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Abstract: The inverse Gaussian distribution, known for its flexible shape, is widely used across
various applications. Existing confidence intervals for the mean parameter, such as profile likelihood,
reparametrized profile likelihood, and Wald-type reparametrized profile likelihood with observed
Fisher information intervals, are generally effective. However, our simulation study identifies
scenarios where the coverage probability falls below the nominal confidence level. Wald-type
intervals are widely used in statistics and have a symmetry property. We mathematically derive the
Wald-type profile likelihood (WPL) interval and the Wald-type reparametrized profile likelihood
with expected Fisher information (WRPLE) interval and compare their performance to existing
methods. Our results indicate that the WRPLE interval outperforms others in terms of coverage
probability, while the WPL typically yields the shortest interval. Additionally, we apply these
proposed intervals to a real dataset, demonstrating their potential applicability to other datasets that
follow the IG distribution.

Keywords: interval; profile likelihood; reparameterization; inverse Gaussian

1. Introduction

The inverse Gaussian (IG) distribution, also known as the Wald distribution, is of
considerable significance in various scientific and applied research fields owing to its dis-
tinctive properties and flexibility [1]. Researchers have widely applied the IG distribution
across multiple disciplines since Schrödinger [2] introduced it and Wald [3] extensively
studied it. Notably, its skewness and relationship with Brownian motion make it partic-
ularly effective for modeling asymmetric data. Folks and Chhikara [1] have thoroughly
explored the mathematical and statistical properties of this distribution.

Researchers utilized the IG distribution to examine particle movement in blood-
streams [4], while Onar and Padgett [5] applied it to determine the tensile strength of
carbon fibers. Jain and Jain [6] used it for estimating device failure time reliability. In
finance, it has been instrumental in modeling stock returns, particularly addressing data
skewness [7]. Environmental applications include modeling ecological phenomena and air
pollution, as explored in various studies [8,9]. The IG distribution has proven invaluable
in medical research, especially in survival analysis, due to its efficacy in handling time-
to-event data [10]. Its application extends to engineering and quality control, aiding in
reliability and life data analysis [11].

The IG distribution has found applications in traffic engineering, where it models
vehicular flow [12], and in neuroscience, particularly in the study of spike-response vari-
ability in locust auditory neurons, which helps identify two noise sources that impact spike
timing [13]. Its adaptability is also evident in agricultural settings for modeling growth
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rates [14]. In the field of insurance and risk analysis, the IG distribution has been used to
model bodily injury claims and to analyze economic data concerning Italian households’
incomes [15].

The IG distribution for a random variable X has a probability density function given by:

f (x; µ, λ) =

√
λ

2πx3 exp

{
−λ(x − µ)2

2µ2x

}
, (1)

where x > 0, µ > 0, and λ > 0. The shapes of the IG distributions with varying parameter
sets are depicted in Figure 1. For lower values of λ (0.5), the distribution demonstrates a
higher peak and a steep decline in probability, which suggests a sharper distribution. As
λ increases, the peak becomes less pronounced, indicating a distribution with a heavier
tail. Furthermore, an increase in µ causes a rightward shift in the distribution, representing
higher mean values.
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The mean of the IG distribution is µ, and the variance is µ3/λ [3]. The maximum
likelihood estimates (MLEs) of µ and λ are:

µ̂ML = X =
n

∑
i=1

Xi/n and λ̂ML = n/
n

∑
i=1

(
1/Xi − 1/X

)
, (2)

where X1, . . . , Xn are random samples from IG(µ, λ). Furthermore, it is also known

that X ∼ IG(µ, nλ), λ
n
∑

i=1

(
1/Xi − 1/X

)
∼ χ2

n−1, and X and λ
n
∑

i=1

(
1/Xi − 1/X

)
are

independent [16]. Folks and Chhikara [1] proved that the uniformly minimum variance
unbiased estimators for µ and λ are:

µ̂UMVUE = X =
n

∑
i=1

Xi/n and λ̂UMVUE = (n − 3)/
n

∑
i=1

(
1/Xi − 1/X

)
.

The necessity of using confidence intervals (CIs) for estimating the mean of the IG
distribution rather than relying solely on point estimators is pivotal in statistical analysis.
Confidence intervals provide a range within which the true mean is likely to fall, reflecting
the uncertainty inherent in using sample data to estimate population parameters. In contrast
to a single point estimate, confidence intervals offer a more nuanced and informative
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picture, essential for rigorous statistical inference and decision-making in fields like survival
analysis and reliability engineering, where precise estimation is key [17].

This paper focuses on Wald’s interval, a fundamental tool in statistical inference
known for its simplicity and broad applicability. Wald’s interval is derived from the Wald
test, which is based on the asymptotic normality of maximum likelihood estimators. It
offers a direct method for constructing confidence intervals, particularly when the sample
size is large [18]. However, the finite sample distributions of Wald tests are often not
well defined [19]. Constructing Wald CIs for single-parameter models is straightforward,
but when dealing with the IG distribution, which involves two parameters, the profile
likelihood method is more advantageous. Non-normal distributions or small sample sizes
may render Wald CIs unsuitable. To fix this, we can use reparameterization to create Wald
CIs using the profile likelihood method. This makes sure that the sampling distribution
is more like the normal distribution, which is a key assumption of the Wald method.
Furthermore, using expected Fisher information in Wald CIs can offer more stability and
be less sensitive to sample-specific irregularities.

In this study, CIs for the mean parameter of the IG distribution are constructed
for scenarios where the shape parameter is unknown, focusing primarily on marginal
intervals. We investigate two specific types of CIs: the first is the Wald-type CI using profile
likelihood without reparameterization, and the second is the Wald-type CI incorporating
reparameterization and utilizing expected Fisher information. These two proposed intervals
are compared with existing intervals through simulation studies.

The rest of the paper is structured as follows: Section 2 presents intervals in literature.
Section 3 presents the mathematical derivation of the Wald-type profile likelihood and Wald-
type reparametrized profile likelihood with expected Fisher information intervals. Section 4
details the properties of these proposed intervals. Section 5 describes the simulation studies
conducted to compare the performance of the proposed intervals with existing methods.
Section 6 applies the proposed intervals to a real dataset. The paper concludes with a
discussion in Section 7, where the findings are summarized and potential avenues for
future research are outlined. Table 1 provides a list of detailed abbreviations and definitions
used in this paper.

Table 1. List of abbreviations and acronyms used in the paper.

Abbreviations Definitions

AIC Akaike information criterion
AIL Average interval length
CI Confidence interval
CP Coverage probability
IG Inverse Gaussian
MLE Maximum likelihood estimator
PL Profile likelihood
RPL Reparameterized profile likelihood
WPL Wald-type profile likelihood (without reparameterization)

WRPLE Wald-type reparameterized profile likelihood using expected Fisher
information

WRPLO Wald-type reparameterized profile likelihood using observed Fisher
information

2. Intervals in Literature
2.1. Wald-Type Confidence Interval

The Wald confidence interval is typically constructed around a maximum likelihood
estimator (MLE), leveraging the properties of a normal distribution, especially for large
samples [20]. The calculation of this interval is based on the Wald test, which is used to
evaluate the null hypothesis H0 : θ = θ0 against an alternative Ha : θ = θ1. Under H0,
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two key statistics are used, both exhibiting asymptotic normal distributions as the sample
size increases:√

I
(
θ̂ML

)(
θ̂ML − θ0

) a∼ N(0, 1) and
√

J
(
θ̂ML

)(
θ̂ML − θ0

) a∼ N(0, 1), (3)

where I
(
θ̂ML

)
and J

(
θ̂ML

)
represent the estimated observed and expected Fisher informa-

tion, respectively [21]. The observed and expected Fisher information are defined as:

I(θ) = −
∂2L
(

θ; x
˜

)
∂θ2 and J(θ) = −E

∂2L
(

θ; X
˜

)
∂θ2

. (4)

Construct the Wald confidence interval using the formula:

θ̂ML ± zα/2

√
1/I

(
θ̂ML

)
or θ̂ML ± zα/2

√
1/J

(
θ̂ML

)
. (5)

It is worth noting that the Wald statistics can be written in

W = I
(
θ̂ML

)(
θ̂ML − θ

) 2, (6)

which is the quadratic approximation of −2 log Λ(θ) = −2 log
(

L
(

θ; x
˜

)
/L(θ̂ML; x

˜
)

)
. The

Wald statistic follows an asymptotic chi-squared distribution, with the degrees of freedom
equal to the number of parameters being tested.

2.2. Profile-Likelihood-Based Confidence Interval

Statistical inference uses the profile likelihood confidence interval method to estimate
confidence intervals for a parameter of interest in a model with multiple parameters.
This approach is particularly useful in complex models where direct computation of
the confidence interval for a parameter is challenging due to the presence of nuisance
parameters—other parameters in the model that are not of primary interest [22,23]. In the
profile likelihood method, the process involves:

1. The likelihood function: Suppose we have a likelihood function L(θ, ϕ), where θ is
the parameter of interest and ϕ represents nuisance parameters. The full likelihood is
a function of both of these sets of parameters.

2. Profiling out nuisance parameters: To focus on θ, we maximize the likelihood function
over the nuisance parameters ϕfor each fixed value of θ. This gives us the profile
likelihood function for θ: LP(θ) = maxϕL(θ, ϕ).

3. Estimation of the parameter of interest: The estimate θ̂ is obtained by maximizing the
profile likelihood as follows:

θ̂ = arg maxθ LP(θ);

4. Constructing the confidence interval: The confidence interval for θ is then constructed
based on the profile likelihood, so the interval is as follows:{

θ

∣∣∣∣−2 log
(

LP(θ)

LP(θ̂)

)
≤ χ2

1−α,d.f.

}
, (7)

where χ2
1−α,d.f. is the critical value from the chi-squared distribution with degrees of freedom

equal to the number of parameters being estimated (often 1 for a single parameter), and α
is the significance level (e.g., 0.05 for a 95% confidence interval).

While likelihood-based and profile-likelihood-based intervals typically lack a closed
form, which can be seen as a drawback compared to the more straightforward Wald-type
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interval with its closed-form solutions for many situations, this study focuses on applying the
construction of a Wald-type interval to the profile likelihood. This approach aims to leverage
the benefits of both methods, offering a more practical solution for statistical analysis.

2.3. Existing Confidence Intervals

For the IG distribution, as shown in (1), there are two parameters. In cases where
the shape parameter is known, Arefi et al. [24] proposed CIs for the mean parameter,

which are (1) the Wald CI: X ± z1−α/2 X3/2/
√

nλ ; (2) the score CI, derived from solving
−z1−α/2 ≤

√
nλ
(
X − µ

)
/
√

µ3 ≤ z1−α/2; and (3) the CI obtained from the likelihood ratio:

nλX

nλ + k
√

nλX
≤ µ ≤ nλX

nλ − k
√

nλX
, (8)

where k =
√

χ2
1,(1−α)

and 0 < k <
√

nλ/X . In a case where both parameters are unknown,

Srisuradetchai [25] proposed the formula for the profile-likelihood-based (PL) CI as:

−n +
√

n2 + BnX
B

≤ µ ≤ −n −
√

n2 + BnX
B

, (9)

where B =

 µ̂
n
∑

i=1
X−1

i −n

µ̂ exp
(
−χ2

1,(1−α)
/n
)
−

n
∑

i=1
X−1

i . Díaz-Francés [26] derived the reparameterized

profile likelihood (RPL) CI as:φ̂ +

√
n(c−2/n − 1)√

λ̂∑n
i=1 Xi

−1

≤ µ ≤

φ̂ −
√

n(c−2/n − 1)√
λ̂∑n

i=1 Xi

−1

, (10)

where c = exp
(
−χ2

1−α,1/n
)

and φ̂ = µ̂−1 = n/∑n
i=1 Xi . Srisuradetchai [27] used reparam-

eterized profile likelihoods to construct a Wald-type reparameterized profile likelihood
using observed Fisher information (WRPLO) CI for the mean of the IG distribution. The
interval is:(

n
∑n

i=1 Xi
+ z1− α

2

√
1

λ̂∑n
i=1 Xi

)−1

≤ µ ≤
(

n
∑n

i=1 Xi
− z1− α

2

√
1

λ̂∑n
i=1 Xi

)−1

, (11)

where λ̂ =

(
∑n

i=1 X−1
i

n − 1
X

)−1
.

In the literature, the Wald-type profile-likelihood-based (WPL) interval and the Wald-
type reparameterized profile-likelihood interval with expected Fisher information (WRPLE)
are not present. Using expected Fisher information generally leads to intervals that are more
stable across different samples, while intervals based on observed Fisher information can
be more sensitive to the specificities of the data set. Furthermore, these two types of CIs will
be derived and compared to the PL, RPL, and WRPLO through Monte Carlo simulations.

3. Mathematical Results

This section will focus on the mathematical derivation of two statistical intervals: the
WPL and the WRPLE.

3.1. Wald-Type Profile-Likelihood-Based Interval

The full log-likelihood function based on the observed random sample size of n,
xobs = (x1, x2, . . . , xn), is as follows:
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l(µ, λ) = log L(µ, λ) =
n
2

log λ − n
2

log(2π)− 3
2

n

∑
i=1

log xi −
λ

2


n
∑

i=1
xi

µ2 +
n

∑
i=1

1
xi

+
nλ

µ
.

To focus on µ, we maximize the likelihood function over the nuisance parameters λ

for each fixed value of µ by solving ∂
∂λ l(µ, λ)

set
= 0. Then,

λ̃ =


n
∑

i=1
xi

nµ2 +

n
∑

i=1
x−1

i

n
− 2

µ


−1

. (12)

This gives us the log profile likelihood function for θ:

lP(µ) = l(µ, λ̃) = c − n
2
+

n
2

log(nµ)− n
2

log

µ
n

∑
i=1

x−1
i +

n
∑

i=1
xi

µ
− 2n

.

The estimate µ̂ is obtained by maximizing the profile likelihood lP(µ). Consider

Sp(µ) =
∂lp(µ)

∂µ = ∂
∂µ

(
c − n

2 + n
2 log(nµ)− n

2 log
(

µ
n
∑

i=1
x−1

i + 1
µ

n
∑

i=1
xi − 2n

))
= n

2µ − n
2

(
n
∑

i=1
x−1

i − nµ̂

µ2

)
(

µ
n
∑

i=1
x−1

i + 1
µ

n
∑

i=1
xi−2n

) = n
2µ − n

2µ

(
n
∑

i=1
x−1

i − 1
µ2

n
∑

i=1
xi

)
(

n
∑

i=1
x−1

i + 1
µ2

n
∑

i=1
xi−

2n
µ

)

= n
2µ − n

2µ

(
n
∑

i=1
x−1

i + 1
µ2

n
∑

i=1
xi −

2n
µ

)−1( n
∑

i=1
x−1

i − 1
µ2

n
∑

i=1
xi

)
.

Then, solving Sp(µ)
set
= 0 will give µ̂ =

n
∑

i=1
xi/n . Next, we will find the observed

Fisher information:

Ip(µ) = −
∂Sp(µ)

∂µ
= −

− n
2µ2 −

 3n
2µ4

n

∑
i=1

xi −
n

n
∑

i=1
x−1

i

2µ2


(

n

∑
i=1

x−1
i +

1
µ2

n

∑
i=1

xi −
2n
µ

)−1

−

n
n
∑

i=1
x−1

i

2µ
− n

2µ3

n

∑
i=1

xi


(

2n
µ2 − 2

µ3

n

∑
i=1

xi

)(
n

∑
i=1

x−1
i +

1
µ2

n

∑
i=1

xi −
2n
µ

)−2
.

And the inverse of the Fisher information is I−1
p (µ) = 1/Ip(µ) . Term I−1

p (µ) can be
simplified as follows:

I−1
p (µ̂) = n
2x2 +

 3n2

2x3 −
n

n
∑

i=1
x−1

i

2x2

( n
∑

i=1
x−1

i + n
x − 2n

x

)−1
+

 n
n
∑

i=1
x−1

i

2x − n2

2x2

( 2n
x2 − 2n

x2

)( n
∑

i=1
x−1

i + n
x − 2n

x

)−2
−1

=

[
n

2x2 − n
2x2

(
n
∑

i=1
x−1

i − 3n
x

)(
n
∑

i=1
x−1

i − n
x

)−1
]−1

=

 n
2x2

1 −

(
n
∑

i=1
x−1

i − n
x

)
(

n
∑

i=1
x−1

i − n
x

) +
2n
x(

n
∑

i=1
x−1

i − n
x

)
−1

=

 n
2x2

2n
x(

n
∑

i=1
x−1

i − n
x

)
−1

=

[
n2

x3

(
n
∑

i=1
x−1

i − n
x

)−1
]−1

= x3

nλ̂
.

(13)
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Thus, the (1 − α)% WPL interval is

X − z1− α
2

√
X3

nλ̂
≤ µ ≤ X + z1− α

2

√
X3

nλ̂
, (14)

and when we substitute λ̂ = n/∑n
i=1 (1/Xi − 1/X ) , the corresponding WPL interval for

µ will be

X − z1− α
2

X
n

√
X

n

∑
i=1

(
1
Xi

− 1
X

)
≤ µ ≤ X + z1− α

2

X
n

√
X

n

∑
i=1

(
1
Xi

− 1
X

)
, (15)

where z1− α
2

is the (1 − α/2) th quantile of the standard normal.

3.2. Wald-Type Reparameterized Profile Likelihood with Expected Fisher Information

The full log-likelihood function based on the observed random sample size of n,
xobs = (x1, x2, . . . , xn), is as follows:

l(µ, λ) = log L(µ, λ) =
n
2

log λ − n
2

log(2π)− 3
2

n

∑
i=1

log xi −
λ

2


n
∑

i=1
xi

µ2 +
n

∑
i=1

1
xi

+
nλ

µ

Using reparameterization µ = φ−1, the full log-likelihood function becomes

l(φ, λ) =
n
2

log(λ)− n
2

log(2π)− 3
2

n

∑
i=1

log xi −
λφ2∑n

i=1 xi

2
− λ

2 ∑n
i=1 x−1

i + nλφ.

To focus on φ, we maximize l(φ, λ) over the nuisance parameters λ for each fixed

value of µ by solving ∂
∂λ l(φ, λ)

set
= 0. Then,

λ̃(φ) = n

(
φ2

n

∑
i=1

xi − 2nφ +
n

∑
i=1

x−1
i

)−1

, (16)

By plugging in λ̃(φ) into l(φ, λ), we obtain the log reparameterized profile likelihood
function as follows:

lp(φ, λ̃(φ)) = n
2 log(λ̃(φ))− λ̃(φ)φ2∑n

i=1 xi
2 − λ̃(φ)

2 ∑n
i=1 x−1

i + nλ̃(φ)φ + c

= n
2 log(λ̃(φ))− λ̃(φ)

2

(
φ2∑n

i=1 xi − 2nφ + ∑n
i=1 x−1

i

)
+ c

= n
2 log(n)− n

2 log(φ2
n
∑

i=1
xi − 2nφ +

n
∑

i=1
x−1

i )− n
2 + c,

where c = − n
2 log(2π) − 3

2

n
∑

i=1
log xi. The score function of log reparametrized profile

likelihood is as follows:

Sp(φ) =
∂lp(φ,λ̃(φ))

∂φ = − n
2

(
φ2

n
∑

i=1
xi − 2nφ +

n
∑

i=1
x−1

i

)−1(
2φ

n
∑

i=1
xi − 2n

)
= −n

(
φ

n
∑

i=1
xi − n

)(
φ2

n
∑

i=1
xi − 2nφ +

n
∑

i=1
x−1

i

)−1
.

The observed Fisher information is the negative of the second derivative of log repa-
rameterized profile likelihood, as follows:
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Ip(φ) = − ∂Sp(φ)
∂φ

= −

 (nφ
n
∑

i=1
xi−n2)(2φ

n
∑

i=1
xi−2n)(

φ2
n
∑

i=1
xi−2nφ+

n
∑

i=1
x−1

i

)2 −
n

n
∑

i=1
xi(

φ2
n
∑

i=1
xi−2nφ+

n
∑

i=1
x−1

i

)


=
n

n
∑

i=1
xi(

φ2
n
∑

i=1
xi−2nφ+

n
∑

i=1
x−1

i

) −
(nφ

n
∑

i=1
xi−n2)(2φ

n
∑

i=1
xi−2n)(

φ2
n
∑

i=1
xi−2nφ+

n
∑

i=1
x−1

i

)2

=
−nφ2

(
n
∑

i=1
xi

)2
+n

n
∑

i=1
xi

n
∑

i=1
x−1

i +2n2 φ
n
∑

i=1
xi−2n3(

φ2
n
∑

i=1
xi−2nφ+

n
∑

i=1
x−1

i

)2 .

The expectation of the observed Fisher information can be calculated as follows:

Jp(φ) = E
[
Ip(φ)

]
= E


−nφ2

(
n
∑

i=1
Xi

)2
+ n

n
∑

i=1
Xi

n
∑

i=1
X−1

i + 2n2 φ
n
∑

i=1
Xi − 2n3

(
φ2

n
∑

i=1
Xi − 2nφ +

n
∑

i=1
X−1

i

)2

 (17)

Using a first-order Taylor approximation for a function of two variables, the expecta-
tion becomes:

Jp(φ) ≈
E

[
−nφ2

(
n
∑

i=1
Xi

)2
+ n

n
∑

i=1
Xi

n
∑

i=1
X−1

i + 2n2 φ
n
∑

i=1
Xi − 2n3

]

E

[(
φ2

n
∑

i=1
Xi − 2nφ +

n
∑

i=1
X−1

i

)2
] . (18)

Since E(X) = µ, Var(X) = µ3/λ , E(1/X) = 1/µ + 1/λ ,Var(1/X) = 1/(µλ)+2/λ2 ,

and E
[

n
∑

i=1
Xi

n
∑

i=1
X−1

i

]
= n2 + n2µ/λ − nµ/λ , term

E

[
−nφ2

(
n
∑

i=1
Xi

)2
+ n

n
∑

i=1
Xi

n
∑

i=1
X−1

i + 2n2 φ
n
∑

i=1
Xi − 2n3

]

= −nφ2E

[(
n
∑

i=1
Xi

)2
]
+ nE

[
n
∑

i=1
Xi

n
∑

i=1
X−1

i

]
+ 2n2 φE

[
n
∑

i=1
Xi

]
+ E

[
−2n3]

= −nφ2
(

nµ3

λ + n2µ2
)
+ n

(
n2 + n2µ

λ − nµ
λ

)
+ 2n2 φ(nµ)− 2n3

= − n2 φ2µ3

λ − n3 φ2µ2 + n3 + n3µ
λ − n2µ

λ + 2n3 φµ − 2n3

= − n2 φ2

φ3λ
− n3 φ2

φ2 + n3 + n3

φλ − n2

φλ + 2n3 φ
φ − 2n3 = n3

φλ − 2n2

φλ = n
λ

(
n(n−2)

φ

)
.

The denominator of (18) can also be expressed as:

E

[(
φ2

n
∑

i=1
Xi − 2nφ +

n
∑

i=1
X−1

i

)2
]

= E

[
φ4
(

n
∑

i=1
Xi

)2
− 4nφ3

n
∑

i=1
Xi + 2φ2

n
∑

i=1
Xi

n
∑

i=1
X−1

i + 4n2 φ2 − 4nφ
n
∑

i=1
X−1

i +

(
n
∑

i=1
X−1

i

)2
]

.
(19)

Because

E

[
n

∑
i=1

X−1
i

]
=

n
µ
+

n
λ

and E

( n

∑
i=1

X−1
i

)2
 =

n
µλ

+
2n
λ2 +

n2

µ2 +
2n2

µλ
+

n2

λ2 ,
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(19) will become:

E

[(
φ2

n
∑

i=1
xi − 2nφ +

n
∑

i=1
x−1

i

)2
]
= φ4

(
nµ3

λ + n2µ2
)
− 4nφ3(nµ) + 2φ2

(
n2 + n2µ

λ − nµ
λ

)
+4n2 φ2 − 4nφ

(
n
µ + n

λ

)
+
(

n
µλ + 2n

λ2 +
n2

µ2 +
2n2

µλ + n2

λ2

)
.

With µ = φ−1,

E

[(
φ2

n
∑

i=1
Xi − 2nφ +

n
∑

i=1
X−1

i

)2
]

= φ4
(

n
λφ3 +

n2

φ2

)
− 4nφ3

(
n
φ

)
+ 2φ2

(
n2 + n2

φλ − n
φλ

)
+4n2 φ2 − 4nφ

(
nφ + n

λ

)
+
(

nφ
λ + 2n

λ2 + n2 φ2 + 2n2 φ
λ + n2

λ2

)
= n

λ

( n+2
λ

)
The expected Fisher information is calculated as follows:

Jp(φ) =
(n − 2)
(n + 2)

nλ

φ
, (20)

and the corresponding standard error of the estimator φ is as follows:

s.e.(φ̂) =
√

J−1
p (φ̂) =

√
(n + 2)
(n − 2)

φ̂

nλ̂
=

√√√√ (n + 2)
(n − 2)

(
∑n

i=1 (1/Xi − 1/X)

n2X

)
. (21)

The WRPLE interval of φ will be

1
X

− z1− α
2

1
n

√
(n + 2)
(n − 2)X

n

∑
i=1

(
1
Xi

− 1
X

)
≤ φ ≤ 1

X
+ z1− α

2

1
n

√
(n + 2)
(n − 2)X

n

∑
i=1

(
1
Xi

− 1
X

)
, (22)

where z1− α
2

is the (1 − α/2) th quantile of the standard normal. Therefore, the WRPLE
interval of µ is as follows:

[
1
X

+ z1− α
2

1
n

√
(n + 2)
(n − 2)X

n

∑
i=1

(
1
Xi

− 1
X

) ]−1

≤ µ ≤
[

1
X

− z1− α
2

1
n

√
(n + 2)
(n − 2)X

n

∑
i=1

(
1
Xi

− 1
X

)]−1

. (23)

4. Some Properties of the Proposed Intervals

Because the Wald statistics in (6) is the quadratic approximation of −2 log Λ(θ) and
from (7), some conditions are required for constructing a confidence interval.

4.1. A Condition for the WPL Interval
Let X1, X2, . . . , Xn be a random sample of size n from a population with an inverse

Gaussian distribution with unknown mean parameter µ and shape parameter λ. Because the

Wald statistics is a quadratic approximation of −2 log Λ(µ) =−2 log
(

LP

(
µ; x

˜

)
/LP(µ̂; x

˜
)

)
,

and −2 log Λ(µ) has asymptotically chi-squared distribution, the lower and upper bounds
of the WPL interval can be obtained if

lim
µ→0+

Ip(µ̂)(µ − µ̂)2 ≥ χ2
1−α,1 and lim

µ→∞
Ip(µ̂)(µ − µ̂)2 ≥ χ2

1−α,1,
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respectively. Because lim
µ→0+

Ip(µ̂)(µ − µ̂)2 = Ip(µ̂)µ̂2, and from (14) Ip(µ̂) = nλ̂/µ̂3 ,

lim
µ→0+

Ip(µ̂)(µ − µ̂)2 =nλ̂/µ̂ . By substituting µ̂ = X and λ̂ = n/∑n
i=1 (1/Xi − 1/X ) , the con-

dition for the lower bound of the WPL interval is as follows:

n2

X

n

∑
i=1

(
1
Xi

− 1
X

)
≥ χ2

1−α,1.

And lim
µ→∞

Ip(µ̂)(µ − µ̂)2 = ∞, which is always greater than χ2
1−α,1. This means that an upper

bound for the WPL interval does always exist, but a lower bound does depend on the data.

4.2. A Condition for the WRPLE Interval
Like the conditions of the WPL interval, the WRPLE interval can be found if and only if

lim
φ→0+

Jp(φ̂)(φ − φ̂)2 ≥ χ2
1−α,1 and lim

φ̂→∞
Jp(φ̂)(φ − φ̂)2 ≥ χ2

1−α,1. (24)

Because lim
φ→0+

Jp(φ̂)(φ − φ̂)2 = Jp(φ̂)φ̂2 and from (18), the condition for the lower bound of

the WPL interval is
n2

X
(n − 2)
(n + 2)

(
∑n

i=1 (1/Xi − 1/X)
)−1

≥ χ2
1−α,1. (25)

For the upper bound, lim
φ̂→∞

Jp(φ̂)(φ − φ̂)2 = ∞, so the upper bound does always exist.

5. Simulation Studies
In the simulation studies, the sample sizes vary, including 5, 10, 15, 30, 45, 60, and 100. The

mean parameter values are set at 1, 3, and 7, while the shape parameter values are 0.5, 1, and
3. The performance of two proposed distributions will be compared with the PL interval pro-
posed by Srisuradetchai [25], the RPL approach by Díaz-Francés [26], and the WRPLO interval by
Srisuradetchai [27]. Performance is evaluated in terms of coverage probability (CP) and average
interval length (AIL). Results for the PL, RPL, and WRPLO are summarized in Tables 2–4, and those
for the proposed intervals are in Tables 5 and 6.

Table 2. CPs and AILs of the PL interval proposed by Srisuradetchai [25].

λ (Shape) n

Coverage Probability Average Interval Length

µ (Mean) µ (Mean)

1 3 7 1 3 7

0.5

5 0.7964 0.5760 0.3520 22.5367 24.4815 33.5161
10 0.9208 0.7760 0.5451 22.2293 43.1449 122.6111
15 0.9315 0.8651 0.6673 8.1085 101.0214 79.8984
30 0.9421 0.9393 0.8488 1.5772 48.3700 238.8934
45 0.9453 0.9506 0.9129 1.0463 25.0285 151.0399
60 0.9506 0.9499 0.9435 0.8505 8.8848 170.8275
100 0.9486 0.9458 0.9566 0.6091 4.0184 93.0158

1

5 0.8673 0.7191 0.5269 33.0340 36.8387 50.0072
10 0.9282 0.8887 0.7439 5.0073 49.1924 96.2266
15 0.9398 0.9314 0.8373 1.7234 131.7031 125.8797
30 0.9428 0.9479 0.9407 0.8561 12.5698 210.7568
45 0.9459 0.9470 0.9507 0.6504 4.5521 112.0056
60 0.9491 0.9495 0.9490 0.5468 3.4503 29.6077
100 0.9510 0.9513 0.9487 0.4101 2.3437 10.9928

3

5 0.9000 0.8619 0.7681 2.9671 31.4322 94.2752
10 0.9278 0.9276 0.9107 0.8994 14.7727 125.6737
15 0.9397 0.9309 0.9388 0.6658 5.2189 68.1577
30 0.9429 0.9445 0.9457 0.4372 2.5664 13.3481
45 0.9478 0.9468 0.9453 0.3516 1.9552 8.3623
60 0.9491 0.9468 0.9461 0.3011 1.6459 6.6398
100 0.9477 0.9525 0.9477 0.2304 1.2300 4.6786
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Table 3. CPs and AILs of the RPL approach proposed by Díaz-Francés [26].

λ (Shape) n

Coverage Probability Average Interval Length

µ (Mean) µ (Mean)

1 3 7 1 3 7

0.5

5 0.3295 0.1119 0.0472 6.4585 5.4885 5.3135
10 0.6504 0.1939 0.073 1.0830 11.8711 33.6625
15 0.8665 0.3058 0.1064 2.8495 3.7286 15.1804
30 0.9427 0.7177 0.2481 1.5366 7.3637 55.9877
45 0.9439 0.9147 0.4273 1.0440 4.2846 57.7240
60 0.9494 0.9485 0.6258 0.8431 7.1018 23.9830
100 0.9489 0.9470 0.9209 0.6089 3.9953 102.7412

1

5 0.5821 0.2221 0.101 2.9889 5.2536 6.6847
10 0.8994 0.4506 0.1606 2.5446 4.5644 31.1419
15 0.9390 0.6735 0.2613 1.6503 7.4503 6.2086
30 0.9430 0.9399 0.6112 0.8524 7.2613 59.9609
45 0.9484 0.9389 0.8747 0.6516 4.5042 26.5516
60 0.9474 0.9446 0.9407 0.5494 3.4511 33.0396
100 0.9539 0.9483 0.9502 0.4103 2.3522 10.9170

3

5 0.8826 0.5718 0.2852 0.4542 11.3641 23.5666
10 0.9321 0.8996 0.5670 0.8896 2.2913 10.6808
15 0.9328 0.9368 0.8145 0.6661 5.1338 35.5910
30 0.9426 0.9431 0.9448 0.4393 2.5513 13.2340
45 0.9452 0.9476 0.9464 0.3519 1.9498 8.3212
60 0.9475 0.9484 0.9452 0.3004 1.6465 6.6264
100 0.9453 0.9456 0.9455 0.2303 1.2319 4.6810

Table 4. CPs and AILs of the WRPLO proposed by Srisuradetchai [27].

λ (Shape) n

Coverage Probability Average Interval Length

µ (Mean) µ (Mean)

1 3 7 1 3 7

0.5

5 0.7648 0.5589 0.3605 27.1944 28.6415 33.6888
10 0.9019 0.7685 0.5335 13.7167 47.1982 64.8575
15 0.9258 0.8642 0.6606 41.7971 69.0019 77.2883
30 0.9299 0.9391 0.8450 1.4503 60.1097 109.0317
45 0.9419 0.9473 0.9078 1.0094 20.2874 236.1456
60 0.9436 0.9463 0.9392 0.8315 7.8830 210.4629
100 0.9460 0.9484 0.9565 0.6034 3.9255 54.9630

1

5 0.8231 0.7120 0.5208 14.1464 42.5124 66.7006
10 0.9064 0.8742 0.7348 3.3469 51.0088 137.9784
15 0.9199 0.9165 0.8348 1.4419 56.3881 139.6932
30 0.9358 0.9349 0.9357 0.8242 8.5811 112.2808
45 0.9433 0.9429 0.9505 0.6347 4.3697 101.5731
60 0.9416 0.9409 0.9480 0.5385 3.3564 34.0264
100 0.9462 0.9470 0.9461 0.4058 2.3274 10.7083

3

5 0.8433 0.8216 0.7539 2.2341 79.7818 63.8266
10 0.9026 0.9005 0.8899 0.7785 12.3920 115.2107
15 0.9207 0.9221 0.9250 0.6161 4.3373 69.4735
30 0.9363 0.9374 0.9397 0.4228 2.4487 11.9999
45 0.9425 0.9460 0.9418 0.3426 1.9033 8.0710
60 0.9445 0.9461 0.9432 0.2960 1.6115 6.4183
100 0.9453 0.9485 0.9465 0.2280 1.2217 4.6426
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Table 5. CPs and AILs of the WPL interval.

λ (Shape) n

Coverage Probability Average Interval Length

µ (Mean) µ (Mean)

1 3 7 1 3 7

0.5

5 0.5525 0.1726 0.0420 1.0580 1.7659 2.0279
10 0.7749 0.3031 0.0339 1.2895 2.3467 2.6358
15 0.8488 0.4913 0.0586 1.3239 2.9065 3.3715
30 0.8880 0.7904 0.3135 1.0114 4.0526 5.5555
45 0.9109 0.8500 0.5950 0.8222 4.1752 7.3170
60 0.9197 0.8799 0.7379 0.7182 3.8010 8.7419
100 0.9296 0.8976 0.8482 0.5554 2.9112 9.9903

1

5 0.7302 0.4029 0.1370 1.1727 3.6745 3.6544
10 0.8492 0.6596 0.2333 1.1591 3.4925 4.8826
15 0.8818 0.7718 0.3898 0.9894 3.9176 6.0905
30 0.9118 0.8648 0.7396 0.7104 3.7168 8.8713
45 0.9263 0.8970 0.8410 0.5785 3.0658 9.9320
60 0.9308 0.8981 0.8655 0.5030 2.6446 9.4724
100 0.9364 0.9217 0.8947 0.3900 2.0447 7.3870

3

5 0.8172 0.7364 0.5044 0.8597 3.5417 7.0483
10 0.8842 0.8549 0.7385 0.6686 3.4748 8.8143
15 0.9076 0.8788 0.8220 0.5607 2.9499 9.4084
30 0.9269 0.9111 0.8830 0.4044 2.1150 7.6076
45 0.9360 0.9238 0.9009 0.3327 1.7348 6.2790
60 0.9414 0.9310 0.9094 0.2896 1.5055 5.3961
100 0.9470 0.9418 0.9315 0.2250 1.1740 4.2096

Table 6. CPs and AILs of the WRPLE interval.

λ (Shape) n

Coverage Probability Average Interval Length

µ (Mean) µ (Mean)

1 3 7 1 3 7

0.5

5 0.8153 0.5725 0.3391 31.7213 30.5061 23.4398
10 0.9322 0.7728 0.5380 18.5406 44.8999 54.5505
15 0.9523 0.8732 0.6671 23.4037 284.2358 89.1180
30 0.9494 0.9482 0.8528 1.6982 81.8574 176.3652
45 0.9500 0.9543 0.9168 1.0811 25.1390 122.5613
60 0.9513 0.9533 0.9457 0.8660 10.1873 131.8133
100 0.9553 0.9485 0.9599 0.6175 4.0827 74.6419

1

5 0.8928 0.7409 0.5241 16.0907 44.3857 66.7506
10 0.9511 0.8992 0.7410 16.4258 111.8300 89.6045
15 0.9516 0.9437 0.8447 2.1310 125.7302 125.1637
30 0.9561 0.9558 0.9424 0.8933 11.1814 145.2397
45 0.9518 0.9495 0.9619 0.6745 4.7340 124.8338
60 0.9494 0.9482 0.9552 0.5590 3.5254 39.7383
100 0.9493 0.9522 0.9529 0.4150 2.3912 11.1029

3

5 0.9407 0.8976 0.7898 6.5136 56.5863 120.0086
10 0.9522 0.9476 0.9201 1.0494 21.7278 187.6656
15 0.9550 0.9498 0.9536 0.7255 6.1024 165.2150
30 0.9536 0.9503 0.9526 0.4533 2.6947 15.6644
45 0.9509 0.9499 0.9521 0.3588 2.0194 8.5897
60 0.9556 0.9557 0.9498 0.3068 1.6788 6.7826
100 0.9483 0.9499 0.9538 0.2324 1.2438 4.7345

From Tables 2–6, we observe that with a constant shape parameter and sample size, an increase
in the mean of the IG distribution tends to decrease the CP value, while the AIL increases noticeably.
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Conversely, with a fixed mean and sample size, an increase in the shape parameter slightly raises
the CP. For instance, Table 5 shows that with a mean of 3 and a sample size of 15, the CPs are 0.4913,
0.7718, and 0.8788 for shape parameters of 0.5, 1, and 3, respectively. Moreover, as the sample size
increases, the CP generally increases, but the AIL decreases. Table 3 illustrates that for the RPL
approach, a larger sample size is required as the mean and/or shape of the IG distribution increase.

Generally, the average lengths of the intervals PL, RPL, WRPLO, WRPLE, and WPL vary notably.
The WPL tends to provide shorter intervals compared to WRPLE, which exhibits longer average
lengths in many scenarios. PL and RPL usually fall in between these extremes, with WRPLO showing
variable performance.

Figure 2 shows the performance of the proposed intervals WRPLE and WPL compared with the
existing intervals PL, RPL, and WRPLO. The WRPLE method demonstrates high CP across various
sample sizes and distribution parameters, making it a strong contender. Interestingly, the PL method
also shows robust performance, particularly in certain conditions, potentially ranking as the second
best in terms of CP. For instance, with a mean of 3 and a shape parameter of 0.5 at a sample size of 15,
PL achieves a CP of around 0.92, notably higher than WPL. This highlights PL’s effectiveness under
specific parameter configurations.
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of inverse Gaussian distribution (the dashed line represents the nominal confidence level, 0.95).

Both the mean and shape parameters of the IG distribution indeed affect the CP. A higher
mean tends to decrease CP across most methods, indicating sensitivity to central tendency changes.
Conversely, an increase in the shape parameter generally leads to a slight increase in CP, reflecting its
impact on data skewness and variability.
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Sample size is a crucial factor affecting CP. As the sample size increases, the CP generally
improves, aligning more closely with the nominal level. This increase in CP with larger sample
sizes is particularly pronounced for the WRPLE and WPL methods, underscoring their suitability for
larger datasets.

In summary, the WRPLE method consistently shows the highest CP, making it the top performer.
The PL method, often outperforming the WPL, ranks second in many scenarios. The WRPLO method
follows, demonstrating solid performance but not quite matching the PL. The RPL and WPL methods,
while effective, generally show lower CPs, positioning them lower in the hierarchy. This ranking,
based on our simulation studies, suggests that while the WRPLE method is the most reliable overall,
the effectiveness of each method varies significantly depending on the specific sample size, mean,
and shape parameters of the inverse Gaussian distribution.

6. Application to a Real Dataset
The dataset, sourced from Lu and Chi [28], comprises 30 sequential observations of March

precipitation in Minneapolis/St. Paul. The dataset is as follows:
0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52,
1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05.
Table 7 summarizes the descriptive statistics. The mean and standard deviation of precipitation

are 1.675 and 1, respectively. Four candidate distributions—exponential, Cauchy, log-logistic, and
inverse Gaussian—are fitted to the dataset. The results, summarized in Table 8, indicate that the fitted
inverse Gaussian distribution has the highest p-value and the lowest Akaike information criterion (AIC),
suggesting that it is the most suitable for this dataset. The estimated mean and shape parameters for
the inverse Gaussian distribution are 1.675 and 3.584, respectively. From Figure 3, which displays the
probability plot, it is evident that the points of the log-logistic and inverse Gaussian distributions align
more closely with the diagonal line compared to the exponential and Cauchy distributions.

Table 7. Descriptive statistics of March precipitation.

n Minimum Maximum Median Mean Skewness SD

30 0.320 4.750 1.470 1.675 1.1447 1.0006

Table 8. Maximum likelihood estimates, goodness-of-fit testing, and AIC for the March precipitation
dataset.

Distribution Estimates Chi-Squared Statistic p-Value AIC

Exponential θ̂ = 0.5970 9.0049 0.1088 92.9487
Cauchy θ̂ = (1.4251, 0.5457) 3.6964 0.4486 94.8484

Log-logistic θ̂ = (2.7880, 1.4407) 2.5873 0.6290 81.8615
Inverse Gaussian θ̂ = (1.6749, 3.5840) 2.5662 0.6328 81.2077
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The 95% confidence intervals for the March precipitation dataset are computed using formulas
(9), (10), (11), (15), and (23) for the PL, RPL, WRPLO, WPL, and WRPLE methods, respectively.
Observation of the interval lengths in Table 9 indicates that the results align with the simulation study.
This study found that WPL typically produces shorter intervals compared to WRPLE, while both PL
and RPL generally fall between these two in terms of interval length.

Table 9. 95% confidence intervals for the means of the March precipitation dataset.

Interval 95% Confidence Interval Interval Length

Existing intervals:
PL (1.3371, 2.2413) 0.9042
RPL (1.3392, 2.2587) 0.9195
WRPLO (1.3457, 2.2175) 0.8718

Proposed intervals:
WPL (1.2652, 2.0847) 0.8197
WRPLE (1.3277, 2.2682) 0.9405

7. Conclusions
The mathematically derived WPL and WRPLE intervals have a closed form, making them easy

for users to calculate for a given dataset. Simulation studies show the WRPLE interval provides a
coverage probability close to 0.95, the nominal confidence level, compared to other intervals. For
large sample sizes (at least 30), WRPLE and WRPLO are comparable, but WRPLE is superior for small
sample sizes. The WPL, however, seems to have lower performance relative to WRPLE and other
existing intervals in many cases; this implies that reparameterization is essential for constructing
Wald-type confidence intervals. Additionally, as sample size increases, coverage probability improves
for all interval types.

Future research could explore the simultaneous confidence interval construction for both
parameters of the IG distribution. Additionally, there is potential to focus on other characteristics
as parameters of interest, such as the variance of the IG distribution. This could broaden the
applicability of confidence intervals in various statistical contexts. Another significant direction for
future work includes developing software packages to facilitate the practical application of these
intervals, enhancing their usability in statistical analysis.
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