanifolds within the context
of Sasakian space forms.

In general, the contributions of Chen, Hesigawa, and Mihai have significantly ad-
vanced our understanding of warped product submanifolds. Their works introduced
important concepts, such as the estimation of the norm of the second fundamental form
and the exploration of the contact form, which have paved the way for further research
and developments in the field of submanifold theory.

The investigation of Einstein warped product manifolds equipped with a semi-
symmetric metric connection within the context of warped product manifolds was un-
dertaken by Sular and Ozgur, as referenced in [10]. Their research primarily focused on
exploring the properties and behavior of such manifolds, shedding light on this specific
geometric framework.

In a subsequent publication, cited as [11], Sular and Ozgur expanded on their previous
work and obtained additional results concerning warped product manifolds endowed with
a semi-symmetric metric connection. These new findings further enhanced the understand-
ing of this geometric framework and contributed to its development.

Moreover, theoretical research and development on submanifold theory, soliton theory,
and related topics were carried out by researchers like Li et al., as evidenced by a series of
referenced papers [12–24]. The works of Li et al. have made significant contributions to
the advancement of these research areas, providing valuable insights and motivation for
further exploration.

Building upon the prior investigations carried out by Friedmann, Schouten, Hayden,
K. Yano, Sular, Ozgur, Li, and others, our research is motivated by their significant contribu-
tions. In particular, we are intrigued by the impact of a semi-symmetric metric connection
on contact CR-warped product submanifolds within a Sasakian space form. Our objective
is to delve into the geometry and properties of these submanifolds when influenced by
a semi-symmetric metric connection. By doing so, we aim to make advancements in the
understanding of this mathematical topic, contributing to the broader knowledge in this
field of study.
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2. Definitions and Basic Results

Consider an odd-dimensional Riemannian manifold (Ω̄, g). We define Ω̄ as an almost
contact metric manifold if it possesses a (1, 1) tensor field ϕ and a global vector field χ that
satisfy the following conditions:

ϕ2Λ1 = −Λ1 + η(Λ1)χ, g(Λ1, χ) = η(Λ1) (1)

g(ϕΛ1, ϕΛ2) = g(Λ1, Λ2)− η(Λ1)η(Λ2). (2)

Let η denote the dual 1-form of the vector field χ. It is well-known that an almost
contact metric manifold can be classified as a Sasakian manifold if it satisfies the follow-
ing conditions

( ¯̄∇Λ1 ϕ)Λ2 = g(Λ1, Λ2)χ − η(Λ2)Λ1. (3)

On For a Sasakian manifold Ω̄, the following observations can be readily made

¯̄∇Λ1 χ = −ϕΛ1. (4)

In this context, the symbols Λ1 and Λ2 represent elements of the tangent space of Ω̄,
while ¯̄∇ denotes the Riemannian connection corresponding to the metric g on Ω̄.

Now, let us define a connection ∇̄ as follows:

∇̄Λ1 Λ2 = ¯̄∇Λ1 Λ2 + η(Λ2)Λ1 − g(Λ1, Λ2)χ (5)

such that ∇̄g = 0 for any Λ1, Λ2 ∈ TΩ, The Riemannian connection with respect to the
metric g is denoted as ¯̄∇. The connection ∇̄ is classified as semi-symmetric due to the
property T(Λ1, Λ2) = η(Λ2)Λ1 − η(Λ1)Λ2, where η represents the dual 1-form. Using (5)
in (3), we have

(∇̄Λ1 ϕ)Λ2 = g(Λ1, Λ2)χ − g(Λ1, ϕΛ2)χ − η(Λ2)Λ1 − η(Λ2)ϕΛ1 (6)

and
∇̄Λ1 χ = Λ1 − η(Λ1)χ − ϕΛ1. (7)

When a Sasakian manifold Ω̄ possesses a constant ϕ-holomorphic sectional curvature
c, it is referred to as a Sasakian space form and is denoted as Ω̄(c).

The curvature tensor R̄, which corresponds to the semi-symmetric metric connection
∇̄, is expressed as follows:

R̄(Λ1, Λ2)Λ3 = ∇̄Λ1∇̄Λ2 Λ3 − ∇̄Λ2∇̄Λ1 Λ3 − ∇̄[Λ1,Λ2]
Λ3. (8)

In a similar manner, the curvature tensor ¯̄R can be defined for the Riemannian connec-
tion ¯̄∇.

Let
β(Λ1, Λ2) = (∇̄Λ1 η)Λ2 − η(Λ1)η(Λ2) +

1
2

g(Λ1, Λ2). (9)

By applying Equations (5), (8), and (9), we obtain

R̄(Λ1, Λ2, Λ3, Λ4) =
¯̄R(Λ1, Λ2, Λ3, Λ4) + β(Λ1, Λ3)g(Λ2, Λ4)

− β(Λ2, Λ3)g(Λ1, Λ4) + β(Λ2, Λ4)g(Λ1, Λ3)

− β(Λ1, Λ4)g(Λ2, Λ3).

(10)
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By utilizing the computed value of ¯̄R(Λ1, Λ2, Λ3, Λ4), as described in [25], we can
compute the following expression for the curvature tensor, R̄, of a Sasakian space form:

R̄(Λ1, Λ2, Λ3, Λ4) =
c + 3

4
{g(Λ2, Λ3)g(Λ1, Λ4)− g(Λ1, Λ3)g(Λ2, Λ4)}

+
c − 1

4
{η(Λ1)η(Λ3)g(Λ2, Λ4)− η(Λ2)η(Λ3)g(Λ1, Λ4)

+ g(Λ1, Λ3)η(Λ2)η(Λ4)− g(Λ2, Λ3)η(Λ1)η(Λ4)

+ g(ϕΛ2, Λ3)g(ϕΛ1, Λ4) + g(ϕΛ3, Λ1)g(ϕΛ2, Λ4)

− 2g(ϕΛ1, Λ2)g(ϕΛ3, Λ4)}+ β(Λ1, Λ3)g(Λ2, Λ4)

− β(Λ2, Λ3)g(Λ1, Λ4) + β(Λ2, Λ4)g(Λ1, Λ3)

− β(Λ1, Λ4)g(Λ2, Λ3),

(11)

for all Λ1, Λ2, Λ3, Λ4 ∈ TΩ̄.
For a submanifold, Ω, ↪→ Ω̄, with SSM connection, then it is easy to observe that the

Gauss and Weingarten formulae are given by, respectively,

h(Λ1, Λ2) = ∇̄Λ1 Λ2 −∇Λ1 Λ2

and
∇̄Λ1 N = −ANΛ1 +∇⊥

Λ1
N + η(N)Λ1.

Here, ∇̄ represents the covariant derivative with respect to the S-S-M connection on
Ω̄, ∇ denotes the induced SSM connection on Ω, and Λ1 and Λ2 are tangent vectors on Ω.
Moreover, N denotes a normal vector to the submanifold Ω, ∇⊥ represents the covariant
derivative along the normal bundle T⊥Ω, and η(N) is a scalar function.

The relation between the shape operator AN and the second fundamental form h can
be described by the following mathematical expression.

g(h(Λ1, Λ2), N) = g(ANΛ1, Λ2).

Let Λ1 and Λ3 be vector fields, where Λ1 belongs to TM and Λ3 belongs to T⊥M. The
expression can be decomposed as follows:

ϕΛ1 = PΛ1 + FΛ1 (12)

and
ϕΛ3 = tΛ3 + f Λ3, (13)

where PΛ1(tΛ3) and FΛ1( f Λ3) are the tangential and normal components of ϕΛ1(ϕΛ3)
respectively.

The equation of Gauss, which relates to a SSM connection, and involves the Rieman-
nian curvature tensor R, can be expressed as follows according to reference [25]:

R̄(Λ1, Λ2, Λ3, Λ4) = R(Λ1, Λ2, Λ3, Λ4)− g(h(Λ1, Λ4), h(Λ2, Λ3)) + g(h(Λ2, Λ4), h(Λ1, Λ3)) (14)

for Λ1, Λ2, Λ3, Λ4 ∈ TΩ.
In their publication [10], Sular and Özgür conducted a study on warped product

manifolds denoted as Ω1 × f Ω2. These manifolds were equipped with a semi-symmetric
metric connection and were associated with a vector field P. The components of this
construction include Riemannian manifolds Ω1 and Ω2, as well as a positive differentiable
function f defined on Ω1 serving as the warping function. The authors made significant
discoveries and observations, which are summarized in a lemma presented here. These
findings will be relevant and useful for our subsequent analysis.
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Lemma 1. Consider the warped product manifold Ω1 × f Ω2 with a SSM connection ∇̄. In this
setting, we have the following

(i) if P ∈ TM1, then

∇̄Λ1 Λ3 =
Λ1 f

f
Λ3 and ∇̄Λ3 Λ1 =

Λ1 f
f

Λ3 + π(Λ1)Λ3,

(ii) if P ∈ TΩ2, then

∇̄Λ1 Λ3 =
Λ1 f

f
Λ3 and ∇Λ3 Λ1 =

Λ1 f
f

Λ3.

Here, Λ1 ∈ TΩ1, Λ3 ∈ TΩ2, and π is the 1-form correspondng to the vector field, P.
Consider the warped product submanifold Ω = Ω1 × f Ω2 within a smooth manifold

Ω̄. In this context, we can define the curvature tensors R and R̃ for the submanifold Ω,
which are associated with its induced semi-symmetric metric (SSM) connection ∇ and
induced Riemannian connection ∇̃, respectively. Considering this, we can express the
interconnection between these tensors as follows:

R(Λ1, Λ2)Λ3 =R̃(Λ1, Λ2)Λ3 + g(Λ3,∇Λ1 P)Λ2 − g(Λ3,∇Λ2 P)Λ1

+ g(Λ1, Λ3)∇Λ2 P − g(Λ2, Λ3)∇Λ1 P

+ η(P)[g(Λ1, Λ3)Λ2 − g(Λ2, Λ3)Λ1]

+ [g(Λ2, Λ3)η(Λ1)− g(Λ1, Λ3)η(Λ2)]P

+ η(Λ3)[η(Λ2)Λ1 − η(Λ1)Λ2],

(15)

for any vector field Λ1, Λ2, Λ3 on Ω [10].
As mentioned in part (ii) of Lemma 3.2 in reference [10], for the warped product

submanifold Ω = Ω1 × f Ω2, the following relationship is established:

R̃(Λ1, Λ2)Λ3 =
H f (Λ1, Λ2)

f
Λ3. (16)

In the given equation, Λ1 and Λ2 belong to TΩ1, while Λ3 belongs to TΩ2. The term
H f denotes the Hessian of the warping function.

By considering Equations (15) and (16), we can deduce the following:

R(Λ1, Λ3)Λ2 =
H f (Λ1, Λ2)

f
+

P f
f

g(Λ1, Λ2)Λ3 + η(P)g(Λ1, Λ2)Λ3 + g(Λ2,∇Λ1 P)Λ3

− η(Λ1)η(Λ2)Λ3,
(17)

for the vector fields Λ1, Λ2 ∈ TΩ1, Λ3 ∈ TΩ2, and P ∈ TΩ1.

By assuming P = χ into Equation (5), we introduce the SSM connection. Hence,
utilizing part (i) of Lemma 2.1, we can establish the following relation for a WP submanifold
Ω = Ω1 × f Ω2 within the Riemannian manifold Ω̄.

∇Λ1 Λ3 = Λ1(ln f )Λ3 (18)

and
∇Λ3 Λ1 = Λ1(ln f )Λ3 + η(Λ1)Λ3. (19)

Furthermore, the combination of Equation (19) with (7) yields
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R(Λ1, Λ3)Λ2 =
H f (Λ1, Λ2)

f
Λ3 +

χ f
f

g(Λ1, Λ2)Λ3 + 2g(Λ1, Λ2)Λ3 − 2η(Λ1)η(Λ2)Λ3

− g(Λ2, ϕΛ1)Λ3,
(20)

for χ, Λ1, Λ2 ∈ TΩ1, and Λ3 ∈ TΩ2.
The expression for the Laplacian ∆ f of the warping function can be observed as follows:

∆ f
f

= ∆(ln f )− ∥∇ln f ∥2. (21)

3. Contact CR-W-P Submanifolds

In his work [26], Bejancu introduced the notion of semi-invariant submanifolds within
the context of almost contact metric manifolds. A smooth manifold Ω̄ containing an m-
dimensional Riemannian submanifold Ω is considered a semi-invariant submanifold if the
vector field χ is tangent to Ω and if there exists a differentiable distribution D : x 7→ Dx ⊂
TxΩ on Ω. This distribution Dx is invariant by the structure vector field ϕ. Additionally,
the orthogonal complementary distribution D⊥

x to Dx on Ω is anti-invariant, meaning that
ϕD⊥ ⊆ T⊥

x Ω, where TxΩ and T⊥
x Ω refer to the tangent space and normal space at point

x ∈ Ω, respectively.
Hesigawa and Mihai further explored the topic by examining a specific class of sub-

manifolds called warped product submanifolds in a Sasakian manifold Ω̄ [9]. These sub-
manifolds are of the form ΩT × f Ω⊥, where ΩT represents an invariant submanifold, Ω⊥
represents an anti-invariant submanifold, and χ belongs to TΩT . The authors labeled these
submanifolds as contact CR-submanifolds and presented significant findings concerning
their properties and characteristics.

To initiate our investigation, we delve into the study of a specific category of submani-
folds known as contact CRWP submanifolds within a smooth manifold equipped with a
SSM connection. These submanifolds exhibit the characteristic structure Ω⊥ × f ΩT , where
Ω⊥ represents an anti-invariant submanifold, and ΩT denotes an invariant submanifold
that fulfills the condition χ ∈ TΩT .

Theorem 2. Let us consider (Ω̄, ϕ, χ, η, g) as an SM with an SSM connection. In this scenario,
we can deduce that there is no existence of a WP submanifold in the form of Ω⊥ × f ΩT that fulfills
the condition χ ∈ TΩT .

Proof. For any Λ1, Λ2 ∈ TΩT , and Λ3 ∈ TΩ⊥, we utilize equation (19), the Gauss formula,
along with equation (2), to obtain the following result

Λ3(ln f )g(Λ1, Λ2) = g(∇̄Λ1 ϕΛ3, ϕΛ2)− g((∇Λ1 ϕ)Λ3, ϕΛ3)− Λ3(ln f )η(Λ1)η(Λ2)

= g(∇Λ1 ϕΛ3, ϕΛ2)− Λ3(ln f )η(Λ1)η(Λ2).
(22)

Equivalently

Λ3(ln f )g(Λ1, Λ2) = ϕΛ3(ln f )g(Λ1, ϕΛ2)− Λ3(ln f )η(Λ1)η(Λ2). (23)

Upon replacing both Λ1 and Λ2 with χ in the previously mentioned equation, we
arrive at the conclusion that Λ3 ln f = 0. This deduction implies that in order for the
equation to hold, the function f must be a constant. This finding ultimately validates the
desired result.

The primary objective of this investigation is to examine the characteristics of WP
submanifolds, denoted as Ω = ΩT × f Ω⊥, within the context of a Sasakian manifold, Ω̄.
These submanifolds possess a SSM connection, and the vector field χ is an element of TΩT .
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To be more precise, we categorize these submanifolds as contact CRWP submanifolds.
Furthermore, we designate the invariant subspace of the normal bundle, T⊥Ω, as µ.

With this background in mind, let us proceed by presenting the initial findings of
our analysis.

Lemma 3. Consider Ω = ΩT × f Ω⊥ as a contact CRWP submanifold within the context of a SM
Ω̄ equipped with a SSM connection. In this case, we have the following

(i) g(h(ϕΛ1, Λ3), ϕΛ4) = Λ1(ln f )g(Λ3, Λ4) + η(Λ1)g(Λ3, Λ4);
(ii) g(h(Λ1, Λ2), ϕΛ3) = 0;
(iii) χ(ln f ) = 0.

∀ Λ1, Λ2 ∈ TΩT and Λ3, Λ4 ∈ TΩ⊥, χ ∈ TΩT .

Proof. By applying the Gauss formula and utilizing Equation (6), we derive the following:

g(h(ϕΛ1, Λ3), ϕΛ4) = g(∇̄Λ3 ϕΛ1, ϕΛ4) = g(∇̄Λ3 Λ1, Λ4).

By employing formula (19), we arrive at the following result

g(h(ϕΛ1, Λ3), ϕΛ4) = g(∇Λ3 Λ1, Λ4) = Λ1(ln f )g(Λ3, Λ4) + η(Λ1)g(Λ3, Λ4),

which is part (i). Again, using (6), (18), and the Gauss formula, part (ii) is proven straight-
forwardly. Now, using the formula ∇Λ3 χ = Λ3 − η(Λ3)− PΛ3 and applying Equation (19),
we have χ(ln f ) + η(χ)Λ3 = Λ3 or χ(ln f ) = 0, which is part (iii).

Lemma 4. Let Ω = ΩT × f Ω⊥ be a contact CRWP submanifold of a SM Ω̄ admitting a SSM
connection, then

g(h(Λ1, Λ1), V) = −g(h(ϕΛ1, ϕΛ1), V), (24)

for all Λ1 ∈ TΩ and V ∈ µ.

Proof. Through the utilization of the Gauss formula and Equation (6), we derive the
following result

∇Λ1 ϕΛ1 + h(Λ1, ϕΛ1)− ϕ∇Λ1 Λ1 − ϕh(Λ1, Λ1) = g(Λ1, Λ1)χ − Λ1 − ϕΛ1, (25)

When we take the Riemannian product with ϕV ∈ µ, we get

g(h(Λ1, ϕΛ1), ϕV) = g(h(Λ1, Λ1), V). (26)

By substituting Λ1 with ϕΛ1 and utilizing Equation (1), we arrive at:

−g(h(ϕΛ1, Λ1), ϕV) = g(h(ϕΛ1, ϕΛ1), V. (27)

By considering Equations (26) and (27), we can deduce the following

g(h(Λ1, Λ1), V) = −g(h(ϕΛ1, ϕΛ1), V). (28)

This establishes the claim.

4. Inequality for Second Fundamental Form

In this section, we examine a submanifold, Ω, that is a contact CRWP of dimensions n.
It can be expressed as Ω = Ωn1

T × f Ωn2
⊥ , where Ωn1

T and Ωn2
⊥ are submanifolds of dimensions

n1 and n2, respectively. The ambient manifold, Ω̄, is a SM of dimension 2m + 1 with a SSM
connection. Additionally, χ belongs to the tangent space TΩT . Consider the orthonormal
frame {ξ1, . . . , ξs, ξs+1 = ϕξ1, . . . , ξn1−1 = ϕξs, ξn = χ, ξn1+1, . . . , ξn = ξn1+n2} for the
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submanifold Ω, where the vector fields {ξ1, . . . , ξs, ξs+1 = ϕξ1, . . . , ξn1−1 = ϕξs, ξn = χ}
are tangent to TΩn1

T and {ξn1+1, . . . , ξn = ξn1+n2} are tangent to Ωn2
⊥ .

Definition 5. Consider Ω = Ω1 × f Ω2, a WP submanifold of an SM. In this context, if the
partial second fundamental form, hi, vanishes identically, we refer to Ω as being Ωi-totally
geodesic. Similarly, if the partial mean curvature vector, Hi, vanishes for i = 1, 2, we classify
Ω as Ωi-minimal.

Presented below is the theorem at hand

Theorem 6. Let Ω = Ωn1
T × f Ωn2

⊥ be a contact CRWP submanifold of a Sasakian manifold, Ω̄,
admitting a SSM connection. Therefore, the squared mean curvature of Ω can be expressed as follows

||H||2 =
1
n2

2m+1

∑
r=n+1

(hr
n1+1n1+1 + · · ·+ hr

nn)
2. (29)

Proof. The squared norm of mean curvature vector for the submanifold Ω is given by

||H||2 =
1
n2

2m+1

∑
r=n+1

(hr
11 + . . . hr

ss + hr
s+1s+1 + · · ·+ hr

2s2s

+ hr
n1+1n1+1 + · · ·+ hr

nn)
2,

(30)

where hr
ij = g(h(ξi, ξ j), ξr), and 1 ≤ i, j ≤ n, n + 1 ≤ r ≤ 2m + 1. Applying Lemma 4,

we oget the required result.

For the contact CRWP submanifold Ω = Ωn1
T × f Ωn2

⊥ , from the relation (20), we deduce
the following formula

n1

∑
i=1

n

∑
j=n1+1

K(ξi ∧ ξ j) = n2
∆ f
f

+ 2n1n2 − 2n2. (31)

Theorem 7. Let Ω = Ωn1
T × f Ωn2

⊥ be a CRWP submanifold of an 2m + 1−dimensional SM Ω̄,
with an SSM connection, then

(i) The second fundamental form fulfills the following condition

||h||2 ≥ 2τ̄(TΩ)− 2τ̄(TΩn1
T )− 2τ̄(TΩn2

⊥ )− 2n2
∆ f
f

− 4n1n2 + 4n2.

(ii) In the case where the equality in (i) holds, it follows that Ωn1
T and Ωn2

⊥ are completely geodesic
and completely umbilical submanifolds, respectively, within Ω̄.

Proof. By substituting Λ1 = Λ4 = ξi and Λ2 = Λ3 = ξ j into the Gauss Equation (14) and
summing over 1 ≤ i, j ≤ n with i ̸= j, we derive the following expression

||h||2 = −2τ(TΩ) + 2τ̄(TΩ) + n2||H||2. (32)

As the submanifold Ω is a contact CR-warped product submanifold, the above equa-
tion yields

||h||2 = −2
n1

∑
i=1

n

∑
j=n1+1

K(ξi, ξ j)− 2τ(TΩT)− 2τ(TΩ⊥) + 2τ̄(TΩ) + n2||H||2. (33)
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On further using the Gauss equation, we obtain

||h||2 =− 2
n1

∑
i=1

n

∑
j=n1+1

K(ξi, ξ j)− 2τ̄(TΩT)− 2τ̄(TΩ⊥) + 2τ̄(TΩ)

− 2
2m+1

∑
r=n+1

∑
1≤i<k≤n1

(hr
iih

r
kk − (hr

ik)
2) + n2||H||2

− 2
2m+1

∑
r=n+1

∑
n1+1≤j<t≤n

(hr
jjh

r
tt − (hr

jt)
2).

(34)

The equivalent version of the above equation can be written as

||h||2 =− 2
n1

∑
i=1

n

∑
j=n1+1

K(ξi, ξ j)− 2τ̄(TΩT)− 2τ̄(TΩ⊥) + 2τ̄(TΩ)

− 2
2m+1

∑
r=n+1

∑
1≤i ̸=k≤n1

(hr
iih

r
kk − (hr

ik)
2) + n2||H||2

− 2
2m+1

∑
r=n+1

∑
n1+1≤j ̸=≤n

(hr
jjh

r
tt − (hr

jt)
2).

(35)

Since the submanifold Ωn1
T × f Ωn2

⊥ is ΩT-minimal, we have

2m+1

∑
r=n+1

∑
1≤i ̸=k≤n1

(hr
iih

rkk − (hr
ik)

2) = −
2m+1

∑
r=n+1

2m+1

∑
r=n+1

n1

∑
i,k=1

(hr
ik)

2. (36)

Thus, Equation (35) can be written as follows

||h||2 =− 2
n1

∑
i=1

n

∑
j=n1+1

K(ξi, ξ j)− 2τ̄(TΩT)− 2τ̄(TΩ⊥) + 2τ̄(TΩ)

+
2m+1

∑
r=n+1

∑
1≤i ̸=k≤n1

(hr
ik)

2 + n2||H||2 − n2||H||2

+
2m+1

∑
r=n+1

∑
n1+1≤j ̸=t≤n

(hr
jt)

2.

(37)

From (37) and (31), we obtain

||h||2 ≥ 2τ̄(TΩ)− 2τ̄(TΩT)− 2τ̄(TΩ⊥)− 2n2
∆ f
f

− 4n1n2 + 4n2.

This establishes the validity of part (i) of the theorem. If the equality in (i) is satisfied,
it implies that h(Λ1, Λ2) = 0 for any Λ1 and Λ2 belonging to the tangent space TΩT .
Consequently, the submanifold Ωn1

T can be classified as totally geodesic, while Ωn2
⊥ can be

classified as totally umbilical.

If the ambient manifold is an unit sphere, S2m+1 of odd dimension, then we have the
following theorem

Theorem 8. Let Ω = Ωn1
T × f Ωn2

⊥ be a contact CRWP submanifold of an unit sphere S2m+1(1) of
odd dimension, with SSM connection, then
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(i) The following inequality holds

||h||2 ≥ −2n2
∆ f
f

− 2n1n2 + 4n2 − 2n1

n2

∑
i=n1+1

β(ξi, ξi)− 2n2

n1

∑
i=1

β(ξi, ξi).

(ii) If the equality in (i) is fulfilled, it signifies that Ωn1
T and Ωn2

⊥ are totally geodesic and totally
umbilical submanifolds in Ω̄, respectively.

Proof. If the Sasakian manifold is an unit sphere of dimension 2m+ 1, then by Equation (11)

2τ̄(TΩT) = n1(n1 − 1)− 2n1

n1

∑
i=1

β(ξi, ξi). (38)

Similarly, on summing over the vector field on TN⊥, we obtain

2τ̄(TΩ⊥) = n2(n2 − 1)− 2n2

n

∑
i=n1+1

β(ξi, ξi). (39)

Now, summing up over basis vector fields of TΩ, such that 1 ≤ i ̸= j ≤ n, we have

2τ̄(TΩ) = n(n − 1)− 2n traceβ. (40)

Therefore,

2τ̄(TΩ)− 2τ̄(TΩT)− 2τ̄(TΩ⊥) = n(n − 1)− 2n traceβ − n1(n1 − 1)− n2(n2 − 1)

+ 2n1

n1

∑
i=1

β(ξi, ξi) + 2n2

n

∑
i=n1+1

β(ξi, ξi).
(41)

After, simplification, we obtain

2τ̄(TΩ)− 2τ̄(TΩT)− 2τ̄(TΩ⊥) = 2n1n2 − 2n1

n

∑
i=n1+1

β(ξi, ξi)− 2n2

n1

∑
i=1

β(ξi, ξi). (42)

Hence, from part (i), we obtain the desired inequality.

In view of Equation (21), we deduce the following

Theorem 9. Let Ω = Ωn1
T × f Ωn2

⊥ be a contact CRWP of an unit sphere, S2m+1(1) of odd
dimension, with SSM connection, then

(i) the following inequality holds

||h||2 ≥ 2n2(||∇(ln f )||2 − ∆(ln f ))− 2n1n2 + 4n2 − 2n1

n

∑
i=n1+1

β(ξi, ξi)− 2n2

n1

∑
i=1

β(ξi, ξi).

(ii) If the equality in (i) is fulfilled, it signifies that Ωn1
T and Ωn2

⊥ are totally geodesic and totally
umbilical submanifolds in Ω̄, respectively.

5. Some Applications

In this section, we will explore various applications utilizing the outcomes of our findings.

Theorem 10. Let Ω = Ωn1
T × f Ωn2

⊥ be a contact CRWP submanifold an unit sphere, S2m+1(1) of
odd dimension, with SSM connection. Then, Ω is a Riemannian product if

||h||2 + 2n2

n1

∑
i=1

β(ξi, ξi) + 2n1

n

∑
i=n1+1

β(ξi, ξi) ≥ 4n2 − 2n1n2. (43)
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Proof. From Theorem 9, we obtain

2n2||∇(ln f )||2 − 2n1n2 + 4n2 − 2n1

n

∑
i=n1+1

β(ξi, ξi)− 2n2

n1

∑
i=1

β(ξi, ξi) ≤ 2n2∆(ln f ). (44)

On integrating

∫
NT×n2

2n2||∇(ln f )||2 − 2n1n2 + 4n2 − 2n1

n

∑
i=n1+1

β(ξi, ξi)− 2n2

n1

∑
i=1

β(ξi, ξi)

≤ 2n2

∫
ΩT×n2

∆(ln f ) = 0.

(45)

Now, if ||h||2 + 2n2 ∑n1
i=1 β(ξi, ξi)+ 2n1 ∑n

i=n1+1 β(ξi, ξi) ≥ 4n2 − 2n1n2, then, from (45),
we find

∫
NT×n2

2n2||∇(ln f )||2 ≤ 0, which is not possible for a positive function. Therefore,
∇(ln f ) = 0, which means that f is constant and Ω is simply a Riemannian product.

Suppose λ is a nonzero eigenvalue of the Laplacian on ΩT . Then, by the property of
minimum principle, we obtain∫

ΩT

||∇(ln f )∥2dVT ≥ λ
∫

ΩT

((ln f ))2dVT . (46)

Using this fact in Theorem 9, we obtain the following result.

Corollary 11. Let Ω = Ωn1
T × f Ωn2

⊥ be a contact CRWP submanifold of an unit sphere S2m+1(1)
of odd dimension, with SSM connection. Let ΩT be a compact invariant submanifold and λ be a
nonzero eigenvalue of the Laplacian on ΩT . Then

∫
ΩT×n2

||h||2 ≥
∫

ΩT×n2

{4n2 − 2n1n2 − 2n1

n

∑
i=n1+1

β(ξi, ξi)

− 2n2

n1

∑
i=1

β(ξi, ξi)}Vol(ΩT) + 2n2λ
∫

ΩT

((ln f ))2dVT .

(47)

6. Conclusions

In conclusion, this research paper delved into the investigation of contact CRWP
submanifolds within SSF, utilizing a SSM connection. The comprehensive examination
of these submanifolds has made significant contributions to the field. Firstly, important
results have been established regarding the properties and characteristics of contact CRWP
submanifolds. This analysis has provided valuable insights into their geometric structure
and shed light on their behavior within Sasakian space forms.

Additionally, a notable inequality has been derived, establishing a relationship be-
tween the squared norm of the second fundamental form and the warping function. This
inequality serves as a fundamental tool for understanding the interplay between the ge-
ometric properties of contact CRWP submanifolds and the underlying warping function.
It quantitatively measures the connection between these two aspects, enabling further
investigations in this area.

The findings presented in this paper contribute to a broader understanding of contact
CRWP submanifolds and their relevance to SSF. The results deepen our knowledge of these
geometric structures and provide new avenues for future research in related fields. In sum-
mary, this study successfully explores contact CRWP submanifolds within the framework
of SSF equipped with a SSM connection. The established results and derived inequality
offer valuable insights and opportunities for further investigation. It is hoped that these
findings will inspire and guide future research in this exciting area of differential geometry.
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