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Abstract: In this paper, we consider a supersymmetric version of block-symmetric polynomials on a
Banach space of two-sided absolutely summing series of vectors in Cs for some positive integer s > 1.
We describe some sequences of generators of the algebra of block-supersymmetric polynomials and
algebraic relations between the generators for the finite-dimensional case and construct algebraic
bases of block-supersymmetric polynomials in the infinite-dimensional case. Furthermore, we
propose some consequences for algebras of block-supersymmetric analytic functions of bounded
type and their spectra. Finally, we consider some special derivatives in algebras of block-symmetric
and block-supersymmetric analytic functions and find related Appell-type sequences of polynomials.
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1. Introduction

Symmetric functions on finite-dimensional vector spaces are standard objects in com-
binatorics and classical invariant theory (see, e.g., [1,2]). For infinite-dimensional spaces,
investigations of symmetric polynomials were started by Nemirovski and Semenov in [3].
In particular, in [3], the authors constructed algebraic bases of algebras of symmetric real-
valued polynomials on real Banach spaces ℓp and Lp[0, 1] for 1 ≤ p < ∞. In [4], these
results were generalized to separable sequence real Banach spaces with symmetric bases
and to separable rearrangement invariant real Banach spaces, respectively. The cases of
ℓ∞ and L∞ were considered in [5,6]. Since then, symmetric structures and mappings in
infinite-dimensional Banach spaces have been studied by many authors (see, e.g., [7] and
references therein).

In [8], Jawad and Zagorodnyuk considered supersymmetric polynomials and analytic
functions on the space ℓ1(Z0) of absolutely summable sequences (xn), n ∈ Z0 = Z \ {0}.
Supersymmetric polynomial generalizations for more general sequence spaces were con-
sidered in [9]. Applications of algebraic bases of supersymmetric polynomials to models of
ideal gases in quantum physics were proposed in [10]. Supersymmetric polynomials over fi-
nite fields and their applications in cryptography were considered in [11]. Supersymmetric
polynomials on finite-dimensional vector spaces were studied in [12,13].

Block-symmetric or MacMahon polynomials are natural generalizations of sym-
metric polynomials and can be considered symmetric polynomials on linear spaces of
vector sequences.

Combinatorial properties of such polynomials are described in [14]. An algebraic
basis of the algebra of all symmetric continuous complex-valued polynomials on the
Cartesian power of the complex Banach space ℓp for some fixed 1 ≤ p < ∞ was constructed
in [15] (see also [16] for more details on the real case). Algebras of symmetric continuous
polynomials on Cartesian products ℓp1 × · · · × ℓps for different p1, . . . , ps were considered
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in [17]. Some generalizations of the Newton formulas for algebraic bases of block-symmetric
polynomials were obtained in [18]. Spectra of algebras of block-symmetric polynomials and
holomorphic functions and algebraic structures on the spectra were considered in [19,20].
Zeros of block-symmetric polynomials were investigated in [21].

In this paper, we consider algebras of polynomials that are both block-symmetric and
supersymmetric on infinite-dimensional Banach spaces of absolutely summable sequences
of vectors in Cs. The main goal of this research is to construct algebraic bases in these
algebras and find some Newton-type relations between different bases. Furthermore, we
propose some consequences for algebras of block-symmetric and supersymmetric analytic
functions that are bounded on all bounded subsets and for derivatives on these algebras.

In Section 2, we provide a basic review of known preliminary results on supersym-
metric and block-symmetric polynomials in ℓp-spaces. In Section 3, we introduce block-
supersymmetric polynomials in corresponding Banach spaces and find analogs of classical
algebraic bases of such polynomials and Newton-type relations between these bases. In
addition, we discuss the finite-dimensional case and show some algebraic dependencies
between generating elements. In Section 4, we consider algebras of block-supersymmetric
analytic functions of bounded type and apply the obtained results on block-supersymmetric
polynomials to their spectra. In Section 5, we consider some derivatives on the algebras of
polynomials and analytic functions and construct related Appell-type polynomials.

2. Symmetric, Supersymmetric and Block-Symmetric Polynomials
2.1. Symmetric and Supersymmetric Polynomials

Let X be a complex Banach space with a symmetric basis (en). Let us recall that a
Schauder basis (en) is symmetric if for every permutation (one-to-one map) σ ∈ SN, and the
basis (eσ(n)) is equivalent to (en), where SN is the semigroup of all permutations on the set
of all natural numbers N. Therefore, we can uniquely represent every x ∈ X as

x = (x1, x2, . . .) =
∞

∑
n=1

xnen.

A mapping F on X is said to be symmetric if

F(x1, x2, . . .) = F(xσ(1), xσ(2), . . .)

for each σ ∈ SN. A function P : X → C is a polynomial of degree m if the restriction of P to
any finite-dimensional subspace of X is a polynomial of several variables of degree ≤ m
and there is a finite-dimensional subspace V of X such that the restriction of P to V is
a polynomial of degree m. We denote by Ps(X) the algebra of all continuous symmetric
polynomials on X.

In the case X = ℓ1, polynomials

Fk(x) =
∞

∑
n=1

xk
n, k ∈ N,

form an algebraic basis of Ps(ℓ1) [4]. That is, for any polynomial P ∈ Ps(ℓ1), there
is a unique polynomial of several complex variables Q(t1, . . . , tm), such that P(x) =
Q(F1(x), . . . , Fm(x)). The algebraic basis is not unique, of course, and we will also use
bases

Gn(x) = ∑
i1<...<in

xi1 · · · xin

and
Bn(x) = ∑

i1≤...≤in

xi1 · · · xin .
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These bases are connected by known Newton formulas, which remains true for the infinite-
dimensional case:

mGm =
m

∑
k=1

(−1)k−1Gm−kFk, m ∈ N, (1)

mBm =
m

∑
k=1

Bm−kFk, m ∈ N. (2)

For these basis polynomials, there are the following generating functions:

F (x)(t) =
∞

∑
n=1

tn−1Fn(x),

G(x)(t) =
∞

∑
n=0

tnGn(x), G0 = 1,

B(x)(t) =
∞

∑
n=0

tnBn(x), B0 = 1.

It is well-known in combinatorics (see e.g., [22]) that

G(x)(t) =
1

B(−x)(t)

and

G(x)(t) = exp

(
−

∞

∑
n=1

tn Fn(−x)
n

)
. (3)

Let Z0 = Z \ 0 and ℓ1(Z0) be the Banach space of all sequences of complex numbers
that are absolutely summing and indexed by numbers in Z0. Any element z in ℓ1(Z0) has
the representation

z = (. . . , z−n, . . . , z−1, z1, . . . , zn, . . .)

that can be written as

z = (y|x) = (. . . , yn, . . . , y1|x1, . . . , xn, . . .)

with

||z|| =
∞

∑
i=−∞

|zi| = ∥x∥+ ∥y∥,

where zn = xn, z−n = yn, and elements x = (x1, . . . , xn, . . .), y = (y1, . . . , yn, . . .), n ∈ N
are in ℓ1. Note that x 7→ (0|x) and y 7→ (y|0) are isometric embeddings of the copies of ℓ1
into ℓ1(Z0). A polynomial P on ℓ1(Z0) is said to be supersymmetric if it is a finite algebraic
combination of polynomials Tk, k ∈ N,

Tk(y|x) = Fk(x)− Fk(y) =
∞

∑
i=1

xk
i −

∞

∑
i=1

yk
i .

In [8], it was shown that the following polynomials on ℓ1(Z0),

Wn(y|x) =
n

∑
k=1

Gk(x)Bn−k(−y), n ∈ N,

form another basis in the algebra of supersymmetric polynomials. Moreover, in [10], it was
observed that

W̃n(y|x) =
n

∑
k=1

Bk(x)Gn−k(−y), n ∈ N
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also forms an algebraic basis in the algebra of supersymmetric polynomials on ℓ1(Z0) and
produes some relations between Wn(y|x) and W̃n(y|x).

Remark 1. We can consider the space ℓp as the space of functions xn = x(n) on the set of positive
integers N with values in C. Hence, ℓp is a short notation for ℓp(N,C), and ℓ1(Z0) is a short
notation for ℓ1(Z0,C). In the general case, if Y is a normed space and A is a set of indexes, the
notation ℓp(A, Y), 1 ≤ p < ∞ means the normed space of Y-valued functions xn = x(n), n ∈ A

such that

∥x∥ =

(
∑

n∈A
∥xn∥p

)1/p

.

It is easy to see that if a polynomial P(y|x) on ℓ1(Z0) is supersymmetric, then it is
invariant with respect to a semigroup of mappings on ℓ1(Z0) consisting of all permutations
of coordinates separately for x and for y, and affine operators of the form

(y|x) = (. . . , yn, . . . , y1|x1, . . . , xn, . . .) 7→ (. . . , yn, . . . , y1, a|a, x1, . . . , xn, . . .), a ∈ C. (4)

The following examples show each condition itself does not imply supersymmetry.

Example 1. Let

P(y|x) = (Fk(x))2 − (Fk(y))2 =
( ∞

∑
n=1

xk
n

)2
−
( ∞

∑
n=1

yk
n

)2

for some k ∈ N. Then, P(y|x) is invariant with respect to all permutations of coordinates separately
for x and for y, but for a = 1,

P(y|x) = (Fk(x)− Fk(y))(Fk(x) + Fk(y)) ̸= (Fk(x)− Fk(y))(Fk(x) + Fk(y) + 2)

= P(. . . , yn, . . . , y1, 1|1, x1, . . . , xn, . . .).

Thus, P is not supersymmetric.

Example 2. Let

P(y|x) =
∞

∑
n=1

(xn − yn)
k

for some natural k > 1. Then, P(y|x) is invariant with respect to the action of (4) but not invariant
with respect to all permutations of coordinates separately for x and for y. Therefore, it is not
supersymmetric. Note that P(y|x) is invariant with respect to all simultaneous permutations of
coordinates of x and y but it is not enough.

2.2. Block-Symmetric Polynomials

We denote by ℓp(Cs) = ℓp(N,Cs), 1 ≤ p < ∞ the linear space of all sequences

x = (x1, x2, . . . , xj, . . .), (5)

such that xj = (x(1)j , . . . , x(s)j ) ∈ Cs for j ∈ N, and the series
∞
∑

j=1

s
∑

r=1

∣∣∣x(r)j

∣∣∣p converges. We

also use the representation

x =




x(1)1

x(2)1
...

x(s)1

,


x(1)2

x(2)2
...

x(s)2

, · · · ,


x(1)j

x(2)j
...

x(s)j

, · · ·
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for x. Vectors xj in (5) are called vector coordinates of x. The linear space ℓp(Cs) is endowed
with the norm

∥x∥ =

(
∞

∑
j=1

s

∑
r=1

∣∣∣x(r)j

∣∣∣p)1/p

which is a Banach space. A polynomial P on the space ℓp(Cs) is called block-symmetric (or
vector-symmetric) if:

P(x1, x2, . . . , xm, . . .) = P(xσ(1), xσ(2), . . . , xσ(m), . . .)

for every permutation σ ∈ SN and xm ∈ Cs. Let us denote by Pvs(ℓp(Cs)) the algebra of all
block-symmetric polynomials on ℓp(Cs).

More information about algebra Pvs(ℓp(Cs)) can be found in [15,17] and references
therein. In the paper, we concentrate on the case p = 1 because in this case, we have explicit
representations of different algebraic bases. Furthermore, the case p = 1 has a physical
meaning in applications for modeling quantum ideal gases [10]. Note that in combinatorics,
block-symmetric polynomials on finite-dimension spaces are called MacMahon symmetric
polynomials (see [14]).

Throughout this paper, we consider multi-indexes k = (k1, k2, . . . , ks) with non-
negative integer entries k1, k2, . . . , ks, and we will use the standard notations |k| = k1 +
k2 + · · ·+ ks, and k! = k1!k2! · · · ks!.

According to [15], polynomials

Hk(x) = Hk1,k2,...,ks(x) =
∞

∑
j=1

s

∏
r=1

|k|≥⌈p⌉

(x(r)j )kr

form an algebraic basis in Pvs(ℓp(Cs)), 1 ≤ p < ∞, where x = (x1, . . . , xm, . . .) are in ℓp(Cs),

and xj = (x(1)j , . . . , x(s)j ) ∈ Cs. According to [14], these polynomials are called the power

sum MacMahon symmetric functions. For example, Hn,0,...,0(x) =
(
x(1)1

)n
+
(
x(1)2

)n
+ · · · .

In the case of the space ℓ1(Cs), there is another important algebraic basis (see [1,14,20]):

Rk(x) = Rk1,k2,...,ks(x) =
∞
∑

ij
1<···<ij

kj
1≤j≤s

s
∏
j=1

x(j)

ij
1

. . . x(j)

ij
kj

.
(6)

In [14], these polynomials are called the elementary MacMahon symmetric functions.
For example,

R1,2,0...,0(x) = ∑
i, j1<j2

x(1)i x(2)j1
x(2)j2

.

Let H(x)(t) and R(x)(t) be a formal series

H(x)(t) =
∞

∑
|k|=1

s

∏
i=1

tki
i Hk(x),

R(x)(t) =
∞

∑
|k|=0

s

∏
i=1

tki
i Rk(x), R0 = 1,

which are also called generating functions (see [14]). From [14,20], we know that

R(x)(t) =
∞
∑

|k|=0

s
∏
i=1

tki
i Rk(x) =

∞
∏
i=1

(1 + x(1)i t1 + · · ·+ x(s)i ts). (7)
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From [14], it follows that there is one more algebraic basis of homogeneous polynomi-
als Ek(x), which can be defined from the generating function

E(x)(t) =
∞

∑
|k|=0

s

∏
i=1

tki
i Ek(x) =

∞

∏
i=1

1

1 − x(1)i t1 − · · · − x(s)i ts
, E0 = 1. (8)

These polynomials are called the complete homogeneous MacMahon symmetric functions.
From (7) and (8), we have

R(x)(t) =
1

E(−x)(t)
. (9)

Proposition 1. For the generating function R(x)(t), we have the following relation:

R(x)(t) = exp

−
∞

∑
|k|=1

∞

∏
i=1

tki
i
(|k| − 1)!Hk(−x)

k!

, (10)

where x = (x(1), . . . , x(s)) ∈ ℓ1(Cs) and t = (t1, . . . , ts).

Proof. For polynomials Fk(t1x(1) + t2x(2) + · · ·+ tsx(s)), Gk(t1x(1) + t2x(2) + · · ·+ tsx(s)),
by Formula (3), we have

G(t1x(1) + t2x(2) + · · ·+ tsx(s))(λ) = exp

(
−

∞

∑
n=1

λn Fn(−(t1x(1) + t2x(2) + · · ·+ tsx(s)))
n

)
, (11)

where λ ∈ C.
The generating functions G(t1x(1) + t2x(2) + . . . + tsx(s))(λ) in the case λ = 1 can be

rewritten as

G(t1x(1) + t2x(2) + · · ·+ tsx(s))(1) =
∞

∑
n=0

Gn(t1x(1) + t2x(2) + · · ·+ tsx(s)). (12)

On the other hand, each of polynomials Fm(t1x(1) + t2x(2) + · · ·+ tsx(s)) and Gm(t1x(1) +
t2x(2) + · · · + tsx(s)) have a representation as a linear combination of block-symmetric
polynomials Hk(x) and Rk(x), respectively. Indeed, from direct calculations,

Gn(t1x(1) + t2x(2) + · · ·+ tsx(s)) = ∑
|k|=n

tk1
1 tk2

2 · · · tks
s Rk(x) (13)

and

Fn(t1x(1) + t2x(2) + · · ·+ tsx(s)) = ∑
|k|=n

|k|!
k!

tk1
1 tk2

2 · · · tks
s Hk(x), (14)

where x = (x(1), . . . , x(s)). From (12) and (13), we have that

G(t1x(1) + t2x(2) + · · ·+ tsx(s))(1) =
∞

∑
n=0

Gn(t1x(1) + t2x(2) + · · ·+ tsx(s))

=
∞

∑
n=0

∑
|k|=n

tk1
1 tk2

2 · · · tks
s Rk(x)

=
∞

∑
|k|=0

tk1
1 tk2

2 · · · tks
s Rk(x) = R(x)(t).

(15)
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In the case λ = 1, from (11), (14) and (15) we obtain

R(x)(t) = G(t1x(1) + t2x(2) + · · ·+ tsx(s))(1)

= exp

(
−

∞

∑
n=1

1n Fn(−(t1x(1) + t2x(2) + · · ·+ tsx(s)))
n

)

= exp

−
∞

∑
n=1

∑
|k|=n

|k|!
k! tk1

1 tk2
2 · · · tks

s Hk(−x)

n


= exp

−
∞

∑
|k|=1

s

∏
i=1

tki
i
(|k| − 1)!Hk(−x)

k!

.

Let us consider more examples of block-symmetric polynomials.

Example 3. Let P be a symmetric polynomial on ℓ1. Then P(a1x(1) + · · · + asx(s)) is a block
symmetric polynomial on ℓ1(Cs), where x(j) ∈ ℓ1 and aj are some nonzero numbers. Formulas (13)
and (14) show that the block-symmetric polynomials of such type are important. In particular,
polynomial in Example 2 is block-symmetric for s = 2, x(1) = x, and x(2) = y.

Example 4. Let Mr be the linear space of r × r matrices for some integer r > 1. Denote by ℓ1(Mr)
the space of absolutely summing sequences of matrices u = (u1, u2, . . .), un ∈ Mr. Clearly, ℓ1(Mr)
is isomorphic to ℓ1(Cs) for s = r2. Then,

P(u) =
∞

∑
n=1

det(un)

is a block-symmetric polynomial on ℓ1(Mr).

2.3. Newton-Type Formulas for Block-Symmetric Polynomials

Let ω be the isomorphism of Pvs(ℓ1(Cs)) to itself, defined so that ω(Hk) = −Hk for
every multi-index k. In other words, if P ∈ Pvs(ℓ1(Cs)) is of the form

P(x) = Q(Hk, Hm, . . . , Hr)

for some polynomial Q of several variables, then

ω(P)(x) = Q
(
ω(Hk), ω(Hm), . . . , ω(Hr)

)
.

It is clear that ω(Hk)(x) = (−1)|k|+1(Hk)(−x) for every multi-index k, and ω2(P) = P
for every P ∈ Pvs(ℓ1(Cs)). The following result generalizes a well-known fact in the case
of symmetric polynomials (see p. 4, [22]).

Proposition 2. For every multi-index k,

ω(Rk) = Ek and ω(Ek) = Rk.
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Proof. According to relations (9) and (10), we have

R(x)(t) = exp

−
∞

∑
|k|=1

∞

∏
i=1

tki
i
(|k| − 1)!Hk(−x)

k!


= exp

 ∞

∑
|k|=1

∞

∏
i=1

tki
i
(|k| − 1)!(−1)|k|+1Hk(x)

k!


= exp

 ∞

∑
|k|=1

∞

∏
i=1

tki
i
(|k| − 1)!ω

(
Hk)(x)

k!


= ω

(
E
)
(x)(t).

By the definition of Ek, (8) we can see that ω(Ek) = Rk. Thus, Ek = ω2(Ek) = ω(Rk).

For given multi-indexes k and q, we denote by k − q = (k1 − q1, k2 − q2, . . . , ks − qs).
In addition, we write k ≥ q whenever k1 ≥ q1, k2 ≥ q2, ..., ks ≥ qs. In [18], the following
generalization of Newton’s formula is proved (1).

nRk =
|k|

∑
j=1

(−1)j−1 ∑
|q|=j
k≥q

|q|!
q!

HqRk−q. (16)

Using Proposition 2 and Equation (16), we can prove an analog of Newton’s Formula (2).

Theorem 1. For every multi-index k,

nEk =
|k|

∑
j=1

∑
|q|=j
k≥q

|q|!
q!

HqEk−q. (17)

Proof. Applying the isomorphism ω to Equation (16), we have

nEk = nω(Rk) =
|k|

∑
j=1

(−1)j−1 ∑
|q|=j
k≥q

|q|!
q!

ω(HqRk−q)

=
|k|

∑
j=1

(−1)j−1 ∑
|q|=j
k≥q

|q|!
q!

(−1)|q|+1HqEk−q

=
|k|

∑
j=1

(−1)2j ∑
|q|=j
k≥q

|q|!
q!

HqEk−q

=
|k|

∑
j=1

∑
|q|=j
k≥q

|q|!
q!

HqEk−q.

2.4. The Finite-Dimensional Case

Let us consider a more detailed case ℓm
1 (Cs) = ℓ1(Nm,Cs), where Nm = {1, . . . , m}. In

other words, ℓm
1 (Cs) is an sm-dimensional complex space consisting of sequences of length

m of vectors in Cs.
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Note that every function on ℓm
1 (Cs) depends on sm independent variables. We say

that a function on ℓm
1 (Cs) is totally symmetric if it is invariant with respect to all possible per-

mutations of these variables. Clearly, every totally symmetric function is block-symmetric.
There are exactly sm totally symmetric algebraically independent polynomials ℓm

1 (Cs). If
we restrict the basis (6) to ℓm

1 (Cs), we obtain

m

∑
l=1

(l + 1)(l + 2) · · · (l + s − 1)
(s − 1)!

generators of Pvs(ℓm
1 (Cs)). From classic results of invariant theory (see Lemma 5 of [1]),

there are at least N algebraic dependencies between these generators, where

N =
m

∑
l=1

(l + 1)(l + 2) · · · (l + s − 1)
(s − 1)!

− sm.

Thus, in the finite-dimensional case, generating elements of the algebra of block-symmetric
polynomials on ℓm

1 (Cs) are always algebraically dependent if s > 1.
We say that a system of generators τvs(ℓm

1 (Cs)) of Pvs(ℓm
1 (Cs)) is reasonable if it contains

sm totally symmetric algebraically independent polynomials. In [23], it is shown how to
find algebraic dependencies in a reasonable system of the generators for polynomials that
are not totally symmetric.

Example 5. Let

((
x(1)1

x(2)1

)
,

(
x(1)2

x(2)2

))
∈ ℓ2

1(C2). For the generating elements Hk(x), the

following identity holds (see [23]):

η2
5 − η1η2η5 +

1
2

η3η2
2 +

1
2

η4η2
1 − η3η4 ≡ 0,

where

η1 = H1,0 = x(1)1 + x(1)2 ,
η2 = H0,1 = x(2)1 + x(2)2 ,

η3 = H2,0 =
(

x(1)1

)2
+
(

x(1)2

)2
,

η4 = H0,2 =
(

x(2)1

)2
+
(

x(2)2

)2
,

η5 = H1,1 = x(1)1 x(2)1 + x(1)2 x(2)2 .

Let

ν1 = E1,0 = x(1)1 + x(1)2 ,
ν2 = E0,1 = x(2)1 + x(2)2 ,

ν3 = E2,0 = x(1)1 x(1)2 +
(

x(1)1

)2
+
(

x(1)2

)2
,

ν4 = E0,2 = x(2)1 x(2)2 +
(

x(2)1

)2
+
(

x(2)2

)2
,

ν5 = E1,1 = x(1)1 x(2)2 + x(1)2 x(2)1 + 2x(1)1 x(2)1 + 2x(1)2 x(2)2 .

Then, the following identity holds:

ν2
5 − 3ν1ν2ν5 + 3ν2

2 ν3 + 3ν2
1 ν4 − 4ν3ν4 ≡ 0.

3. Block-Supersymmetric Polynomials
3.1. Bases of Block-Supersymmetric Polynomials

We will use the following short notation ℓ1(Cs
Z0
) for the Banach space ℓ1(Z0,Cs). In

other words, ℓ1(Cs
Z0
) is the space of sequences

z = (. . . , z−n, . . . , z−1, z1, . . . , zn, . . .)
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= (y|x) = (. . . , yn, . . . , y1|x1, . . . , xn, . . .)

with

||z|| =
∞

∑
i=−∞

||zi|| =
∞

∑
i=−∞

s

∑
j=1

|z(j)
i |,

where both x = (x1, . . . , xn, . . .) and y = (y1, . . . , yn, . . .) are in ℓ1(Cs), and xi = (x(1)i , . . . , x(s)i )

and yi = (y(1)i , . . . , y(s)i ) are in Cs with zn = xn, z−n = yn for n ∈ N.
Let us consider the next polynomials on ℓ1(Cs

Z0
):

Tk(z) = Hk(x)− Hk(y) =
∞

∑
j=1

s

∏
r=1
|k|≥1

(x(r)j )kr −
∞

∑
j=1

s

∏
r=1
|k|≥1

(y(r)j )kr , k = (k1, . . . , ks). (18)

Definition 1. A polynomial P on ℓ1(Cs
Z0
) is called block-supersymmetric if it is an algebraic combi-

nation of polynomials
{

Tk}∞
|k|=1. That is, P can be written as a finite sum of finite products of poly-

nomials in
{

Tk}∞
|k|=1 and constants. We denote by Pvsup the algebra of all block-supersymmetric

polynomials on ℓ1(Cs
Z0
).

Proposition 3. Polynomials Tk are algebraically independent and so
{

Tk}∞
|k|=1 is an algebraic

basis in Pvsup.

Proof. Let us suppose for a contradiction that there is a non-trivial polynomial Q of several
variables such that

Q(Tk(y|x), Tm(y|x), . . . , Tr(y|x)) ≡ 0

for some finite sequence of multi-indexes (k, m, . . . , r). This equality will still be true if
we restrict it to elements (0|x), x ∈ ℓ1(Cs). But Tk(0|x) = Hk(x) for every multi-index
k. Thus,

Q(Hk(x), Hm(x), . . . , Hr(x)) ≡ 0

which contradicts the algebraic independence of polynomials (Hk).

Let us consider the following relation of equivalence: z ∼ w, for z, w in ℓ1(Cs
Z0
) if and

only if Tk(z) = Tk(w) for every |k| ≥ 1. The quotient set ℓ1(Cs
Z0
)/ ∼ will be denoted

by M. Let [z] ∈ M be the class of equivalence containing z ∈ ℓ1(Cs
Z0
). Clearly, any

block-supersymmetric polynomial P is well-defined on M by P([z]) = P(z).
As in [8,20], we can introduce an algebraic operation “•” of the “symmetric addition”

on ℓ1(Cs
Z0
) by

z • w = (y • v|x • u) = (. . . , vn, yn, . . . , v1, y1|x1, u1, . . . , xn, un, . . .),

where z = (y|x), w = (v|u). We denote by z− = (y|x)− = (x, y) the “symmetric inverse”
element to z. It is easy to see that (z−)− = z and z • z− ∼ (0|0). These operations can be
extended to M by

[z] • [w] = [z • w] and [z]− = [z−], z, w ∈ ℓ1(Cs
Z0
)). (19)

Similarly to in [8], some obvious basic properties of “•” can be formulated in the
following theorem.

Theorem 2. The following statements hold:

1. Tk(z • w) = Tk(z) + Tk(w) for every k = (k1, . . . , ks).
2. The algebraic operations on M, defined in (19), do not depend on the choice of representatives.
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3. The set M, together with operations in (19), form a commutative group, where 0 = (0|0) is
the zero element.

4. z ∼ 0 if and only if we can write z = (d|s) for some d, s ∈ ℓ1(Cs) and Hk(d) = Hk(s) for
all k = (k1, . . . , ks). In other words, the set of nonzero vector coordinates of d coincides with
the set of nonzero vector coordinates of s.

Other algebraic and topological structures on M in more general situations were
considered in [9].

Let us denote by Λ an algebraic isomorphism from Pvs = Pvs(ℓ1(Cs)) to Pvsup
such that

Λ : Hk 7−→ Tk, k = (k1, . . . , ks).

Since Λ is an algebraic isomorphism, we have the following proposition.

Proposition 4. If {Pn}∞
n=1 is an algebraic basis in Pvs(ℓ1(Cs)), then {Λ(Pn)}∞

n=1 is an algebraic
basis in Pvsup.

For a given y ∈ ℓ1(Cs), we denote by Λy(P)(x) = Λ(P)(y|x), P ∈ Pvs(ℓ1(Cs)). It is
easy to check that Λy(x • y) = Λ(P)(y|x • y) = Λ(P)(0|x) = P(x).

Theorem 3. Let Λ(Rn) = Wn. Then

Wn(y|x) = ∑
k≤n

Rk(x)En−k(−y), n = (n1, . . . , ns), (20)

and

W(y|x)(t) =
∞

∑
|k|=0

s

∏
i=1

tki
i Wk(y|x) = R(x)(t)

R(y)(t)
, (21)

where the equality holds for all vectors t ∈ Cs in the common domains of convergence.

Proof. Due to [20], we know that

R(x • y)(t) = R(x)(t)R(y)(t), x, y ∈ ℓ1(Cs). (22)

Hence, for any fixed y ∈ ℓ1(Cs),

Λy(R(x • y)(t)) =
∞

∑
|k|=0

s

∏
i=1

tki
i Λ(Rk)(y|x)

∞

∑
|k|=0

s

∏
i=1

tki
i Rk(y)

=
∞

∑
|k|=0

s

∏
i=1

tki
i Wk(y|x)

∞

∑
|k|=0

s

∏
i=1

tki
i Rk(y).

On the other hand,

Λy(R(x • y)(t)) =
∞

∑
|k|=0

s

∏
i=1

tki
i Rk(x).

Therefore,
∞

∑
|k|=0

s

∏
i=1

tki
i Wk(y|x)

∞

∑
|k|=0

s

∏
i=1

tki
i Rk(y) =

∞

∑
|k|=0

s

∏
i=1

tki
i Rk(x). (23)

From (23), we have
W(y|x)(t)R(y)(t) = R(x)(t)
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and so (21) holds. Using Formula (9), we obtain

∞

∑
|k|=0

s

∏
i=1

tki
i Wk(y|x) =

∞

∑
|k|=0

s

∏
i=1

tki
i Rk(x)

∞

∑
|k|=0

s

∏
i=1

tki
i Ek(−y)

=
∞

∑
|k|=0

s

∏
i=1

tki
i ∑

j≤k
Rj(x)Ek−j(−y).

From here, (20) follows.

Corollary 1. For the generating function W((y|x) • (d|b))(t), the following identity holds

W((y|x) • (d|b))(t) = W(y|x)(t)W(d|b)(t), x, y, d, b ∈ ℓ1(Cs).

Proof. The equality follows from (22) and (21).

Corollary 2. For every multi-index n = (n1, . . . , ns) and x, y, b, d ∈ ℓ1(Cs) we have

Wn((y|x) • (d|b)) = ∑
k≤n

Wk(y|x)Wn−k(d|b),

Rn(x • b) = ∑
k≤n

Rk(x)Rn−k(b),

and
En(y • d) = ∑

k≤n
Ek(y)En−k(d).

Proof. From Corollary 1, we have

∞

∑
|n|=0

s

∏
i=1

tni
i Wn((y|x) • (d|b)) =

∞

∑
|k|=0

s

∏
i=1

tki
i Wk(y|x)

∞

∑
|l|=0

s

∏
i=1

tli
i Wl(d|b).

Equating coefficients at the same monomials
s

∏
i=1

tni
i , we have verified the first equality. The

second equality follows from the first one for the case Wn((0|x) • (0|b)), and the third one
for the case Wn((y|0) • (d|0)).

In [20], it is observed that

R(x)(t) =
∞

∏
i=1

(1 + x(1)i t1 + · · ·+ x(s)i ts) (24)

and the product absolutely converges to an entire function on Cs. From (21) and (24) it
follows that for every fixed u = (y|x), W(u)(t) is a meromorphic function on Cs of the
form

W(u)(t) =

∞
∏
i=1

(1 + x(1)i t1 + · · ·+ x(s)i ts)

∞
∏
i=1

(1 + y(1)i t1 + · · ·+ y(s)i ts)
. (25)

Proposition 5. For each u = [(y|x)] ∈ M

W(u)(t) = exp

−
∞

∑
|k|=1

∞

∏
i=1

tki
i
(|k| − 1)!Tk(−u)

k!

, (26)

where −u = [(−y| − x)] and the equality holds on the common domain of convergence.
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Proof. In [8], it was proved that for the case s = 1,

W(y|x)(t) = exp

(
−

∞

∑
n=1

tn Tn(−u)
n

)
. (27)

From the straightforward computations, we have

Tn(−y(1)t1 − · · · − y(s)ts| − x(1)t1 − · · · − x(s)ts) =

= Fn(−x(1)t1 − · · · − x(s)ts)− Fn(−y(1)t1 − · · · − y(s)ts) =

= ∑
|k|=n

|k|!
k!

tk1
1 · · · tks

s (Hk(−x)− Hk(−y)) =

= ∑
|k|=n

|k|!
k!

tk1
1 · · · tks

s Tk(−u).

(28)

On the other hand,

W(y(1)t1 + · · ·+ y(s)ts|x(1)t1 + · · ·+ x(s)ts)(1) =
G(x(1)t1 + · · ·+ x(s)ts)(1)
G(y(1)t1 + · · ·+ y(s)ts)(1)

=
R(x)(t)
R(y)(t)

= W(u)(t).
(29)

Substituting (28) into (27), and taking into account that |k| = n and (29), we obtain (26).

Theorem 4. Let u = (y|x) ̸= (0|0). The equations Tk(v) = λTk(u) for all multi-indexes k and
a number λ ∈ C has a solution v ∈ M if and only if λ is an integer number.

Proof. Let λ = n ∈ Z. If n = 0, then v = 0. If n > 0, then v = u • . . . • u︸ ︷︷ ︸
n

. If n < 0, then

v = u− • . . . • u−︸ ︷︷ ︸
n

.

Now, let λ /∈ Z. According to (26)

W(v)(t) = (W(u)(t))λ.

But (W(u)(t))λ is not a meromorphic function if λ /∈ Z. Thus, we have a contradiction the
representation (25) for W(v)(t).

3.2. Newton-Type Formulas for Block-Supersymmetric Polynomials

To obtain some Newton-type formulas for block-supersymmetric polynomials, we
have to apply the isomorphism Λ to corresponding Newton-type formulas for block-
symmetric polynomials. Applying Λ to (16), we obtain

nWk = Λ
(
nRk) = |k|

∑
j=1

(−1)j−1 ∑
|q|=j
k≥q

|q|!
q!

Λ(Hq)Λ(Rk−q) =
|k|

∑
j=1

(−1)j−1 ∑
|q|=j
k≥q

|q|!
q!

TqWk−q. (30)

We denote W̃k = Λ
(
Ek). Then, applying Λ to (17), we have

nW̃k =
|k|

∑
j=1

∑
|q|=j
k≥q

|q|!
q!

TqW̃k−q. (31)

Thus, we have proven the following theorem.
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Theorem 5. The algebraic bases Tk, Wk and W̃k of Pvsup are connected by Newton-type relations
(30) and (31).

Note that the isomorphism ω defined in Section 2.3 can be extended to an isomorphism
Ω of Pvsup setting Ω = Λ ◦ ω ◦ Λ−1. In other words, Ω(Tk) = −Tk for every multi-index
k. Furthermore, it is easy to check that Ω(Wk) = W̃k, Ω2 is the identity operator, and
Ω(P)(y|x) = P(x|y) for every P ∈ Pvsup. Thus,

W̃k = Ω(Wk) = Ω

(
∑

q≤k
Rq(x)Ek−q(−y)

)
= ∑

q≤k
Eq(x)Rk−q(−y).

3.3. The Finite Dimensional Case for Block-Supersymmetric Polynomials

Let us denote by
(
ℓ1(Cs

Z0
)
)

p,q
the finite-dimensional Banach space of all sequences

z = (z−p, . . . , z−1|z1, . . . , zq) = (y|x) = (yp, . . . , y1|x1, . . . , xq).

Clearly,
(
ℓ1(Cs

Z0
)
)

p,q
is a subspace of ℓ1(Cs

Z0
). There are

p+q

∑
l=1

(l + 1)(l + 2) . . . (l + s − 1)
(s − 1)!

homogeneous polynomials Tk for |k| ≤ p + q and s(p + q) independent variables. Thus,
the system of generators consisting of the restrictions of Tk to

(
ℓ1(Cs

Z0
)
)

p,q
must have

at least

N =
p+q

∑
l=1

(l + 1)(l + 2) . . . (l + s − 1)
(s − 1)!

− s(p + q)

algebraic dependencies. The same is true if we will take another algebraic basis instead
of Tk.

Example 6. Now let
(
ℓ1(C2

Z0
)
)

1,1
be the space of all vectors

(y|x) = (y1|x1) =

((
y(1)1

y(2)1

)∣∣∣∣∣
(

x(1)1

x(2)1

))
.

Then, using rutin computations, we can obtain the following identity for the generating elements (18)
restricted to

(
ℓ1(C2

Z0
)
)

1,1

ξ5ξ1ξ2 −
1
2

ξ2
1ξ4 −

1
2

ξ2
2ξ3 ≡ 0,

where
T(1,0) = x(1)1 − y(1)1 = ξ1,

T(0,1) = x(2)1 − y(2)1 = ξ2,

T(2,0) = (x(1)1 )2 − (y(1)1 )2 = ξ3,

T(0,2) = (x(2)1 )2 − (y(2)1 )2 = ξ4,

T(1,1) = x(1)1 x(2)1 − y(1)1 y(2)1 = ξ5.

This identity can be checked by direct substitution of the generating elements.
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For the generating elements of the form (20) in Pvsup

((
ℓ1(C2

Z0
)
)

1,1

)
, we obtain the follow-

ing identity:
ω5ω1ω2 − ω2

1ω4 − ω2
2ω3 ≡ 0,

where
W(1,0) = x(1)1 − y(1)1 = ω1,

W(0,1) = x(2)1 − y(2)1 = ω2,

W(2,0) = −x(1)1 y(1)1 + (y(1)1 )2 = ω3,

W(0,2) = −x(2)1 y(2)1 + (y(2)1 )2 = ω4,

W(1,1) = 2y(1)1 y(2)1 − x(1)1 y(2)1 − x(2)1 y(1)1 = ω5.

4. Applications for Algebras of Block-Supersymmetric Analytic Functions

Let Hvsup
b be the completion of Pvsup with respect to the topology of uniform conver-

gence on a bounded subset. This is a locally convex metrizable topology, generated by the
following countable family of norms

∥P∥r = sup
∥u∥≤r

|P(u)|, P ∈ Pvsup,

where r belongs to the set of positive rational numbers. Elements of Hvsup
b will be called

block-supersymmetric analytic (or entire) functions of bounded type on ℓ1(Cs
Z0
).

Let us denote by Mvsup
b the spectrum of Hvsup

b , that is, the set of all continuous nonzero
complex homomorphisms (characters) of Hvsup

b . Clearly, for every point u = [(y|x)] ∈ M
there is character δu ∈ Mvsup

b such that δu( f ) = f (y|x), f ∈ Hvsup
b . Conversely, if u ̸= v

as elements of M, then δu ̸= δv. Thus, we can consider M as a subset of Mvsup
b . Various

algebras of entire analytic functions on Banach spaces and their spectra have been investi-
gated by many authors. Investigations of spectra of algebras Hb(X) of all entire functions
of bounded type on Banach spaces X were started by Aron, Cole, and Gamelin in [24],
where the authors observed that the spectrum of Hb(X) may have a complicated structure;
in particular, it contains extended point-evaluation functionals associated with points of
the second dual space X∗∗ (see also [25,26]). Subalgebras of Hb(X) of symmetric analytic
functions with respect to permutations of basis vectors of X = ℓp and their spectra were
studied in [27,28] and others (see [29] and references therein), with respect to continual
permutations in symmetric structures of X = Lp in [6,30,31] and others, and with respect
to abstract groups of operators in [7,32]. There are two important questions about the
spectrum of a subalgebra H0 of Hb(X). The first one is related to the structure of point
evaluation functionals. It is clear that for two different points x, y ∈ X point evaluation
functionals δx and δy are equal on H0 if and only if f (x) = f (y) for every f ∈ H0 (in
this case, we say that x ∼ y). Thus, algebraic and topological structures of the set of
point evaluation functionals can be defined as the corresponding structures of the quotient
set X/ ∼ . The second question is about the existence and some possible description of
characters that are not point evaluation functionals.

By the definition, Hvsup
b is the minimal closed subalgebra of Hb(ℓ1(Cs

Z0
)), which

contains Pvsup. The set of point evaluation functionals of Hvsup
b can be associated with M.

Algebraic and topological structures on such quotient sets for more general cases were
considered in [9]. On the other hand, it is well-known that if the subalgebra of polynomials
of a given algebra of entire functions of bounded type has an algebraic basis, then every
character is completely defined by its values on the basis polynomials (for details on
countably generated algebras, see, e.g., [33]). In particular, for the algebraic basis {Wn}
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in Hvsup
b , every character φ ∈ Mvsup

b can be represented by the countable set {φ(Wn)} or,
equivalently, by the function

φ(W(t)) =
∞

∑
|k|=0

s

∏
i=1

tki
i φ(Wk).

If φ = δu is a point evaluation functional, that is, δu( f ) = f (u), f ∈ Hvsup
b for some

fixed u ∈ M, then φ(W(t)) = W(u)(t) is a meromorphic function of the form (25).
Therefore, we have a description of point evaluation functionals of Hvsup

b in terms of
meromorphic functions. Let us show that Hvsup

b supports characters that are not point
evaluation functionals. Similar results for different algebras were obtained in [8,20,27,29,34].

Let µ = (µ1, . . . , µs) and λ = (λ1, . . . , λs) be nonzero vectors in Cs. Consider

un =

 0
. . .
0

, . . . ,

 0
. . .
0

, . . . ,

 µ1
n

. . .
µs
n

, . . . ,

 µ1
n

. . .
µs
n

∣∣∣∣∣
 λ1

n
. . .
λs
n

, . . . ,

 λ1
n

. . .
λs
n

,

 0
. . .
0

, . . . ,

 0
. . .
0


 =

=

(
0, . . . , 0,

µ

n
, . . . ,

µ

n

∣∣∣λ
n

, . . . ,
λ

n
, 0, . . . , 0

)
.

From the compactness reasons, it follows that the sequence of characters {δvn} must
have a cluster point ψλ,µ ∈ Mvsup

b . Thus,

ψλ,µ(W(t)) = lim
n→∞

∞
∑

|k|=0

s
∏
i=1

tki
i Rk(λ/n, . . . , λ/n, 0, . . . , 0)

∞
∑

|k|=0

s
∏
i=1

tki
i Rk(µ/n, . . . , µ/n, 0, . . . , 0)

.

From [20], we know that

lim
n→∞

∞

∑
|k|=0

s

∏
i=1

tki
i Rk(λ/n, . . . , λ/n, 0, . . . , 0) = exp

(
s

∑
i=1

λiti

)
.

Hence,

ψλ,µ(W(t)) = exp

(
s

∑
i=1

(λi − µi)ti

)
.

Comparing this formula with (25), we can deduce that ψλ,µ is not a point evaluation
functional if λ ̸= µ. Thus, we have proven the following result.

Theorem 6. There is a family of characters ψλ,µ, λ, µ ∈ Cs, λ ̸= µ of Hvsup
b that are not point

evaluation functionals, and ψλ,µ(W(t)) is defined by (25).

5. Derivatives and Appell-Type Polynomials

Let us recall that a sequence Pn(t), n = 0, 1, 2, . . . of polynomials of a complex variable
is an Appell sequence if P′

n(t) = nPn−1(t). There is a large number of studies on Appell-
type polynomial families in the literature (see, e.g., [35–37]). Appell-type polynomials of
several variables were considered in [38].

In [39], a specific derivative was introduced associated with the operation “•” on the
algebra of symmetric polynomials. This derivative was extended to supersymmetric poly-
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nomials in [40]. We consider it in the cases of block-symmetric and block-supersymmetric
polynomials and found corresponding Appell-type polynomials.

Let us denote by Ij, 1 ≤ j ≤ s the following element in ℓ1(Cs),

Ij =





0
...
1
...
0

,



0
...
0
...
0

, · · · ,



0
...
0
...
0

, · · ·

,

where 1 is on the jth place of the first vector coordinate, and the rest of the coordinates
are zeros.

Definition 2. Let P ∈ Pvs(ℓ1(Cs)). For every 1 ≤ j ≤ s, we define

Dj(P)(x) = lim
tj→0

P(x • tjIj)− P(x)
tj

, x ∈ ℓ1(Cs), tj ∈ C.

Using easy standard computations, we can check that the operator Dj is linear on
Pvs(ℓ1(Cs)) and for any polynomials P and Q in the domain of Dj,

Dj(PQ) = Dj(P)Q + PDj(Q),

that is, Dj is a derivative on the algebra Pvs(ℓ1(Cs)). Let n = (n1, . . . , ns) be a multi-index.
Taking into account that Hn(x • z) = Hn(x) + Hn(z), and

Hn(tjIj) = t
nj
j ,

we have

Dj(Hn)(x) = lim
tj→0

t
nj
j

tj
=

{
1 if nj = 1
0 if nj ̸= 1.

Since {Hn} is an algebraic basis, Dj is well-defined on the whole space of block
symmetric polynomials Pvs(ℓ1(Cs)). Moreover, the following theorem shows that it can be
extended to the space of block-symmetric analytic functions of bounded type. Denote by
Hvs

b (ℓ1(Cs)) the algebra of all block-symmetric analytic functions of bounded type, that is,
Hvs

b (ℓ1(Cs)) is the closure of Pvs(ℓ1(Cs)) in Hb(ℓ1(Cs)).

Theorem 7. For every 1 ≤ j ≤ s, the derivative Dj is continuous with respect to the topology of
Hvs

b (ℓ1(Cs)), and so can be extended by continuity and linearity to Hvs
b (ℓ1(Cs)).

Proof. Let Φ be the forward shift operator from ℓ1(Cs) to itself defined by

Φ(x1, . . . , xn, . . .) = (0, x1, . . . , xn, . . .),

where xn ∈ Cs and 0 is the zero-vector in Cs. Φ is a continuous linear operator, and so, the
composition operator CΦ( f ) = f ◦ Φ is continuous on Hvs

b (ℓ1(Cs)). The operator Dj can
be represented as the composition of CΦ with the Gâteaux derivative in direction Ij. Since
the Gâteaux derivative in any direction is continuous on the space of analytic functions of
bounded type, the operator Dj is continuous.
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We can extend operator Dj to block-supersymmetric analytic functions of bounded
type in two ways, setting

D+
j ( f )(y|x) = lim

tj→0

f (y|x • tjIj)− f (x)
tj

,

and

D−
j ( f )(y|x) = lim

tj→0

f (y • tjIj|x)− f (x)
tj

.

The same argument as in Theorem 7 implies that both D+
j and D−

j are well-defined and
continuous on the algebra of block-supersymmetric analytic functions of bounded type.
Let us compute the derivatives on different bases.

Example 7. Suppose that n = (n1, . . . , ns) is such that nj ̸= 0. Then,

Rn(x • tjIj) = ∑
k≤n

Rk(Ij)Rn−k(x) = tjR
n1,...,nj−1,...,ns(x)

because,

Rk(Ij) =


1 if n = (0, . . . , 1︸ ︷︷ ︸

j

, 0 . . .)

0 otherwise.

Thus,

Dj(Rn) =
∂

∂tj
tjR

n1,...,nj−1,...,ns = Rn1,...,nj−1,...,ns .

If nj = 0, then Dj(Rn) = 0.

Proposition 6. It nj ̸= 0, then Dj(En) = En1,...,nj−1,...,ns , and if nj = 0, then Dj(En) = 0.

Proof. The proof can be obtained from Example 7, the Newton-type Formula (17), and the
simple induction with respect to nj.

Let us consider the case s = 1. Then j = 1, and we denote D = D1. Furthermore,
Gn = Rn,0,0,... and Bn = En,0,0,.... Thus, D(Gn) = Gn−1 and D(Bn) = Bn−1. In addition,
D+(Wn) = Wn−1 and D−(Wn) = Wn−1 (c.f. [40]). Using these equalities, we can construct
Appell-type symmetric and supersymmetric polynomials.

Corollary 3. For a given sequence of polynomials Pn, let Qn = n!Pn.

1. If Pn are symmetric polynomials on ℓ1 of the form Pn = Gn or Pn = Bn, then D(Qn) =
nQn−1.

2. If Pn is a supersymmetric polynomial on ℓ1(Z0) of the form Pn = Wn, then D+(Qn) =
nQn−1, if Pn = (−1)nWn, then D−(Qn) = nQn−1.

6. Conclusions

Algebras of block-supersymmetric polynomials on ℓ1(Cs
Z0
) admit algebraic bases, and

we constructed some of them and found Newton-type relations between different bases.
We established some algebraic properties of block-supersymmetric polynomials and found
applications to the description of spectra of algebras of block-supersymmetric analytic
functions of bounded type. Furthermore, we considered a special derivative associated
with the “symmetric shift” operator x 7→ x • a on the algebra of block-symmetric polyno-
mials and extended it to both algebras of block-symmetric and of block-supersymmetric
analytic functions of bounded type. Some related sequences of Appell-type symmetric and
supersymmetric polynomials are constructed.
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These results are at the intersection of combinatorics and functional analysis. On
the other hand, symmetric and supersymmetric polynomials are applicable in cryptogra-
phy [11] and quantum physics [10,41]. Therefore, we can expect that the obtained relations
will be useful for modeling quantum ideal gases and in the information theory.

Further investigations will consider analytic and algebraic structures on the spectrum
of the algebra of block-supersymmetric analytic functions of bounded type, in particu-
lar the question about the existence of an analytic manifold structure on the spectrum.
Furthermore, we will consider the case when the dimension s of blocks is infinite.
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