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Abstract: Siamese trackers based on classification and regression have drawn extensive attention due
to their appropriate balance between accuracy and efficiency. However, most of them are prone to
failure in the face of abrupt motion or appearance changes. This paper proposes a Siamese-based
tracker that incorporates spatial-semantic-aware attention and flexible spatiotemporal constraint.
First, we develop a spatial-semantic-aware attention model, which identifies the importance of each
feature region and channel to target representation through the single convolution attention network
with a loss function and increases the corresponding weights in the spatial and channel dimensions to
reinforce the target region and semantic information on the target feature map. Secondly, considering
that the traditional method unreasonably weights the target response in abrupt motion, we design
a flexible spatiotemporal constraint. This constraint adaptively adjusts the constraint weights on
the response map by evaluating the tracking result. Finally, we propose a new template updating
the strategy. This strategy adaptively adjusts the contribution weights of the tracking result to the
new template using depth correlation assessment criteria, thereby enhancing the reliability of the
template. The Siamese network used in this paper is a symmetric neural network with dual input
branches sharing weights. The experimental results on five challenging datasets show that our
method outperformed other advanced algorithms.

Keywords: object tracking; aware attention model; spatiotemporal constraint; template updating

1. Introduction

In recent years, the performance of target-tracking algorithms has been greatly im-
proved with the development of artificial feature-based trackers and deep learning-based
trackers. Target-tracking technology has found widespread applications in computer vision
fields such as smart cities, autonomous driving, and video surveillance [1–4]. However,
challenges such as target appearance changes during tracking, complex backgrounds, and
the presence of similar objects can lead to tracking drift. Therefore, it is still crucial to
design a robust tracking algorithm that can effectively handle the target’s abrupt motion.

Siamese network-based tracking has drawn extensive attention due to its appropriate
balance between accuracy and efficiency. SiamFC [5] maps the search patch into multiple
scales and selects the scale with the highest classification score as the target scale for
the current frame to predict the bounding box (Bbox). Zhang et al. [6] leveraged deeper
and wider convolutional neural networks to further improve the tracking robustness and
accuracy. However, the multiple-scale strategy is not well adapted to targets undergoing
deformation while increasing the model parameters. Li et al. [7] combined the Siamese
network and the region proposal network to predict the scale variation of the target, which
improved the model speed and enhanced the adaptability to the deformed targets. To
further simplify the model and reduce the computational complexity, some studies [8,9]
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introduced the anchor-free mechanism into the tracking field, easing the tuning of complex
parameters in anchor-based methods. The above studies are devoted to optimizing the
feature extraction network or regression function to improve the accuracy of the Bbox and
tracking efficiency. However, such methods still have some limitations.

In real tracking scenarios, a complex background can lead to deviations or even
drifting of the tracking prediction box from the ground truth or toward other distractors,
especially when the target undergoes drastic appearance changes or moves suddenly over
long distances. To address these challenges, existing Siamese network-based trackers [10,11]
introduce the centeredness or quality estimation branch independent of the classification
branch to suppress excessive displacement, which solves the problem of performance
degradation caused by using classification confidence for bounding box selection directly.
Chen et al. [12] further proposed the Siamese center prediction network. This model
predicts an object’s location by correcting the target position appropriately through the
offset branch. Some recent methods [13,14] build links between classification and regression,
optimizing them in a synchronized manner for consistent inference. Most of these methods
add extra branches or networks to improve the accuracy of target localization. In addition,
in order to improve the confidence of the response map, some researchers introduced a
series of fixed-window penalty functions [15–17] into the tracking model to alleviate the
boundary effect, and these methods suppress the interference response to a certain extent.
However, a pretrained deep network is not enough to model arbitrary forms of target
features when the target state changes significantly, and the extracted target depth features
may be redundant. Therefore, it is crucial to adaptively adjust the target features based
on different target poses. Additionally, when the target undergoes sudden long-distance
movements, the incorrect spatial penalty term can result in the response value of the
distractor being higher than that of the target, significantly increasing the probability of
tracking drift. Moreover, the absence of a robust target template update mechanism can
lead to model degradation during the tracking process.

This work presents a Siamese-based method that addresses the aforementioned limi-
tations. A Siamese network is a symmetric network with two input branches that share
the same network structure and weight and is widely used in tracking algorithms. Our
method contains a spatial-semantic-aware attention model, a flexible spatiotemporal con-
straint strategy, and an adaptive weight template update model. The proposed algorithm
combines the response results of low-level feature maps and high-level feature maps to
determine the target. While multilayer features contain richer target information, the
contributions of pretrained target’s deep features for visual tracking are different. We
establish a spatial-semantic-aware attention model that focuses on the most informative
region of the target feature map. This model strengthens feature channels with rich target
semantic information by assigning them higher weights. Secondly, we observe that the
fixed-window penalty function may decrease the confidence value of the correct target on
the score map. To overcome this issue, we designed a flexible spatiotemporal constraint
strategy which adaptively adjusts the penalty weights on the confidence map to reduce
the probability of tracking failure. In order to further adapt to the target deformation, we
designed an adaptive weight template updating strategy to enhance the robustness of the
tracking model. The contributions of this work can be summarized as follows:

(1) A spatial-semantic-aware attention model is proposed for visual tracking. We
employ a single convolutional spatially aware attention model to adaptively adjust the
significance of various feature regions, thereby emphasizing the most informative location
on the target feature map. Additionally, the single convolutional channel attention network
is used to strengthen target-specific channels that have more target semantic information,
which is achieved by increasing their weights. This approach facilitates the learning of
effective feature representations for high-tracking performance.

(2) We propose a flexible spatiotemporal constraint which adaptively adjusts the
constraint weights on the response map by evaluating the tracking result features. This
constraint addresses the issue of the fixed-window function incorrectly penalizing the target
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confidence when tracking fails. By incorporating the flexible spatiotemporal constraint, we
can obtain a more reliable confidence score for the target location and avoid low-quality
but high-scoring tracking results.

(3) We designed an adaptive weight template-updating strategy to mitigate model
degradation caused by target appearance changes. This update mechanism evaluates the
correlation between the target templates and tracking results using the depth-correlation
assessment criteria and thus adaptively assigns weights to both the templates and tracking
results to gather reliable template samples. Our update mechanism prevents template
contamination while enriching template information.

In this paper, we first briefly review some classical tracking algorithms in recent
years, especially those involving attention mechanisms and spatiotemporal constraints,
and discuss some disadvantages of the current approaches. Next, we describe in detail our
proposed spatial-semantic-aware attention Siamese tracking with a flexible spatiotemporal
constraint. Extensive experiments on the OTB100, NFS, UAV123 VOT2016, and TC128
datasets demonstrate the superiority of our approach. Finally, the advances of the proposed
methods are summarized, and its limitations are discussed.

2. Related Work
2.1. Siamese-Based Trackers

The Siamese structure proposes a similarity learning problem in which the similarity
loss between two input images is calculated, and the shared parameters of two parallel
convolution laminar flows are trained by backpropagation. Siamese-based trackers [18–20]
solve the similarity matching problem between the target and the search area well and have
become popular in the tracking field (see Table 1). SiamFC [5] performs similarity learn-
ing through deep cross-correlation, which transforms the tracking process into template
matching. SiamFC has greatly improved tracking accuracy and efficiency compared with
previous studies, but it is not well adapted to various challenging scenarios. To further
improve the tracking performance, researchers have designed a number of Siamese trackers
based on SiamFC that can adapt to more tracking challenges. SiamRPN [7] first implanted
the region proposal network (RPN) [21] into the Siamese trackers to transform the global
search into a region-specific detection task [22]. The bounding box regression reduces the
amount of computation while improving the accuracy. In order to obtain more abundant
target information, SiamMCF [20] and DSiam [18] incorporate cross-correlation on multiple
layers to enhance the discriminant ability of the model. SiamBAN [8] and SiamCAR [10]
designed the anchor-free strategy to avoid complex parameters caused by setting anchor
boxes and further enhance the flexibility of the model.

2.2. Trackers with the Attentional Mechanism

The attentional mechanism was first applied in neuroscience and has expanded into
other fields, such as image detection [23,24] and target tracking [25]. DVAT [26] proposed
the concept of ‘attention regions’, which applies spatial attention to two different discrim-
inative domains (local and semi-local), effectively focusing the attention of the tracker.
RTT [27] developed recurrent neural networks (RNNs) to identify components that are
useful for target modeling and then used the resulting confidence map to suppress back-
ground clutter. Wang et al. [28] constructed a Residual Attentional Siamese Network
(RASNet) using different types of attention mechanisms to improve the discriminative
ability of the tracking model. Rahman M et al. [29] added channel attention and spatial
attention behind the pretrained features to further reduce the distracting information in
the target template features. In contrast to these attention mechanisms, it is proposed to
learn attention through an online training deep network. We use the single convolutional
attention network framework to adaptively adjust the importance of spatial and channel
features and target representation.
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2.3. Trackers with Spatiotemporal Constraint

Since the target motion was mostly smooth in early target tracking, researchers de-
veloped a spatiotemporal constraint strategy to suppress tracker drift. MOSSE [30] and
KCF [31] avoid boundary effects in the tracking process by introducing cosine window
constraints. In addition to cosine windows, other tracking algorithms also introduce win-
dow functions such as the Blackman window [15], rectangular window [16], and Hamming
window [17] to prevent boundary effects. When the target displacement between two
frames is small, and the background is simple, these fixed spatiotemporal constraint func-
tions generally improve the tracking results. However, when the tracker fails to track
due to the large displacement of the target between two frames in the video, these fixed
spatiotemporal constraints may cause a large weight loss for the confidence of the correct
target on the response map, and thus the tracker cannot be corrected. Li et al. [32] devel-
oped the NA window to suppress these customized incorrect weights, which improves
the SNR of windowed ROIs by adaptively suppressing the variable noise according to the
observation of similarity maps. Different from the above methods, this paper focuses on
adjusting the spatiotemporal constraint under different conditions according to the quality
of the tracking result box, which adaptively adjusts the penalty weights during the tracking
process to reduce the probability of tracking failure.

Table 1. Related works overview.

Tracker Type Related Tracker Year Peculiarity

Siamese-based trackers

SiamFC [5] 2016 Similarity learning
SiamRPN [7] 2018 Region proposal network
DSiam [18] 2017 Use multilayer features

SiamMCF [20] 2018 Use multilayer features
SiamBAN [8] 2020 Anchor-free strategy
SiamCAR [10] 2020 Anchor-free strategy

Trackers with the attentional mechanism

DVAT [26] 2010 Local and semi-local attention regions
RTT [27] 2016 Recurrent neural networks

RASNet [5] 2018 Residual Attentional Siamese Network
SCSAtt [29] 2020 Stacked channel-spatial attention

Trackers with a spatiotemporal constraint
MOSSE [30] 2010 Cosine window constraint

KCF [31] 2014 Hamming window
NA [32] 2020 Noise-aware framework

3. The Proposed Method

Aiming at the problem that most tracking methods easily fail during abrupt motion
and target appearance changes, a tracking framework is proposed that can handle this
problem. In specific tasks, the depth features acquired by the pretrained network have
different importance to the target representation, resulting in a worse discrimination ability
for the tracker regarding the target and background information. Immediately after, we
find that the fixed-window function unreasonably weights the confidence values on the
response map to produce lower-quality but higher-scoring tracking results. Finally, we
develop a flexible template-updating strategy to mitigate model degradation.

Figure 1 shows the overall scheme of our proposed algorithm. It is a tracker based on
classification and regression that uses ResNet-50 as the feature extraction network. In our
work, Conv3, Conv4, and Conv5 from the ResNet-50 [33] network were selected to extract
image features. Since the shallow features contain more spatial structure information while
the deep features contain rich semantic information [34], we introduced spatial attention in
Conv3 and channel attention in Conv4 and Conv5 to highlight the information that was
valuable for target representation. Then, the classification (Cls) map and regression (Reg)
map were obtained by correlation matching between the target template feature and the
search area feature. The Cls map estimated the probability that each position in the search
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area was the target, and the Reg map performed bounding box prediction. Next, the
multilayer depth features of each frame-tracking result were compared with the template
based on the Euclidean distance to determine whether the flexible spatiotemporal constraint
strategy was activated. The flexible spatiotemporal constraint strategy was activated, which
gradually increased the weight of the edge of the confidence map with the time of target
loss to help the tracking recover. Finally, the adaptive weight template-updating strategy
was used to generate a new template for the next frame tracking.

Backbone

Backbone

Spatial attention

Channel attention

E D J

E S T

C3

C4

C5

C3

C5

C4

Switch 

Hanning

Search area

Template

Channel attention

Tracking 

result

AWU

C3

C5

C4

Cls

Reg

Update

Spatio-temporal 

constraints

Figure 1. The proposed tracking framework, where FST represents the flexible spatiotemporal
constraint strategy, EDJ represents the judgment based on the Euclidean distance, and AWU stands
for adaptive weight template update.

3.1. Spatial-Semantic-Aware Attention Model

Human visual perception usually does not need to focus on the whole environment
but rather on the part of the target to perceive comprehensive information about and thus
understand the corresponding visual patterns [35]. The coordinate attention [36] enables
mobile networks to focus on a larger area by embedding positional information into the
channel domain. Yang et al. [23] proposed that dual wavelet attention can coordinate spatial
and structural attention for different channels to prevent the loss of feature information and
structural features. Since single-target tracking is similar to focusing on the most salient
features, it is advantageous to focus on the critical regions of the target feature map. Unlike
other trackers with attention mechanisms, we propose a spatial-semantic-aware attention
model where the spatial-aware attention model focuses on prominent target regions in
the shallow feature map, while the semantic-aware attention model distinguishes the
importance of different channels of deeper features for target representation.

3.1.1. Spatial-Aware Attention Model

For the tracking target, the depth features are constructed by multiple two-dimensional
feature maps. However, the contribution of all regions of the depth features obtained by
the pretrained network to the tracking task is not equally important, and only the location
related to the task needs to be focused upon.

Spatial attention focuses on ‘where’ an informative part is and enhances the infor-
mative features of the target in the image to facilitate target localization. To program this
attention, we performed global max pooling GPmax(·) and average pooling GPavg(·) on
the Conv3 feature map FH×W×C

M and fused the resulting pooling features FH×W×1
max and

FH×W×1
avg in the channel domain. This kind of local convolution operation can focus on the

desired information on the feature map.
After fusing the doubly pooled features, we used a convolution layer ψ3×3

1 to down-
sample the number of feature channels to one to obtain a single-channel feature map (the
3 × 3 convolution filter was selected as the best result through experimentation). Then, the



Symmetry 2024, 16, 61 6 of 19

obtained single-channel convolution feature map was broadcasted with a sigmoid oper-
ation, and the single-channel convolutional feature map was multiplied by the previous
Conv3 feature map FH×W×C

M to obtain the spatial attention feature map SH×W×C
A , with the

ultimate effect shown in Figure 2. The computation of the attention feature map can be
described as follows:

FH×W×1
max = GPmax

(
FH×W×C

M

)
, (1)

FH×W×1
avg = GPavg

(
FH×W×C

M

)
, (2)

ϕs(·)H×W×1 = δ
(

ψ3×3
1

(
concat

[
FH×W×1

max , FH×W×1
avg

]))
, (3)

and
SH×W×C

A = ϕs(·)H×W×1 ⊗ FH×W×C
M , (4)

where concat[·] represents the concatenation operation, ψ3×3
1 is the convolution operation

with the 3 × 3 kernel, the padding and stride are one, and δ represents the usual sigmoid
function f (x) = 1

1+e−x .
In addition, to make our aware attention mechanism more compatible with different

targets, we adjusted the feature weights online utilizing a single convolutional. The specific
method involved convolving all the samples SH×W×C

A acquired by the attention mechanism

into one-dimensional features and regressing them to a Gaussian label map Y(i, j) = e−
i2+j2

2σ2 ,
where (i, j) is the offset against the target and σ is the kernel width. Then, the new aware
attention weight ϕs(·)H×W×1′ was obtained by minimizing the following objective function:

L = ∥Y(i, j)− W ⊙ SH×W×C
A ∥2 + λ∥W∥2, (5)

where ⊙ denotes the convolution operation and W is the regression weight, while λ is a
regularization parameter which can inhibit the overfitting of the training process.

After online training of the target in the first frame, we could find better attention
weights ϕs(·)H×W×1′ . Lastly, the features which reinforced the target area were obtained by
the spatial-aware attention module as follows:

SH×W×C′
A = ϕs(·)H×W×1′ ⊗ FH×W×C

M , (6)

3.1.2. Semantic-Aware Attention Model

Some feature channels have a more prominent contribution to modeling the visual
pattern of an object; that is, different channels contain different semantic information about
the target. Therefore, each channel should not be treated equally when using these depth
features for tracking.

For Conv4 and Conv5 obtained from the backbone network, the global average pooling
operation was performed on them (the squeeze process), the detailed operations of which
were as follows:

F1×1×C
avg = Fsq

(
FH×W×C

M

)
=

1
W × H

W

∑
i=1

H

∑
j=1

FH×W×C
M (i, j), (7)

where Fsq(·) represents the squeeze process, FH×W×C
M represents the Conv4 or Conv5

features, and W, H are the width and height of the feature map, respectively.
We obtained two feature vectors F1×1×1024

avg and F1×1×2048
avg through two levels of full

connection (the excitation process). The first full connection f c1 compressed C channels

into
C
r

channels to reduce computation, and the second full connection f c2 reverted to C
channels. The excitation process can be expressed as follows:
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ϕc(·)1×1×C = Fex

(
F1×1×C

avg

)
= σ

(
f c2

(
ReLU

(
f c1

(
F1×1×C

avg

))))
, (8)

where σ represents the usual sigmoid function f (x) = 1
1+e−x and ReLU(·) is a rectified

linear unit layer.
Then, the ϕc(·)1×1×1024 and ϕc(·)1×1×2048, as feature weights, are multiplied by the

corresponding channels of the features of Conv4 and Conv5 to acquire the output features
for the channel attention model:

CH×W×C
A = ϕc(·)1×1×C ⊗ FH×W×C

M , (9)

Similar to Section 3.1.1, we assigned different weights to each channel utilizing a
single convolutional. We convolved all the multi-channel CH×W×C

A values acquired by
the channel attention mechanism into one-dimensional features and regressed them to
a Gaussian label map. The better aware attention weight ϕc(·)H×W×1′ was obtained by
minimizing the following objective function:

L = ∥Y(i, j)− W ⊙ CH×W×C
A ∥2 + λ∥W∥2, (10)

Lastly, the target semantic features obtained by the semantic-aware attention module
were as follows:

CH×W×C′
A = ϕc(·)1×1×C′

⊗ FH×W×C
M , (11)

Figures 2 and 3 show our spatial-aware attention model and semantic-aware attention
model frameworks, respectively. The method enhances the effective features online and
weakens those that are redundant or even interfering with the tracking.

Global Average Pooling

Global Max Pooling

Concatenation

Convoluted feature Spatial attention 

features

Skip connection

Spatial-aware 

attention features

Figure 2. Proposed spatial-aware attention module.

/ / /

Channel attention 

features

Sematic-aware 

attention features

Figure 3. Proposed semantic-aware attention module.

3.2. Flexible Spatiotemporal Constraint

Most of the existing trackers were proposed under the assumption of smoothness;
that is, researchers assume that the target displacement between two frames will not be
too large, and thus various window functions were proposed to punish the final response
graph (assign a value [0,1] according to the distance between the sample center and the
target in the previous frame). This can improve the confidence of the target response to a
certain extent. But in the actual tracking scene, there will always be some similar targets
or other interference information that leads to tracker drift. Once the tracking fails, the
response of the correct target location will be continuously suppressed under the action
of the fixed-window function, resulting in low-quality but high-scoring tracking results.
The fixed-window function (Hanning window) fails to correct the tracker when the target
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deviates too far from the center of the search area, as shown in Figure 4. Therefore, to
reduce the continuous negative impact of fixed spatio-temporal constraints on the target
when the tracker fails, we developed a flexible spatiotemporal constraint strategy.
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Figure 4. Tracking results and target-scored heat map visualization results under the Hanning
window and flexible spatiotemporal constraint.

Generally speaking, due to the smoothness assumption, the depth features of the target
will not change greatly between adjacent frames. Therefore, when the tracker produces
low-quality tracking results, the depth features of the tracking result will be significantly
different from the template features. Based on this, we can consider whether to switch
the spatiotemporal constraint by evaluating the depth features of both the tracking result
and the target template. We expanded the tracking results to the same size as the target
template and used the backbone network ResNet-50 to obtain the three-layer depth features
of the tracking results. For the tracking result and target template, we compared the depth
features of their corresponding layers based on the Euclidean distance. We will switch the
spatiotemporal constraints when Equation (12) is met:

∥TG
0,L − TR

t,L∥2 > Ed, (12)

∥TG
0,L − TR

t,L∥2 = mean

[
∑

l

√
∑
x,y

(
TG

l,x,y − TR
l,x,y

)2
]

, (13)

Ed =
∑t−1

t=2 ∥TG
0,L − TR

t−1,L∥2

t − 1
, t > 1, (14)

where TG
0,L is the initial template feature, TR

t,L is the tracking result feature (t is the sequence
number of frames, while L is the layer of the features index), and TG

l,x,y and TR
l,x,y are the

feature pixel values of the template and tracking result, respectively (l is the channel ordinal
number, while x and y represent the pixel position index).

We observed that when the tracking error was caused by a change in target appearance,
although the confidence score of the correct target was higher on the response graph without
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applying the window penalty function, due to the fixed spacetime constraints, the response
of the target far away from the center of the search area would be suppressed, and thus
the tracker could not recover to the correct target. However, in most cases, the window
function could reduce the likelihood that the tracker would track similar objects far from
the center point of the search area. Based on this, we established a flexible spatiotemporal
constraint to penalize the target confidence score Scon on the response map. More details
are shown in Figure 4. Our strategy is defined as follows:

Snew
con = ρcon × Scon + (1 − ρcon)× Qnew

i , (15)

Qnew
i = Q0 × e−α(t+σ), (16)

α = ln

(
Qi
Q f

)
× 1

n
, (17)

σ = ln
(

Qi
Q0

)
×
(
− 1

α

)
, (18)

where ρcon is a predefined hyperparameter and determines the degree to which the flexible
spatiotemporal constraint affects the original response map. If ρcon is set to a large value,
then the flexible spatiotemporal constraint has minimal impact on the original response
map, which may cause the response value far from the center of the response map to be too
large, resulting in the boundary effect. On the other hand, if ρcon is set to a small value, then
the final response map is primarily determined by the flexible spatiotemporal constraint,
and the initial response map output by the tracker is largely disregarded. This will greatly
reduce the confidence of the response map, where α is the expansion rate indicating the
distance penalty, σ represents the amount of translation to the left, which allows the value
to continue expanding from any position without having to start from Q0 (Q0 is one),
Qi, n, and Q f represent the initial value, the expansion time length, and the final value,
respectively, and each Qi represents the spatiotemporal constraint weight of the original
position, in which different Qi values form different expansion curves.

3.3. Adaptive Weight Template Updating

In practical tracking tasks, most tracker models continuously degrade due to the
constant change in target appearance, resulting in tracker drift. Some Siamese trackers
utilize the target state given in the first frame to obtain an initial template and do not
update it again [5,7]. Most update functions are limited to linear combinations with
previous templates, and fixed combination weights severely limit the universality of the
update mechanism. In order to make the template dynamically update to reduce model
degradation and prevent contamination of the template from undifferentiated updates, we
developed an adaptive weight template-updating strategy which can dynamically fuse the
tracking results to generate the cumulative template for subsequent frame tracking.

First, the object defined by the ground truth in the initial frame has its most reliable
original information, and thus we used the appearance features of the initial template as a
baseline for the tracking results of the subsequent frames to generate cumulative templates
by using a convolutional neural network to learn the target information that the initial
template had. A new cumulative template was updated for each frame during the tracking
process. For each frame to be tracked, its corresponding template TC

t was generated from
three components: the initial template, the cumulative template TC

t−1, and the tracking result
TR

t−1 for the previous frame. This would give the template richer temporal information.
The generation process can be formalized as follows:

TC
t = TG

0 + conv
[

TR
t−1, TC

t−1, TG
0

]
, (19)

where conv[·] represents the convolutional operation and t is the sequence index of the frame.
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Furthermore, as can be seen in Figure 5, the tracking result features of different frames
differed significantly from the initial template features due to the constant changes in the
target appearance. Even for the same object, updates to the target template needed to
change dynamically based on the tracking state. If all tracking results were utilized indis-
criminately to update the template, then this may have led to redundancy or contamination
of the template.

Therefore, we estimated the correlation between the cumulative template and the
initial template and assigned weights to both by means of depth correlation assessment
criteria. Since the depth features of different layers had different contributions to the final
response map, we conducted depth cross-correlation between the three depth features of
the initial template and the corresponding layers of the cumulative template. Then, we
found the ratio with the autocorrelation of the initial template features to generate the
weights of the corresponding layers. According to the weight of the corresponding layer,
the feature of the tracking result and the feature of the cumulative template were fused to
generate a new cumulative template for the tracking of the next frame. Note that the target
from the first frame provided the most reliable information, and therefore we set the shrink
parameter so that the template retained more of the initial information of the target. The
following is thte recursive formula for the template update:

TC
t,L = TG

0,L + λt,L · conv
[

TR
t−1,L, TC

t−1,L, TG
0,L

]
, (20)

λt,L =
conv

[
TR

t−1,L, TC
t−1,L, TG

0,L

]
⊛ TG

0,L

TG
0,L ⊛ TG

0,L
, (21)

where L is the layer of the features index and t is the sequence index of the frame. The
operator ⊛ denotes the cross-correlation operation (i.e., the former is used as a convolution
kernel to perform convolution operations on the latter).

It can be seen in Figure 5 that our model can improve the template degradation caused
by target deformation or target background changes.
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Figure 5. Visualization of the features of the initial template, tracking results, and the cumulative
templates. The green box represents the tracking result when the template is not updated. The yellow
box represents the tracking result under our updating mechanism.
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4. Experiments
4.1. Settings and Datasets

The method presented in this article was implemented with Pytorch. The experi-
ment was conducted on a PC with 16.0 GB of RAM, an Intel(R) Core(TM) i7-10700 CPU
2.90 GHz, and an NVIDIA GeForce GTX 1660 SUPER GPU. Our tracker was evaluated
on four datasets: OTB100 [37], UAV123 [38], NFS [39], VOT2016 [40], and TC128 [41].
The Conv3, Conv4, and Conv5 datasets on ResNet-50 [33] were used to extract the depth
features of the target template and the search region. We enhanced the target represen-
tation by introducing spatial attention and channel attention, which could suppress the
depth features of interference information. The number of iterations during online training
affected the quality of the aware attention features. If the number of iterations is too low,
then the loss value will not decrease effectively. Consequently, the distractor information
in the target template features will not be adequately suppressed, and the tracking suc-
cess rate will not improve. Conversely, if there are too many iterations, then the training
time will be prolonged, thereby negatively affecting the tracking speed. To determine the
optimal number of iterations, we conducted a comparative experiment within the range
of 100–800 iterations. The experiment utilized the OTB100 dataset, and the results are
presented in Table 2. Considering the balance between tracking accuracy and speed, and
taking into account the resource limitations, we set the maximum number of iterations dur-
ing training of the aware attention models to 500 based on the experimental findings. The
learning rates of the neural network were 0.02 (Conv3), 0.05 (Conv4), and 0.0006 (Conv5).

Table 2. The experimental results for different iteration numbers on OTB100.

Iteration Number Success Rate (%) FPS

100 68.4 10.2
200 68.6 9.3
300 68.7 8.5
400 69.0 8.1
500 69.2 7.9
600 69.3 7.3
700 69.0 7.0

4.2. Results on OTB100

OTB100 is one of the most widely used datasets in the field of tracking, and it consists
of 100 video sequences. The test sequence includes deformation illumination variation, out-
of-plane rotation, scale variation, in-plane rotation, occlusion, motion blur, fast motion, and
other challenging aspects. The evaluation was based on two metrics: success and precision
plot metrics. The precision plot metric is the percentage curve of video frames, whose center
position error is less than a given threshold. The success plot metric is the percentage curve
of video frames with border overlap greater than a given threshold. We compared our
tracker with some state-of-the-art trackers (SiamFC++ [11], SiamBAN [8], DaSiamRPN [42],
GradNet [43], DeepSRDCF [44], SiamRPN [7], SiamDW-FC [6], SRDCF [45], SiamFC [5],
and fDSST [46]). As shown in Figure 6, the performance of our tracker on both benchmarks
was at an advanced level. Our tracker provided varying degrees of gain compared with
the SiamBAN tracker.
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Figure 6. Success and precision plots on OTB100.

4.3. Attribute-Based Comparison

We tested the tracking results of the proposed method on the OTB100 dataset under six
common challenges: background clutters, fast motion, motion blur, occlusion, being out of
view, and scale variation. Figure 7 shows the comparison results between our tracker and
other trackers for the six different attributes. It can be seen that the proposed method coped
better with various tracking challenges. In particular, compared with SiamBAN [8], our
tracker performed better under the background clutter challenge, with a 1.6% improvement
in the success rate and 1.4% higher accuracy for the background clutters, which can indicate
that the spatial-semantic attention learning model effectively distinguished the targets
from the background and similar objects. Moreover, when the target had fast motion
and scale variation, the excellent results produced by our method show that the flexible
spatiotemporal constraint can reduce the error response caused by the abrupt change in
the target.

Figure 7. The precision plots and success plots for six challenging attributes on the OTB100 dataset.
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4.4. Results on UAV123

The UAV123 dataset has video captured by a low-altitude drone, containing 123 videos
characterized by a large number of viewpoint changes. We tested our algorithm on the
UAV123 dataset using the same evaluation metric as OTB. (The precision is the percent-
age of video frames whose center position error is less than a given threshold, and the
success rate is the percentage of video frames with border overlap greater than a given
threshold). Table 3 shows the comparison of our method with ATOM [47], SiamBAN [8],
SiamRPN++ [48], DaSiamRPN [42], SiamRPN [7], ECO [49], TCTrack++ [49], SRDCF [45],
SiamTHN [50], LGFF [51], and SAMF [52]). The results show that our tracker had 1.9%
higher accuracy and a 2.6% higher success rate compared with SiamBAN. However, ATOM
had better performance in terms of precision compared with most classification regression-
based trackers. This was due to the fact that ATOM introduced an online trained classi-
fication component, which allowed the network to estimate the target state with higher
classification confidence. Therefore, the centroid of the bounding box was closer to the
true position.

Table 3. Comparison of results of other trackers with ours on UAV123.

Tracker Precision Success Rate

ATOM 0.856 0.643
SiamRPN++ 0.840 0.642

Ours 0.849 0.648
SiamTHN 0.836 0.635

LGFF 0.834 0.632
SiamBAN 0.833 0.631

DaSiamRPN 0.781 0.569
SiamRPN 0.768 0.557

TCTrack++ 0.731 0.519
ECO 0.741 0.525

SRDCF 0.676 0.464
SAMF 0.592 0.395

4.5. Results on NFS

The Need for Speed (NFS) dataset consists of 100 video sequences captured from
real-world scenarios, with a total frame count of up to 380,000. All sequences are pre-
annotated with different visual attributes such as occlusion, fast motion, and background
clutter. We evaluated our tracker in the 30 FPS version of the dataset. The area under the
curve (AUC) score of the success plot reflects the overall tracking results. Table 4 lists the
evaluation results of our approach as well as MDNet [53], ECO [54], C-COT [55], UPDT [56],
ATOM [47], SiamBAN [8], and LGFF [51]. Our tracker ranked second out of all the methods
that participated in the comparison.

Table 4. Comparison with state-of-the-art trackers on the NFS dataset in terms of AUC.

MDNet ECO C-COT UPDT ATOM SiamBAN Ours LGFF

AUC 0.422 0.466 0.488 0.537 0.584 0.594 0.602 0.610

4.6. Results on VOT2016

VOT-2016 consists of video sequences in 60 different scenarios. Unlike OTB’s eval-
uation system, VOT-2016’s evaluation metrics include robustness (failure rate, where a
lower value is best), accuracy (average overlap during successful tracking periods, where a
higher value is best), and EAO (expected average overlap, which quantitatively reflects
both robustness and accuracy, where a higher value is best). In the VOT evaluation pro-
tocol, the tracker will be reinitialized when no overlap between the prediction Bbox and
the ground truth is detected. We compared our tracker with others, namely SiamRPN [7],
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C-COT [55], MDNet [53], SiamRN [57], D3S [58], ROAM [59], SPS [60], SiamRNE [61],
SiamTHN [50], and SiamBAN [8]. Table 5 shows the evaluation results for each tracker. The
EAO of our tracker was further improved compared with SiamBAN, and the failure rate
was also reduced, which shows that our spatial-semantic-aware attention model, adaptive
template updating, and flexible spatiotemporal constraint strategy can effectively reduce
the probability of tracking failure. However, the accuracy of our tracker was worse than
that of D3S, which was limited by the fact that the bounding box in the VOT evaluation
system is rotatable, while the bounding box that our tracker predicts is flush with the
image boundary.

Table 5. Details on the state-of-the-art trackers in VOT2016.

Tracker EAO Accuracy Robustness

SiamRPN 0.344 0.56 1.08
C-COT 0.331 0.53 0.85
MDNet 0.257 0.54 1.2
SiamRN 0.277 0.55 1.37

D3S 0.493 0.660 0.13
SiamBAN 0.505 0.632 0.149

SPS 0.459 0.625 0.158
ROAM 0.441 0.559 0.131

SiamRNE 0.300 0.540 1.120
SiamTHN 0.510 0.625 0.126

Ours 0.515 0.636 0.140

4.7. Results on TC128

To further demonstrate the generality of the proposed tracking method in various
scenarios, we tested our tracker on the TC128 dataset, which is more complex than OTB.
TC128 has 128 color video sequences, and its tracking scenario is more variable than that of
OTB. We compared our method with other trackers, including SiamBAN [8], ADMT [62],
SiamCAR [10], SiamGAT [25], MEEN [63], and Struck [64]. Figure 8 shows the precision
plots and success plots of seven trackers on the TC128 dataset. It can be seen that the scores
of the proposed method on AUC and DP were 79.9% and 58.0%, respectively. Compared
with the second-best tracker (SiamBAN), our tracking method increased by 1.6% and 1.8%
in terms of the AUC and DP, respectively.

Figure 8. Success and precision plots on TC128.
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4.8. Visual Evaluation

To further demonstrate the performance of our tracker in the face of various chal-
lenges, we visualized the tracking results of our tracker versus other trackers in real-world
scenarios. The scenario in Figure 9 includes tracking challenges such as occlusion (in
Matrix and Soccer), scale variation (in Biker, Soccer, Walking2, and Trans), illumination
changes (in Matrix and Soccer), deformation (in Trans), and other changes in the appear-
ance of the target, as well as fast motion (in Matrix and Biker) and background clutters
(in Matrix, Soccer, and Walking2). It can be seen that trackers such as SiamBAN [8], DaSi-
amRPN [42], and ADMT [62] would cause the prediction box to be less accurate and even
track drift when faced with the above challenges. In contrast, our tracking method can
better adapt to target appearance changes and various challenges due to the introduction
of the spatial-semantic-aware attention model and spatiotemporal constraint strategy.

Ours SiamFC++ DaSiamRPN ADMT

Figure 9. The qualitative results of our approach and other trackers on four challenging real-world
scenarios (from top to bottom: Matrix, Biker, Soccer, Walking2, and Trans).

4.9. Ablation Study

In this section, we perform an ablation analysis of the spatial-semantic attention
model and flexible spatiotemporal constraint strategy as well as the adaptive weight
template-updating model. To visually illustrate our proposed components’ effectiveness,
we analyzed our algorithm on the OTB100 dataset using one-pass evaluation. The baseline
method adopted the original deep features of Conv3, Conv4, and Conv5 from ResNet. The
precision (DP) and success rate (OP) are shown in Table 6. Siambase denotes the basic
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tracker used by the algorithm. SiamSA denotes the addition of the spatial-semantic-aware
attention model. SiamSAST denotes the tracker for the combination of the spatial-semantic-
aware attention model and the flexible spatiotemporal constraint strategy. SiamSDP denotes
the final tracker with the combination of the three components. In Table 5, it can be seen
that both the DP and OP gradually improved after adding each of the three components
to the basic tracker. This shows that our spatial-semantic-aware attention model can
effectively enhance the sensitive features of the target and improve the ability of the tracker
to distinguish the target and background information. Thanks to the introduction of the
flexible spatiotemporal constraint strategy, the tracker can react in case of tracking drift.
Therefore, the DP plot using SiamSAST was higher than that for the basic method. After
adding the adaptive weight template update, the accuracy and success rate of SiamSDP
increased by 0.33% and 0.29%, respectively, compared with SiamSAST, indicating that the
adaptive weight template update can adapt to the appearance changes in the target and
reduce the degradation of the tracker. In addition, we further tested the tracking speed
of the proposed algorithm. Since both our spatial-semantic-aware attention model and
adaptive weight template update model contain convolutional neural networks, it can be
seen that the number of parameters of our model and the amount of computation rose
compared with the base tracker, which led to a decrease in tracking speed. Limited by
the resource environment and tracking speed, our method has not been considered for
application to real-time tracking.

Table 6. Ablation studies on the OTB100 dataset.

Tracker DP OP Params (M) FLOPs (M) FPS

SiamBase 0.894 0.682 53.932 5569.01 11.2
SiamSA 0.897 0.686 54.619 6232.32 8.5

SiamSAST 0.899 0.688 54.619 6232.32 8.4
SiamSDP 0.903 0.692 59.801 6495.10 7.9

5. Conclusions

This paper proposes Siamese tracking with spatial-semantic-aware attention and
adaptive template updating to suppress irrelevant information about an object’s appearance
and reduce model degradation. We used the spatial-semantic-aware attention model to
enhance the feature representation ability and improve the tracking performance. The
proposed spatial-aware attention module is responsible for highlighting the location of the
target, and the semantic-aware attention module focuses on important feature channels.
Then, the flexible spatiotemporal constraint strategy was proposed to remove the incorrect
penalty of the fixed spatiotemporal constraint strategy on the correct target response in case
of tracking failure. Finally, we proposed an adaptive weight template-updating strategy
to adapt to changes in target appearance during tracking. It can adaptively generate
new reliable templates using the tracking results of each frame. We conducted extensive
experiments on several challenging datasets such as OTB100, VOT2016, NFS, UAV123, and
TC128 to validate the effectiveness of the proposed method.

In this work, our primary focus was on addressing the challenges associated with
target tracking in scenarios involving abrupt motion. While our spatial-semantic-aware
attention model improved the tracking accuracy, it is important to note that the global
average pooling and convolutional network utilized in the model may result in the loss
of certain feature information. Additionally, the increased number of model parameters
can lead to a decrease in tracking speed. In future works, we will explore alternative
attention mechanisms and consider developing lightweight models to reduce the overall
number of model parameters. Furthermore, tracking models trained and tested on specific
datasets have limitations in their generalization ability, and our study is no exception.
Although the dataset samples used for training of the proposed method are sufficiently
varied, the capturing device acquires video sequences under unbalanced illumination, a
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certain viewing angle, etc., which may lead to capture bias. Ambiguous definitions of
visual semantic facts can also lead to labeling and category bias. The limited nature of the
dataset when confronted with new, unseen samples may lead to erroneous conclusions.
Studying the differences between existing datasets and debiasing methods to improve the
generalization ability of tracking algorithms will be our future research direction.
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