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Abstract: We show that the GENERIC model for relativistic heat conduction is a multifluid of Carter;
this allows one to compute the multifluid constitutive relations directly from the GENERIC formalism.
As a quick application, we prove that in the limit of infinite heat conductivity, GENERIC heat
conduction reduces to the relativistic two-fluid model for superfluidity. This surprising “crossover” is
a consequence of relativistic causality: if diffusion happens too fast, all the diffusing charge cumulates
on the surface of the light cone, and it eventually travels at the speed of light like a wave. Our analysis
is non-perturbative and carried out in a fully non-linear regime.
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1. Introduction

Most of the relativistic hydrodynamic theories currently in use rely on some form of
near-equilibrium expansion. For example, the original Israel–Stewart theory arises from a
perturbative expansion for small viscous fluxes [1–4], while BRSSS [5] and BDNK [6] arise
from an expansion for small gradients. DNMR arises from a subtle combination of the two
expansions above [7]. While these approaches have the advantage of being systematic and
rigorous, the resulting fluid models usually have a limited formal regime of applicability,
and they may not capture all those intrinsically non-linear phenomena that real-world
substances are known to exhibit. This kind of problem is well known to material engineers
since, in our everyday life, we deal with many non-Newtonian fluids that easily escape a
Navier–Stokes description [8]. Indeed, most foods and toiletry products explore dynamical
regimes where the shear stress component, say, Π12, grows like a fractional power of the
symmetrized velocity gradient σ12 = ∂(1v2) [9]. For example, the shear stress of ketchup at
30.5 ◦C exhibits the following non-Newtonian behavior:

Π12 ∝ |σ12|0.136 for |σ12| ∈ [0.1, 100] s−1 . (1)

Clearly, features of this kind are hardly captured by conventional gradient expansions.
Since the rheological properties of hadronic and quark matter are poorly known, we

cannot exclude that non-perturbative corrections to the constitutive relations might be
important for neutron star mergers and heavy-ion phenomenology. If that were the case,
relativistic viscous hydrodynamics as we know it would be non-reliable for most practical
applications, and we would need a full-fledged theory of relativistic rheology. At present, a
fully general and rigorous theory of this kind exists only in the linear regime [10], and we
are still unable to describe non-perturbative phenomena systematically. Still, some isolated
“non-linear rheological models” have been formulated, such as Anisotropic Hydrodynam-
ics [11,12], which models shear viscosity non-perturbatively, and Hydro+ [13,14], which
models bulk viscosity non-perturbatively. The question of how to model non-perturbative
corrections to heat conduction is still an open problem, and it is the subject of investigation
in the present article.

First, a bit of history. The interplay between heat conduction and relativity has had
a long (and controversial) development. The source of all problems is a technicality: if
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E = mc2, then “flow of energy” = “density of momentum” (i.e., T j0 = T0j [15]). As a
consequence, heat carries inertia, and it is practically impossible to disentangle exchanges
of heat from macroscopic accelerations [16]; this is a natural consequence of the relativistic
duality between energy and momentum, but failure to recognize it has generated some
confusion over the definition of thermal equilibrium in relativity [17]. This subtlety is also at
the origin of the (unphysical) heat-driven accelerations predicted by the Eckart theory [18],
and of the ambiguity between the Eckart and the Landau–Lifshitz hydrodynamic frames [4].

The modern theory of relativistic heat conduction was pioneered by Carter [19,20]. He
started from the observation that if the heat carries inertia, then the four-momentum of the
fluid must be “redistributed” between the entropy current sα and the particle current nα.
By symmetry, the most general way of distributing the four-momentum is

Tαβ = Pgαβ + C̃sαsβ + Ã(sαnβ+nαsβ) + B̃nαnβ , (2)

where P, Ã, B̃, and C̃ are functions of sα and nα; this gives rise to a “two-fluid model” for
heat conduction, where dissipation is represented as friction between the two currents sα

and nα. Not surprisingly, one can show that when the currents are almost collinear, Carter’s
theory reduces to the Israel–Stewart theory [21–23]. However, one can, in principle, extend
the constitutive relations of P, Ã, B̃, C̃ to states where the angle between sα and nα is large,
allowing one to model heat conduction in non-perturbative regimes [24].

Unfortunately, at present, the applicability of Carter’s theory to non-perturbative
regimes remains merely hypothetical. In fact, there is no concrete proposal for the consti-
tutive relations of P, Ã, B̃, and C̃ beyond the Israel–Stewart limit. In this brief article, we
present a novel and rigorous result which might be helpful in this direction. In fact, here we
prove that there is an exact change in variables that maps the GENERIC theory (GENERIC
is an acronym for “General Equation for the NonEquilibrium Reversible-Irreversible Cou-
pling” [25]. It is grounded on the assumption that the equations of motion of any non-
equilibrium thermodynamic system, with degrees of freedom Ψ, can be expressed in the
form Ψ̇ = FH(Ψ)+FS(Ψ), where FH is a reversible Hamiltonian part and FS is an irreversible
entropy-driven Lyapunov part) for non-linear heat conduction developed by Öttinger [26]
into Carter’s multifluid theory. This implies that it is possible to derive the constitutive
relations of Carter’s theory directly from the GENERIC formalism [25,27]. Since the latter
was designed with the very purpose of modeling non-perturbative phenomena in complex
fluids [27], this might be our only way of deriving Carter’s theory for heat conduction
directly from microphysics.

Throughout this paper, we adopt the metric signature (−,+,+,+), and work in
natural units: c = kB = h̄ = 1.

2. Relativistic Dissipative Hydrodynamics in a Nutshell

Historically, there have been two different ways of modeling dissipation in a hydrody-
namic setting. One is the so-called “gradient expansion”, where the degrees of freedom of
the theory are the ordinary fluid fields {T, µ, uα}, representing, respectively, temperature,
chemical potential, and flow velocity (each field corresponds to a conservation law, respec-
tively energy, particles, and momentum [28,29]), and the stress–energy tensor is expanded
in powers of gradients of such variables, e.g., Tµν = Tµν(∂0) + Tµν(∂1) + Tµν(∂2) +O(∂3).
This approach goes back to Navier and Stokes [30] and Burnett [31], and it is often in-
voked as the main rationale for viscous hydrodynamics [5,32,33]. The second is known
as “Extended Irreversible Thermodynamics” [34] (EIT), and it consists of adding new
non-equilibrium variables besides the usual fluid ones, i.e., {T, µ, uα, X, Y, Z, . . . }. This
expands the state space of the fluid, enabling dissipation when the new variables differ
from their local equilibrium values. These extended fluid variables fully characterize all
the properties of the fluid at a given event xµ. Thus, no gradient corrections are needed,
i.e., Tµν = Tµν(T, µ, uα, X, Y, Z, . . . ). This approach was pioneered by Maxwell [35], Cat-
taneo [36], and Muller [37], and it finds many applications in the theory of viscoelastic-
ity [9,38–41].
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To better visualize the difference between the two approaches, consider the problem
of deriving hydrodynamics from kinetic theory. In this setting, the goal is to express
the one-particle distribution function fp(xµ) in terms of a set of fluid fields Ψ(xµ) =
{Ψ1(xµ), Ψ2(xµ), . . . }, i.e., fp = fp[Ψ]. Then, the relativistic Boltzmann equation [15,42]

d
dλ

fp

∣∣∣∣
Geodesic

(
x(λ),p(λ)

) = “Collision integral” , (3)

written in terms of Ψ, can be used to derive some approximate equations of motion for the
fluid fields.

In the ideal fluid limit, the distribution is locally Fermi–Dirac for Fermions, or Bose–
Einstein for Bosons, so that

fp(T, µ, uα) =
1

e−(µ+uα pα)/T±1
(+ for Fermions; − for Bosons) . (4)

This clearly shows that, for ideal fluids, the natural field degrees of freedom are
Ψ = {T, µ, uα}. Indeed, by substituting (4) into (3), one can easily derive the equations of
motion for the ideal fluid [43].

In the dissipative case, one needs to model the non-equilibrium deviations from (4).
In the gradient expansion approach, one still assumes that Ψ = {T, µ, uα}, but now fp
becomes a functional of Ψ, i.e.,

fp[T, µ, uα] =
1

e−(µ+uα pα+φp [T,µ,uα ])/T±1
(+ for Fermions; − for Bosons) , (5)

where φp[Ψ] depends on the value of Ψ in a (possibly large) neighborhood U (xµ) of the
event xµ under consideration. Now, if T, µ, and uα are analytic across U (xµ), their behavior
in the neighborhood is uniquely determined by the values of all their infinite derivatives at
xµ [44] so that

φp[Ψ] = φp(Ψ, ∂µΨ, ∂µ∂νΨ, . . . ) . (6)

Expanding φp in powers of derivatives leads to viscous theories, such as relativistic
Navier–Stokes [30,45], BDNK [6,46,47], BRSSS [5], and IRED [48]. Adding up all the
terms of the series of φp usually leads to a divergence. However, with the aid of Borel
resummation, one can reconstruct, in some cases, the exact value of φp [49–52].

The approach of Extended Irreversible Thermodynamics is different. Here, one pa-
rameterizes the quantity φp in Equation (5) in terms of some structural fields Xn(xµ),
which determine its analytical form. For example, one may express φp(xµ) as a series
φp(xµ) = ∑n Xn(xµ)gn(p), where gn(p) form a basis of L2(“Mass hyperboloid”) [15]. This
results in a theory with hydrodynamic fields Ψ = {T, µ, uα, Xn}, and distribution function

fp(T, µ, uα, Xn) =
1

e−[µ+uα pα+φp(Xn)]/T±1
(+ for Fermions; − for Bosons) . (7)

No information about the local gradients enters the formula for fp (and thus that of
Tµν). Instead, the gradients appear when we substitute (7) into (3). This produces some
equations of motion for Xn, where the local gradients appear as sources. If we truncate
the sequence of Xn (invoking some power counting scheme) and keep only the most
relevant variables, we recover transient hydrodynamic theories, such as Israel–Stewart
hydrodynamics [1], DNMR [53] (in part [7]), the divergence-type theory [54], and maximum
entropy hydrodynamics [55]. Carter’s theory and the GENERIC adopt the EIT approach,
too. Therefore, we will stick here to interpretation (7).

We remark that one should not view (5) and (7) as contradictory to each other. Rather,
they are different techniques for approximating the same complicated system. As such,
they focus on different aspects of the problem. The mathematical relationship between the
two viewpoints has been studied systematically in several works [56–59].
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3. Outline of Carter’s Multifluid Theory

In this section, we briefly review Carter’s multifluid theory. The reader can see [19,60–65]
for an overview of the foundations of the formalism. For the purposes of this paper, it will
be enough to adopt the generating function approach developed in [24]. Also, we will work
in the “pressure & momenta” representation [23,66].

3.1. Multifluid Constitutive Relations

Our fundamental degrees of freedom are two (unconstrained) covectors, wµ and ξµ,
which are called momenta of the fluid. The number of algebraic degrees of freedom is,
therefore, 8 = 5 (equilibrium) + 3 (heat flux), following the Israel–Stewart theory for heat
conduction (Carter’s theory does not pick a specific hydrodynamic frame, i.e., it is not
explicit on the definitions of T, µ, and uµ out of equilibrium. However, the “natural” frames
take the form uµ = awµ + bξµ, T = −uµwµ, and µ = −uµξµ [20,62,64]). We anticipate here
that wµ coincides with the homonymous structural variable introduced by Öttinger [26].
The multifluid equation of state of the system is an expression of the form

P = P(wµ, ξµ, gαβ) , (8)

where P is the kinematic pressure of the multifluid transversal to the heat flux, and gαβ is the
inverse metric tensor. The constitutive relations for the entropy current sµ, the conserved
particle current nµ, and the (symmetric) stress–energy tensor Tµν are computed from the
equation of state through the following differential:

d(
√−gP)√−g

= −sµdwµ − nµdξµ −
1
2

Tαβdgαβ . (9)

Lorentz covariance implies that P can depend only on the scalars wµwµ, wµξµ, and ξµξµ

(recall that, within Extended Irreversible Thermodynamics, gradients do not enter the con-
stitutive relations; see Section 2). Therefore, we can express the differential of P in the
following form [66]:

−2dP = C d(gαβwαwβ) + 2A d(gαβξαwβ) + B d(gαβξαξβ) , (10)

where C, A, and B are some non-equilibrium thermodynamic scalars. Substituting (10) into
(9), we obtain [

sµ

nµ

]
=

[
C A
A B

][
wµ

ξµ

]
,

Tαβ = Pgαβ + sαwβ + nαξβ .
(11)

Note that the stress–energy tensor above has the form (2), and it is, therefore, sym-
metric, even if not manifestly so. The inverse of the 2× 2 matrix in the first equation of
(11) is called the entrainment matrix, and it enters the quadratic form in Equation (2). Both
the entrainment matrix and its inverse are positive definite by stability [23]. This results in
three notable inequalities: C > 0, B > 0, and CB− A2 > 0.

3.2. Multifluid Field Equations

The fields of the hydrodynamic theory are ϕi = {wµ, ξµ}, which constitute eight
algebraic degrees of freedom. Hence, we need eight independent equations of motion. Out
of these, 5 are the conservation laws, ∇µnµ = 0, and ∇µTµ

ν = 0. Invoking (10) and (11),
the energy–momentum conservation can be equivalently rewritten in the form [62]

∇µTµ
ν = 2sµ∇[µwν] + 2nµ∇[µξν] + wν∇µsµ = 0 . (12)
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To complete the system, we need three additional equations of motion. The multifluid
theory does not provide a unique choice for such an equation. Instead, it provides us with
some reasonable options inspired by geometry and thermodynamics [19,20,24,65]. A rather
convenient option is

2nµ∇[µwν] = −Ξ
(

gµ
ν −

nµnν

nαnα

)
wµ , (13)

which plays the role of an Israel–Stewart-type relaxation equation for the heat flux [24],
where Ξ ≥ 0 is a transport coefficient. Indeed, if we contract (12) with nν and use
Equation (13), we find that the fluid produces entropy:

∇µsµ = − Ξ
nλwλ

(
gµ

ν −
nµnν

nαnα

)
sνwµ . (14)

The non-negativity of the entropy production follows from the observation that the
term in the round brackets on the right-hand side is the spacelike projector orthogonal to
nµ, and Bsν = (BC− A2)wν + Anν, so that

∇µsµ = − Ξ
nλwλ

BC− A2

B

(
gµ

ν −
nµnν

nαnα

)
wνwµ ≥ 0 . (15)

4. Recovering the GENERIC Theory

Let us now show that the multifluid model described above is mathematically equiva-
lent to the GENERIC theory for heat conduction constructed by Öttinger [26], just expressed
using different notations.

4.1. Decomposition of Tensors

The GENERIC theory adopts the Eckart frame, meaning that it defines a preferred four-
velocity uµ, aligned with the particle current: nµ = nuµ. The temperature and chemical
potential are defined through the equations T = −uµwµ and µ = −uµξµ. The vectors uµ

and wµ are treated as primary vectors, meaning that all other tensors are geometrically
decomposed as linear combinations of tensor products of {uµ, wµ, gαβ}. For example, sµ

and ξµ are expressed as

sµ = (s−σT)uµ + σwµ ,

ξµ =
ε+P−σT2

n
uµ − s−σT

n
wµ .

(16)

Comparing (16) with (11), we obtain the dictionary relations below:

s = nAB−1 + σT σ = C− A2B−1 ε = n2B−1 − P + σT2 . (17)

Since the inverse entrainment matrix is positive definite by stability, we have that
σ > 0 and ε + P > 0. If we substitute (16) into the multifluid formula for the stress–energy
tensor as given in (11), we obtain

Tαβ = Pgαβ + (ε+P−σT2)uαuβ + σwαwβ . (18)

In accordance with the Eckart frame definition, we have that n and ε are indeed the
particle and energy density as measured in the reference frame defined by uµ, namely
n = −nµuµ and ε = Tαβuαuβ.

4.2. First Law of Thermodynamics

In the GENERIC representation, the differential (9) at fixed metric components becomes

dP = −
[
(s− σT)uµ + σwµ

]
dwµ − nuµdξµ . (19)
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We can use the Leibnitz rule to rewrite this differential as follows:

dP = sdT + ndµ− σ

2
d(wµwµ+T2) + (swµ−σTwµ+nξµ)duµ . (20)

The second equation of (16) can be rewritten in the form swµ − σTwµ + nξµ =
(ε+P−σT2)uµ so that the last term in (20) vanishes. Furthermore, if we contract the
second equation of (16) with uµ, we obtain ε + P = Ts + µn, which is in agreement with
Equation (50) of [26]. This allows us to derive the following differential:

dε = Tds + µdn +
σ

2
d(wµwµ+T2) . (21)

Our Equations (16), (18), and (21) are indeed consistent with Equations (39), (45), (54),
(55), and (65) of [26] (note that Öttinger [26] splits the energy into rest mass part plus
internal contributions, while we are combining them together; thus, the notation “ρfc2 + εf”
of [26] becomes just ε in our notation); this shows that the constitutive relations of the
GENERIC theory can be recovered from the multifluid formalism, by simply expressing all
equations in the Eckart frame.

4.3. Recovering the GENERIC Field Equations

To complete our analysis, we only need to verify that Equations (13) and (14) are
indeed the dissipative equations of motion of the GENERIC theory. To this end, let us set
Ξ = n/τ, where τ is the heat relaxation time. Then, (13) and (14) become

uµ(∇µwν −∇νwµ) = −
1
τ
(wν − Tuν) ,

T∇µsµ =
σ

τ
(wµwµ + T2) ,

(22)

which indeed coincide with Equations (73) and (75) of [26]. This completes the correspon-
dence between the GENERIC and the multifluid theory. Note that no approximation was
made, meaning that the “dictionary” is exact in the fully non-linear regime. For complete-
ness, we summarize the GENERIC equations in Appendix A.

5. Infinite Heat Conduction Becomes Superfluidity

As an application of the above result, let us show that if Ξ→ 0 (which corresponds to
sending the heat conductivity to infinity), the GENERIC theory becomes indistinguishable
from the two-fluid model for the superfluidity of Son [67] for certain initial conditions. Our
starting point is the established fact [64] that a superfluid is a multifluid of Carter, where
the equation of motion (13) is replaced by the irrotationality condition ∇[µξν] = 0; see
Appendix B for the proof. Hence, we just need to set Ξ ≡ 0 in (13) and (14) and verify that
superfluid dynamics are recovered.

5.1. Rigorous Proof

For Ξ = 0, the GENERIC equations of motion reduce to

∇µnµ = 0 ,

∇µsµ = 0 ,

2nµ∇[µwν] = 0 ,

2sµ∇[µwν] + 2nµ∇[µξν] = 0 .

(23)

As we can see, the fluid is reversible. However, it is not exactly superfluid because the
third equation differs from the superfluid requirement that∇[µξν] should vanish. However,
let us assume that on an initial Cauchy surface,

∇[µwν] = ∇[µξν] = 0 . (24)
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Then, inserting the third equation of (23) into Cartan’s magic formula,

Ln(dw) = ιnd2w + d(ιndw) = 0 , (25)

we find that∇[µwν] vanishes across the whole spacetime. Hence, the fourth equation of (23)
becomes 2nµ∇[µξν] = 0. Again, using the initial condition (24), Cartan’s magic formula,

Ln(dξ) = ιnd2ξ + d(ιndξ) = 0 , (26)

guarantees that ∇[µξν] also vanishes everywhere. In conclusion, we have that, under the
initial condition (24), GENERIC fluids with infinite heat conductivity are exact solutions of
the superfluid equations of motion.

The above proof is a multifluid generalization of the Helmholtz theorem, according
to which an inviscid fluid that is initially irrotational remains irrotational at later times.
Unfortunately, ∇[µwν] is not necessarily zero in a superfluid. Hence, not all superfluid
configurations are reproduced by the GENERIC theory. However, in most statistical
mechanical calculations, one starts from a fluid in homogeneous equilibrium, which is then
disturbed by a gravitational perturbation to the metric. Under these conditions, (24) holds,
and the heat conductive fluid responds like a superfluid to fully non-linear disturbances.

5.2. Intuitive Explanation

The above result is the non-linear generalization of a recent analysis carried out in [68].
There, it was found that close to homogeneous equilibrium, the infinite conductivity limit of
the linearized Israel–Stewart theory for heat conduction [1] is mathematically equivalent to
the linearized Landau two-fluid model for superfluidity (see [30], §141). This seems rather
counterintuitive, as one would expect that, by increasing the diffusivity of the system, we
increase dissipation, which is at odds with the non-dissipative character of a superflow.
To understand this phenomenon, let us consider a simplified one-dimensional model.

For incompressible flows, the thermal sector of the linearized Israel–Stewart theory
can be approximated by the Cattaneo equation,

∂2
t T
v2 +

∂tT
D

= ∂2
xT , (27)

where T is the temperature, D is the thermal diffusivity (proportional to the heat conductiv-
ity), and v is the speed of propagation of information. Now, if D → +∞, the second term in
(27) vanishes. On the other hand, the speed v cannot diverge together with D because the
principle of causality requires that v2 ∈ [0, 1] and causality is necessary for stability [69–71].
Therefore, Equation (27) must become a non-dissipative wave equation:

∂2
t T = v2∂2

xT . (28)

This tells us that when D = +∞, the system becomes reversible, and heat travels like
an undamped wave. As it turns out, Equation (28) is also the propagation equation of the
second sound in superfluids [30].

Figure 1 shows the behavior of the dispersion relations of the Cattaneo theory as D
increases, keeping v constant. Sending D→+ ∞ while holding v constant may seem to
be a rather artificial limit, but it is actually the most natural one. In fact, the speed of
information is given by the equation v2 = D/τ. Both D and τ usually scale like g−1, where
g is the coupling constant determining the strength of the mechanism at the origin of the
relaxation (e.g., the particle cross-section in a gas [7,43,72] or the quasi-particle interaction
in a quantum liquid [73,74]). Thus, if we send g to zero, D diverges, while v remains
constant, being independent of g.

The key to resolving the apparent paradox of large diffusion without dissipation is
causality. If we increase the diffusivity, heat spreads faster and faster (the diffusive mode
initially moves down in the complex plane). However, energy cannot spread superlumi-
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nally. For this reason, at some point (when the diffusive mode meets the non-hydrodynamic
mode), heat will no longer be able to diffuse in a Gaussian manner, and it will develop a
front, which carries energy like a wave (both frequencies acquire a real part). If we further
increase the diffusivity, we just cumulate more heat on the front. Eventually, all the energy
travels like a wave, and the propagation becomes reversible.

Figure 1. Hydrodynamic frequencies ω1,2 of the Cattaneo model (27) when we increase D at constant
k and v. For small D, there is one diffusive mode (upper yellow star) and a purely relaxing non-
hydrodynamic mode (lower yellow star). As we increase D, the modes approach each other until they
overlap. Then, both frequencies acquire a real part, and they travel on a circle of radius vk. When
D = +∞, the frequencies “collapse” on the real axis (blue stars), and the system becomes non-
dissipative. The pink region defines the (assumed) regime of applicability of the hydrodynamic
theory [53,75,76]. Outside of it, there may be infinite other dispersion relations (green stars), which
are not captured by the hydrodynamic theory.

We remark that a similar type of “second sound” has already been observed in
solids [77–80]. Given that most liquids exhibit solid-like behaviors at short distances
(see, e.g., [41,81]), it may be possible to observe the transition in Figure 1 experimentally
also in fluids. To this end, one needs to make the relaxation time τ (and therefore D) para-
metrically large, effectively turning on wave-like dynamics; this can be achieved through
confinement [82].

6. Conclusions

We have proved that there is an exact duality between the GENERIC theory for heat
conduction [26] and Carter’s two-fluid theory [19]. This mathematical correspondence can
be used to derive the constitutive relations of relativistic fluids non-perturbatively, directly
within the GENERIC framework [25]. Below, we propose a formal setup that should allow
one to compute the GENERIC constitutive relations from microphysics.

Let us consider a fluid in hydrostatic equilibrium, crossed by a time-independent flow
of heat in the direction x1. Assuming invariance under translations in the directions x2

and x3, we can solve the first equation of (22), and we find that w1 = −τ∂1T. Further-
more, from Equation (18), we have that the heat flux in the GENERIC theory is given by
q1 = T01 = Tσw1. Considering that σ is itself a (even) function of w1, we obtain the
following identity:

q1

T
= −σ

(
τ∂1T

)
τ∂1T . (29)

This can be interpreted as the non-linear generalization of Fourier’s law. If we have
a microscopic formula for q1 in this simple setup (derived, e.g., from kinetic theory), we
can use it to obtain the constitutive relation σ

(
τ∂1T

)
by direct matching. From this, we can

reconstruct the GENERIC equation of state in the non-perturbative regime.
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For illustrative purposes, let us consider an analytical (1+1)-dimensional kinetic
toy model.

Assume that the heat is transported by quasi-particles with speed 1 and average
lifetime τ = const. Then, we can write the following (approximate) kinetic formula for the
heat flux in the origin:

q1(0) = −
∫ +∞

0

[
Σ(x)− Σ(−x)

]
e−x/τdx (30)

This equation tells us that the fluid element at location ±x is sent towards the origin
quasi-particles that move with velocity ∓1, each of which has probability e−x/τ of reaching
the origin.The source term Σ needs to be prescribed from microphysics. If we choose, say,
Σ = eT(x) ≈ eT(0)+x∂1T(0), the integral converges for |τ∂1T| < 1, and we find

Tσ =
2τeT

1− (τ∂1T)2 . (31)

This formula is by no means realistic, but it serves as proof of principle to show that it
is possible to compute deviations from Fourier’s law using non-perturbative techniques.
Such deviations can then be implemented into Carter’s theory using the duality with the
GENERIC theory.

We remark that while the GENERIC theory has the advantage of being more closely
related to statistical mechanics, Carter’s framework is a remarkably versatile formalism
due to its close connection with exterior calculus [66,83–85]. Thus, the present duality may
also be useful for those who wish to study the mathematical properties of the GENERIC
theory, as we carried out in Section 5.
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Appendix A. Brief Overview of the GENERIC Theory

The natural degrees of freedom of the GENERIC theory are Ψ = {n, uµ, wµ}. The tem-
perature is defined by the relation T = −uµwµ. The equation of state, in these variables,
is an equation of the form F = F(T, n, wµwµ), where F is the non-equilibrium free energy
density, as measured in the local rest frame. The non-equilibrium entropy density s and
chemical potential µ are defined by the differential

dF = −sdT + µdn +
σ

2
d(wµwµ + T2) . (A1)

The energy density is ε = F+ Ts, and the pressure is P = −F+ µn. These are Legendre
transforms of the free energy, and their differentials are (21) and (20), respectively. Further-
more, they are related to each other by the Euler relation ε + P = Ts + µn. The constitutive
relations for stress–energy tensor, entropy current, and particle current are, respectively,

Tµν = Pgµν + (ε+P−σT2)uµuν + σwµwν ,

sµ = (s−σT)uµ + σwµ ,

nµ = nuµ .

(A2)



Symmetry 2024, 16, 78 10 of 13

The equations of motion are the conservation laws ∇µTµν = ∇µnµ = 0, and

uµ(∇µwν −∇νwµ) = −
1
τ
(wν − Tuν) . (A3)

Appendix B. Recovering the Relativistic Two-Fluid Model for Superfluidity

The fact that the multifluid formalism can be used to describe superfluids is well
known [61,62,86]. Indeed, Carter’s theory is currently used to model superfluid phenomena
in neutron stars [85,87–90]. Also, the correspondence with the framework of [67,91–94]
has already been established in [63,64]. However, it is instructive to have a more direct
proof within the generating function approach, which is what we provide in this appendix.
The analysis is somewhat specular to that carried out in Section 4, with a different choice of
preferred four-velocity uµ. Also, we must warn the reader that the quantities ε, n, T, and µ
introduced in this appendix are not the same as those introduced in Section 4. Indeed, one
should regard this appendix and Section 4 as two alternative ways of representing Carter
multifluids, arising from different choices of uµ (i.e., different “hydrodynamic frames”).

Appendix B.1. Decomposition of Tensors

The framework of [67,91–94] defines a preferred four-velocity uµ, which is aligned
with the entropy current: sµ = suµ. Such velocity is also known as the normal velocity [30],
and it is different from the Eckart frame velocity introduced in Section 4.1. Then, one
treats uµ and ξµ as the “primary vectors” of the theory, meaning that all other tensors
are geometrically decomposed as linear combinations of tensor products of {uµ, ξµ, gαβ}.
For example, nµ and wµ are expressed as

nµ = nuµ + f 2ξµ ,

wµ =
ε + P

s
uµ − n

s
ξµ .

(A4)

Comparing (A4) with (11), we immediately obtain the following “dictionary relations”:

n = sAC−1 f 2 = B− A2C−1 ε = s2C−1 − P . (A5)

Since the inverse entrainment matrix is positive definite (by stability [23]) we have
that n ≥ 0, f > 0, ε + P ≥ 0. If we substitute (A4) into the multifluid formula for the
stress–energy tensor, as given in (11), we obtain

Tαβ = Pgαβ + (ε + P)uαuβ + f 2ξαξβ . (A6)

It is important to keep in mind that n and ε are not −nµuµ and Tαβuαuβ, namely
the particle and entropy density as measured in the normal rest frame. Instead, n and ε
constitute only the “normal parts” of the respective densities.

Appendix B.2. Superfluid Gibbs–Duhem Equation

Let us define the temperature and the chemical potential as T = −uµwµ and
µ = −uµξµ [64]. The latter definition agrees with Equation (12) of [91]. Then, contracting
the second equation of (A4) with uµ, we obtain ε + P = Ts + µn, which is also consistent
with [91]. Now, let us focus on the differential (9) at fixed metric components,

dP = −suµdwµ − (nuµ + f 2ξµ)dξµ . (A7)

This differential can be manipulated using the Leibnitz rule, dT = −uµdwµ−wµduµ

and dµ = −uµdξµ−ξµduµ, giving

dP = sdT + ndµ− f 2ξµdξµ + (swµ + nξµ)duµ . (A8)
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On the other hand, Equation (A4) implies that swµ + nξµ = (ε + P)uµ, meaning that
the last term vanishes identically (uµuµ = −1 ⇒ uµduµ = 0). Hence, we finally obtain the
superfluid Gibbs–Duhem equation

dP = sdT + ndµ− f 2

2
d(ξµξµ) . (A9)

Assuming that ξµ is the gradient of the phase of the superfluid order parameter
(ξµ = ∇µ ϕ), we see that our Equations (A4), (A6), and (A9) agree with Equations (9), (13),
and (14) of [91], and we have that∇[µξν] = 0. This completes our proof that the constitutive
relations of Carter’s multifluids are equivalent to the constitutive relations of the relativistic
two-fluid model for superfluidity, as given in [67,91–94].
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50. Heller, M.P.; Kurkela, A.; Spaliński, M.; Svensson, V. Hydrodynamization in kinetic theory: Transient modes and the gradient

expansion. Phys. Rev. D 2018, 97, 091503. [CrossRef]
51. Romatschke, P. Relativistic Fluid Dynamics Far From Local Equilibrium. Phys. Rev. Lett. 2018, 120, 012301. [CrossRef]
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