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1. Introduction

The gamma function extends the idea of a factorial to non-integer numbers. C. F.
Gauss and other mathematicians investigated it further after L. Euler introduced it for the
first time in the 18th century. The gamma function is defined as follows:

Γ(v) =
∫ ∞

0
e−ttv−1dt, v > 0 (1)

or by

Γ(v) = lim
m→∞

m!mv

v(1 + v)(2 + v) . . . (m + v)
, v ∈ R− {0,−1,−2, . . . } (2)

and satisfies the recurrence relation Γ(v + 1) = vΓ(v), and hence, m! = Γ(m + 1) for m ∈ N.
More work has been performed by mathematicians to obtain accurate estimates of m! and
the gamma function. J. Stirling developed the following important formula:

Γ(v + 1) =
√

2πv(v/e)v
[
1 + O(v−1)

]
:= χ1(v), v → ∞. (3)

As v grows, this estimate becomes more and more accurate. For high values, Stirling’s
formula, which comes from Stirling’s series expansion, provides a practical alternative to
numerically integrating the defining integral for estimating the gamma function. It is crucial
to remember that, while Stirling’s approximation is frequently correct for large values of v,
it might not be appropriate for small values of v or situations requiring great accuracy.
Other techniques can be used to obtain more precise and comprehensive approximations.

Some sharp inequalities for the ratio of gamma functions are presented by Cao and
Wang [1] by using the multiple-correction method. Alzer and Jameson [2] present a new
characterization of Euler’s constant γ and a concavity property of the Psi function. Yang
and Tian [3] refine Windschitl’s gamma function approximation formula by providing
two asymptotic expansions based on a little-known power series. The authors of [4] use
several classical inequalities, such as Chebychev’s inequality for synchronous mappings,
to propose some inequalities involving the extended gamma function and the Kummer
confluent hypergeometric k-function. Qi and Guo [5] study the properties of the Bernstein
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function of the newly created ratio of finitely many gamma functions as well as the history,
backgrounds, extensions, and applications of a series of ratios for finitely many gamma
functions. For large values of the involved parameters, Reynolds and Stauffer [6] investigate
the improved infinite sum for the incomplete gamma function. Tian and Yang [7] expand
and generalize some previous results by presenting the necessary and sufficient conditions
for a ratio involving q-gamma functions to be logarithmically completely monotonic using
a new method. Zhang, Yin, and You [8] deduce some new inequalities and completely
monotonic properties involving the generalized functions k-gamma and k-polygamma.
Yildirim [9] uses the Bernstein–Widder theorem and some properties of the k-special
function to present k-generalizations of some classical results and improvements to some
bounds of recent results about the k-polygamma functions. Based on the incomplete
gamma function, Castillo, Rojas, and Reyes [10] deduce a more flexible extension for the
Fréchet distribution, along with applications. Mahmoud, Alsulami, and Almarashi [10]
examine the monotonicity of some functions involving Γ(v) and ascertain its bounds that
they were able to derive are more precise than certain inequalities that have been published
previously. The research references [1–11] present further information regarding the gamma
function and the formulas, inequalities, approximations, generalizations, and applications
that go along with it.

Simple and accurate gamma function approximation formulas are essential for many
applications because gamma function integrals cannot be computed directly for most non-
integer values. By using approximation formulas, one may evaluate Γ(v) more quickly and
with less processing effort. For instance, simple approximations for the gamma function
can greatly increase the accuracy and efficiency of algorithms in numerical techniques and
calculations. This is essential for areas like statistical analysis, optimization, and differential
equation solutions [12,13]. Some intriguing estimates of gamma functions are as follows:
Ramanujan presents the approximation formula [14] as v → ∞

Γ(v + 1) =
√

π
(v

e

)v 6
√

8v3 + 4v2 + v + 1/30
[
1 + O(v−4)

]
:= χ2(v),

based on some numerical calculations as conjecture.
Windschitl finds the approximation formula [15] as v → ∞

Γ(v + 1) =
√

2πv
(v

e

)v
(

v sinh
(

1
v

))v/2[
1 + O(v−5)

]
:= χ3(v),

after he noticed by coincidence the relation between some power series expansions of
the extended Stirling’s formula and the hyperbolic sine function. Since it is accurate
to more than eight decimal places for v > 8, he suggested using the approximation
√

2πv(v/e)v
(

1
810v6 + v sinh

(
1
v

))v/2
to compute the values of the gamma function on cal-

culators with limited program or register memory.
Smith presents the approximation formula [16] as v → ∞

Γ(v + 1/2) =
√

2π
(v

e

)v
(

2v tanh
(

1
2v

))v/2[
1 + O(v−5)

]
:= χ4(v),

and some new representations of the gamma function and some of its related functions.
In addition, he provides new continued fractions and a new formula for the beta function.
Mahmoud and Almuashi deduce the approximation formula [17] as v → ∞

Γ(v + 1) =
√

2πv
(v

e

)v
(

v2 + 7
60

v2 − 1
20

)v/2[
1 + O(v−5)

]
:= χ5(v).
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Moreover, they derive some new bounds of Γ(v) more accurately than some of its re-
cent ones by using Padé approximants and a new asymptotic expansion of gamma that
they derived.

Nemes uses a series transformation to convert the Stirling asymptotic series approx-
imation of the gamma function into a new one with better convergence properties and
deduces the approximation formula [18] as v → ∞

Γ(v + 1) =
√

2πv(v/e)v

(
3
(
40v2 + 3

)
120v2 − 1

)v[
1 + O

(
v−5

)]
:= χ6(v).

Yang and Chu’s deduce the approximation formula [19] as v → ∞

Γ(v + 1/2) =
√

2π(v/e)ve−
5v

120v2+7

[
1 + O

(
v−5

)]
:= χ7(v),

and some upper and lower bounds of the factorial m! and the gamma function are presented
as applications.

Nemes’s approximation formula [18] as v → ∞

Γ(v + 1) =
√

2πv
(v

e

)v
e

210v2+53
360v(7v2+2)

[
1 + O(v−7)

]
:= χ8(v).

Yang and Chu’s approximation formula [19] as v → ∞

Γ(v + 1/2) =
√

2π(v/e)ve
−5880v2−1517

1440v(98v2+31)
[
1 + O

(
v−7

)]
:= χ9(v).

Based on Windschitl’s formula, Lu, Song, and Ma derive a generated approximation
of the factorial function m!, prove several gamma function inequalities, and deduce the
approximation formula [20] as v → ∞

Γ(v + 1) =
√

2πv
(v

e

)v
(

v sinh
(

1
v
+

1
810v7

))v/2[
1 + O(v−7)

]
:= χ10(v).

Chen presents the approximation formula [21] as v → ∞

Γ(v + 1) =
√

2πv(v/e)v
(

168v3 + 48v + 7
168v3 + 48v − 7

)v2+53/210[
1 + O

(
v−7

)]
:= χ11(v),

and then creates an asymptotic expansion using this approximation formula.
Windschitl’s approximation formula [15] as v → ∞

Γ(v + 1) =
√

2πv
(v

e

)v
(

v sinh
(

1
v

)
+

1
810v6

)v/2[
1 + O(v−7)

]
:= χ12(v).

Alzer presents the approximation formula [22] as v → ∞

Γ(v + 1) =
√

2πv
(v

e

)v
(

v sinh
(

1
v

))v/2( 1
1620v5 + 1

)[
1 + O(v−7)

]
:= χ13(v),

and a double inequality of Γ(v + 1) for v > 0 with the best possible constants.
Yang and Tian present the approximation formula [23] as v → ∞

Γ(v + 1) =
√

2πv
(v

e

)v
(

v sinh
(

1
v

))v/2
e

7
324v3(35v2+33)

[
1 + O(v−9)

]
:= χ14(v)
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and study the monotonicity of some functions involving Γ(v + 1).

In light of the aforementioned results, the purpose of this paper is to present the
following most accurate Mahmoud and Almuashi-type approximation:

Γ(v + 1) =
√

2πv
(v

e

)v
(

v2 + 7
60

v2 − 1
20

)v/2

e
461

907,200v3(v2+ 5197
4610 )

[
1 + O(v−9)

]
:= χ15(v), v → ∞ (4)

which is more accurate than Yang and Tian’s approximation formula χ14(v) in [23]. Also,
we proved the following approximation formula

Γ(v + 1) =
√

2πv
(v

e

)v
(

v2 + 7
60

v2 − 1
20

)v/2

e
461

907,200v5
[
1 + O(v−5)

]
:= χ16(v), v → ∞. (5)

We have used Mathematica 10 software to perform the numerical calculations through-
out this work.

2. Main Results

Recall that a real valued function g, which is defined and infinitely differentiable on
v ∈ (0, ∞), is said to be completely monontonic (CM) if for all p ≥ 0 that (−1)pg(p)(v) ≥ 0
on v ∈ (0, ∞). We refer to [24–27] for further information on CM functions and their
applications. The function g is CM, according to Bernstein’s theorem [28], if and only if
g(v) =

∫ ∞
0 e−vtdς(t), where ς(t) is a non-negative measure on t ∈ (0, ∞) such that the inte-

gral converges for v ∈ (0, ∞). If the function g(v) is CM for v ∈ (0, ∞), limv→∞ g(v) ≑ g(∞)
and the function vϖ [g(x)− g(∞)] is CM for v ∈ (0, ∞) if and only if ϖ ∈ [0, δ], then the
real number δ is called the completely monotonic degree of g(v) with respect to v ∈ (0, ∞)
(see [29,30]) and is denoted by degv

cm[g(v)] = δ. This concept can aid in more accurate
measurements of CM functions.

To obtain our first bounds of gamma functions, we first give the following theorem:

Theorem 1.

Q1(v) =
1
v
+

461
181, 440(v + 1)6 +

1
2v + 2

+
1

20v(v + 2) + 19
+

7
60v(v + 2) + 67

−1
2

ln

(
(v + 1)2((v + 1)2 + 7

60
)

(v + 1)2 − 1
20

)
+ ψ(v), v ≥ 0 (6)

is CM function with
degv

cm[Q1(v)] = 0,

where ψ(v) is the digamma function.

Proof. Using Gauss integral form of the digamma function [31]

ψ(v) =
∫ ∞

0

(
1

tet +
e−vt

e−t − 1

)
dt, v > 0 (7)

we obtain

Q1(v) =
∫ ∞

0

−e−tW1(t)
t

evtdt,
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where

W1(t) = − 461t6

21,772,800
+

e−
t

2
√

5 t
4
√

5
− t

2
− e

t
2
√

5 t
4
√

5
+

ett
et − 1

+
1
2

e
t

2
√

5 +
1
2

e−
t

2
√

5

−
(

1
2

√
7
15

t sin

(
1
2

√
7

15
t

)
+ cos

(
1
2

√
7

15
t

))
− 1.

Consider the following functions for t ≥ 0

W2(t) = − 461t6

21,772,800
+

e−
t

2
√

5 t
4
√

5
− t

2
− e

t
2
√

5 t
4
√

5
+

1
2

e
t

2
√

5 +
1
2

e−
t

2
√

5 − 1,

W3(t) = − 4799t6

217,728,000
− t4

3200
− t2

40
− t

2
,

W4(t) = − ett
et − 1

+
1
2

√
7
15

t sin

(
1
2

√
7

15
t

)
+ cos

(
1
2

√
7

15
t

)
,

W5(t) = −1
2

√
7

15
t − ett

et − 1
− 1,

and

W6(t) = −
7
(
7t2(7(t2 − 300

)
t2 + 324,000

)
− 77,760,000

)
t2

9,331,200,000
− ett

et − 1
+ 1.

For t ≥ 0, we have

W2(t)− W3(t) =

(
t2 + 120

)(
t2 + 240

)
t2

1,152,000
−

t sinh
(

t
2
√

5

)
2
√

5
+ cosh

(
t

2
√

5

)
− 1

=
∞

∑
p=4

− 20−pt2p

2p(2p − 2)!
< 0.

Then, we have
W2(t) < W3(t), t ≥ 0. (8)

Using the inequality

1
2

√
7

15
t sin

(
1
2

√
7

15
t

)
+ cos

(
1
2

√
7

15
t

)
> −1

2

√
7

15
t − 1, ∀t,

we obtain
W4(t) > W5(t), ∀t.

Now,

W4(t)− W3(t) > W5(t)− W3(t) =
1

217,728,000(et − 1)
W7(t)

with

W7(t) = 4799ett6 − 4799t6 + 68,040ett4 − 68,040t4 + 5,443,200ett2 − 5,443,200t2

−7,257,600
√

105ett − 108,864,000ett + 7,257,600
√

105t − 108,864,000 t

−217,728,000et + 217,728,000

= W8(t) +
∞

∑
n=7

ane8(t − 8)n

n!
> 0, t ≥ 8
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where

an = 4799n6 + 158,367n5 + 2,779,475n4 + 30,251,105n3 + 213,687,206n2

+
(

814,213,960 − 7,257,600
√

105
)

n + 1024
(

777,779 − 56,700
√

105
)
> 0, n = 7, 8, 9, . . .

and the polynomial

W8(t) = 9.90552 × 1010t6 − 4.3738 × 1012t5 + 8.10277 × 1013t4 − 8.05282 × 1014t3

+4.52427 × 1015t2 − 1.36148 × 1016t + 1.71352 × 1016

is positive and has no real zeros for t ≥ 8. Then,

W4 > W3, t ≥ 8. (9)

Using the two inequalities [32]

cos(t) >
(
− t6

720
+

t4

24
− t2

2
+ 1
)

, t > 0

and

sin(t) <
(
− t7

5040
+

t5

120
− t3

6
+ t
)

, t > 0

we obtain
W4(t) > W6(t), t > 0.

Then,

W4(t)− W3(t) > W4(t)− W6(t)

=
−2401t8 + 2,160,000t6 − 90,720,000t4 + 5,443,200,000t2 + 65,318,400,000

65,318,400,000

−1
2

t coth
(

t
2

)
.

Using(
t3

42
+ t
)(

et + 1
)
−
(

t4

840
+

3t2

14
+ 2
)(

et − 1
)
= −

∞

∑
p=9

(p − 8)(p − 7)(p − 6)(p − 5)
840p!

tp,

we obtain

coth
(

t
2

)
<

t4

840 + 3t2

14 + 2
t3

42 + t
, t > 0

and hence,

W4(t)− W3(t) > W4(t)− W6(t) >
t8(2,059,158 − 2401t2)

65,318,400,000(t2 + 42)
> 0, 0 < t <

√
2,059,158

49
.

Then,
W4(t) > W3(t), 0 < t ≤ 8. (10)

From inequalities (8)–(10), we obtain

W1(t) < 0, t ≥ 0

and therefore, Q1(v) is CM function.
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Now, if we suppose that vαQ1(v) is a CM function for v > 0, then it is a decreasing
function, that is

α ≤ −
vQ′

1(v)
Q1(v)

.

Using the following asymptotic expansion and its derivative

ψ(v) ∼ −1
v
− γ +

π2v
6

− ζ(3)v2 +
π4v3

90
− ζ(5)v4 + . . . , v → 0

where ζ(v) is the Riemann zeta function for v > 1, we obtain

α ≤

(
81,155,027,309
49,004,796,960 − π2

6

)
v + v2

(
2ζ(3)− 22,195,771,076,117

8,911,872,361,440

)
+ O(v3)(

152,361,413
230,973,120 − γ − 1

2 log
( 67

57
))

+
(

π2

6 − 81,155,027,309
49,004,796,960

)
v + O(v2)

→ 0 as v → 0.

Hence, α = 0 or
degv

cm[Q1(v)] = 0.

Theorem 2. The function

Q2(v) =
Γ(v + 1)

√
2πv

( v
e
)v
(

v2+ 7
60

v2− 1
20

)v/2
e

461
907200v5

, v ≥ 1

is increasing. Furthermore, we have the following symmetric inequality:

a1
√

2πv
(v

e

)v
(

v2 + 7
60

v2 − 1
20

)v/2

e
461

907,200v5 < Γ(v + 1) < a2
√

2πv
(v

e

)v
(

v2 + 7
60

v2 − 1
20

)v/2

e
461

907,200v5 , v ≥ 1 (11)

with best possible constants a1 = Q2(1) ≈ 0.999733 and a2 = 1.

Proof. Using the relation

Q1(v) =
d

dv
ln Q2(v + 1), v > 0

and with Q1(v) a CM function for v > 0, then Q2(v) is an increasing function for v ≥ 1.
Also, using the asymptotic expansion [17]

Γ(v + 1)
√

2πv(v/e)v
(

v2+ 7
60

v2− 1
20

)v/2 ∼ 1 +
∞

∑
r=1

λrv−r, v → ∞ (12)

where 
λr =

1
r ∑r

j=1 jλr−jρj

ρr =
Br+1

r(r+1) −
1
2 ωr+1

ωr = ξr − 1
r ∑r−1

j=1 jωjξr−j

, r = 1, 2, 3, . . .

with
ξ0 = 1, ξ2s =

10
3(20)s , ξ2s−1 = 0, s = 1, 2, 3, . . .

we obtain

Q2(v) ∼ e
− 461

907,200v5

(
1 +

461
907,200v5 − 5197

9,072,000v7 +
1,436,249

1,710,720,000v9 + . . .
)

, v → ∞ (13)
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and
a2 = lim

v→∞
Q2(v) = 1.

Remark 1. From the expansion (13), we conclude that

Γ(v + 1) =
√

2πv
(v

e

)v
(

v2 + 7
60

v2 − 1
20

)v/2

e
461

907,200v5
[
1 + O(v−5)

]
:= χ16(v), v → ∞.

Now, we present our second bounds of gamma function.

Theorem 3. The function

G1(v) =
Γ(v + 1)

√
2πv

( v
e
)v
(

v2+ 7
60

v2− 1
20

)v/2
e

461
907,200v3(v2+ 5197

4610 )
, v ≥ 13

10

is decreasing. Furthermore, we have the following symmetric inequality:

a3 <
Γ(v + 1)

√
2πv

( v
e
)v
(

v2+ 7
60

v2− 1
20

)v/2
e

461
907,200v3(v2+ 5197

4610 )
< a4, v ≥ 13

10
(14)

with best possible constants a3 = 1 and a4 = G1

(
13
10

)
≈ 1.00000004.

Proof. Consider the function

K1(v) =
d

dv
ln G1

(
v +

13
10

)
− d

dv
ln G1

(
v +

23
10

)
, v > 0

then,

K1(v) = − 5
10v + 13

− 2,449,304,525
61,255,978,812(10v + 13)2 +

26,565,125
1,964,466(10v + 13)4 − 5

10v + 23

+
2,449,304,525

61,255,978,812(10v + 23)2 − 26,565,125
1,964,466(10v + 23)4 +

5
4(5v(5v + 13) + 41)

+
35

60v(5v + 13) + 542
+

1,129,129,386,025
61,255,978,812(9220v(5v + 13) + 129,879)

− 5,645,646,930,125
2,946,699(9220v(5v + 13) + 129,879)2 − 5

20v(5v + 23) + 524
− 35

2(30v(5v + 23) + 811)

− 1,129,129,386,025
61,255,978,812(9220v(5v + 23) + 295,839)

+
5,645,646,930,125

2,946,699(9220v(5v + 23) + 295,839)2

− log
(

v +
13
10

)
+ log

(
v +

23
10

)
− 1

2
log
(

25
6(5v(5v + 13) + 41)

+ 1
)

+
1
2

log
(

25
30v(5v + 23) + 786

+ 1
)

and

K′
1(v) =

K2(v)
K3(v)

> 0, v > 0

where
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K2(v) = 9.76563 × 106(1.40931 × 1047v26 + 6.59557 × 1048v25 + 1.48138 × 1050v24

+2.12565 × 1051v23 + 2.1883 × 1052v22 + 1.72065 × 1053v21 + 1.0741 × 1054v20

+5.46199 × 1054v19 + 2.30366 × 1055v18 + 8.16187 × 1055v17 + 2.45138 × 1056v16

+6.28063 × 1056v15 + 1.37817 × 1057v14 + 2.59529 × 1057v13 + 4.19512 × 1057v12

+5.81144 × 1057v11 + 6.8751 × 1057v10 + 6.90658 × 1057v9 + 5.84297 × 1057v8

+4.1146 × 1057v7 + 2.37302 × 1057v6 + 1.09554 × 1057v5 + 3.91652 × 1056v4

+1.03052 × 1056v3 + 1.83331 × 1055v2 + 1.87037 × 1054v + 7.09549 × 1052)

and

K3(v) = 378(10v + 13)5(10v + 23)5
(

25v2 + 65v + 41
)2(

25v2 + 115v + 131
)2

(
150v2 + 390v + 271

)2(
150v2 + 690v + 811

)2(
46,100v2 + 119,860v + 129,879

)3

(
46,100v2 + 212,060v + 295,839

)3
.

Then, K1(v) is increasing function with limv→∞ K1(v) = 0 since

K1(v) ∼ − 33,094,699,909,052,147
9,022,995,596,160,000v13 +

213,922,547
619,584,000v12 − 213,922,547

12,267,763,200v11 + . . . , v → ∞.

Then, K1(v) < 0 or

d
dv

ln G1

(
v +

13
10

)
<

d
dv

ln G1

(
v +

23
10

)
, v > 0.

Using expansion (12), we obtain

d
dv

ln G1(v) ∼ −
212,521

(
23,050v2 + 15,591

)
90,720v4(4610v2 + 5197)2

(
− 461

181,440v6 +
5197

1,296,000v8 − 1,436,249
190,080,000v10

+
26,863,154,077

1,273,708,800,000v12 + . . .
)

, v → ∞

and then limv→∞
d

dv ln G1

(
v + 13

10

)
= 0. But, if a function g : (v0, ∞) → R satisfies

limv→∞ g(v) = 0 and g(v) < g(v + k), k ∈ N, then g(v) < 0 for v > v0 (see [33]). Then,
d

dv ln G1

(
v + 13

10

)
< 0 or ln G1

(
v + 13

10

)
is decreasing for v > 0. Hence, G1(v) is decreasing

for v > 13
10 . Using the expansion

G1(v) ∼ e

461

907,200
(

5197
4610v2 +1

)
v5
(

1 +
461

907,200v5 − 5197
9,072,000v7 +

1,436,249
1,710,720,000v9 + . . .

)
, v → ∞ (15)

we obtain limv→∞ G1(v) = 1. Then, the function G1(v) is bounded by the two best possible
constants a3 = 1 and a4 = G1(

13
10 ).

Remark 2. From the expansion (15), we conclude that

Γ(v + 1) =
√

2πv
(v

e

)v
(

v2 + 7
60

v2 − 1
20

)v/2

e
461

907,200v3(v2+ 5197
4610 )

[
1 + O(v−9)

]
= χ15(v), v → ∞.
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3. Comparison among Some Approximation Formulas of the Gamma Function

The approximation formula χ14(v) is of course better than the other mentioned formu-
las from χ1(v) to χ13(v) based on the rate of convergence. Also, the two approximation
formulas χ14(v) and χ15(v) are converging to Γ(v + 1) with a rate like v−9 as v → ∞.
To compare between the formulas χ14(v) and χ15(v), consider the function

K4(v) = ln

3v
(
20v2 − 1

)
sinh

(
1
v

)
60v2 + 7

+
1,597,365v2 + 3,172,927

45,360v4(35v2 + 33)(4610v2 + 5197)
, v ≥ 1

and then

K′
4

(
1
v

)
=

(
14

81(33v2 + 35)
− 212,521

11,340(5197v2 + 4610)

)
v5 − 1

v
+ coth(v)

+

 245

81
(

35
v2 + 33

)2 − 97,972,181

2268
(

4610
v2 + 5197

)2 − 400
−7v4 + 80v2 + 1200

v, 0 < v ≤ 1.

Using the expansion

21
(
e2v + 1

)
v
(
v4 + 60v2 + 495

)
− 2ev(v6 + 210v4 + 4725v2 + 10,395

)
sinh(v)

10,395

=
∞

∑
p=13

2p−6(p − 12)(p − 11)(p − 10)(p − 9)(p − 8)(p − 7)
10,395p!

vp > 0, v > 0

we obtain

coth(v) <
v6

10,395 + 2v4

99 + 5v2

11 + 1
v5

495 + 4v3

33 + v
, v > 0.

Then,

K′
4

(
1
v

)
<

v9K5(v)
K6(v)

< 0, 0 < v ≤ 1

where

K5(v) = 3,809,121,073,989v10 + 308,281,165,523,325v8 + 19,393,944,515,758,250v6

+272,405,703,557,635,250v4 + 603,315,377,277,995,625v2 + 344,328,389,211,515,625

and

K6(v) = 11, 340
(

v2 − 20
)(

7v2 + 60
)(

33v2 + 35
)2(

5197v2 + 4610
)2(

v4 + 60v2 + 495
)

.

Hence, K4(v) is an increasing function for v ≥ 1. Also,

K4(v) ∼ − 758,772,059
3,864,345,408,000v10 +

2,050,016,121,570,689
4,863,394,626,330,240,000v12 + . . . , v → ∞

and hence, limv→∞ K4(v) = 0. Then, K4(v) < 0 for v ≥ 1 or

e
7

324v3(35v2+33)

(
v sinh

(
1
v

))v/2
<

(
v2 + 7

60

v2 − 1
20

)v/2

e
461

907,200v3(v2+ 5197
4610 ) , v ≥ 1. (16)

Then, using the inequalities (14) and (16), we obtain

χ14(v) < χ15(v) < Γ(v), v > 13/10.
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Therefore, the approximation formula χ15(v) is better than χ14(v) for v ≥ 13
10 .

4. Conclusions

Applications of the gamma function may be found in a wide range of real-world fields,
from finance and economics (e.g., option pricing models) to medical research (e.g., modeling
disease spread). Approximation formulae can improve these studies’ precision and speed.
The main conclusions of this paper are stated in Theorems (2) and (3). Concretely speaking,
based on Mahmoud and Almuashi’s formula, the authors studied the monotonicity and
complete monotonicity of some functions related to Γ(v) to present the Formulas (4) and (5)
and some symmetric inequalities for Γ(v). Our new approximation formula χ15(v) and
Yang and Tian’s approximation χ14(v) are of the same order v−9 but the superiority of our
results is proven.
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