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Abstract: Descriptive geometry has indispensable applications in many engineering activities. A
summary of these is provided in the first chapter of this paper, preceded by a brief introduction into
the methods of representation and mathematical recognition related to our research area, such as
projection perpendicular to a single plane, projection images created by perpendicular projection onto
two mutually perpendicular image planes, but placed on one plane, including the research of curves
and movements, visual representation and perception relying on a mathematical approach, and
studies on toothed driving pairs and tool geometry in order to place the development presented here
among them. As a result of the continuous variability of the technological environment according to
various optimization aspects, the engineering activities must also be continuously adapted to the
changes, for which an appropriate approach and formulation are required from the practitioners of
descriptive geometry, and can even lead to improvement in the field of descriptive geometry. The
imaging procedures are always based on the methods and theorems of descriptive geometry. Our aim
was to examine the spatial variation in the wear of the tool edge and the machining of the components
of toothed drive pairs using two cameras. Resolving contradictions in spatial geometry reconstruction
research is a constant challenge, to which a possible answer in many cases is the searching for the
right projection direction, and positioning cameras appropriately. A special method of enumerating
the possible infinite viewpoints for the reconstruction of tool surface edge curves is presented in the
second part of this paper. In the case of the monitoring the shape geometry, taking into account the
interchangeability of the projection directions, i.e., the property of symmetry, all images made from
two perpendicular directions were taken into account. The procedure for determining the correct
directions in a mathematically exact way is also presented through examples. A new criterion was
formulated for the tested tooth edge of the hob to take into account the shading of the tooth next to it.
The analysis and some of the results of the Monge mapping, suitable for the solution of a mechanical
engineering task to be solved in a specific technical environment, namely defining the conditions for
camera placements that ensure reconstructibility are also presented. Taking physical shadowing into
account, conclusions can be drawn about the degree of distortion of the machined surface from the
spatial deformation of the edge curve of the tool reconstructed with correctly positioned cameras.

Keywords: tool wear measurement; positioning CCD cameras; digitized images; reconstruction
problem; Monge mapping; projector lines; mathematical correspondence; directed angle triple; Monge
cuboid; bijective subset

1. Introduction

One of the objectives of this paper is to highlight the constant challenges of engineering
communication, which can sometimes be accompanied by the need for a new aspect-based
approach to the descriptive geometry, which forms a basis for engineering communication.
Today’s technological progress requires the continuous renewal of knowledge necessary for
the operation and development of more modern devices, primarily engineering knowledge
in particular. Engineering ideas are translated into technical drawings based on descrip-
tive geometry, independent of the device, but always on the 2D plane with a mutually
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clear correspondence between the elements of the 3D space and those of the 2D plane
(supplemented by additional informative data).

One of the many challenges of descriptive geometry is the recognition, highlighted
by Stachel [1], that the essence of descriptive geometry is not that the drawings are “made
by hand”, because even Gaspar Monge, from whom descriptive geometry originates, did
not refer to it as being an essential part of it [2]; in summary, it can be stated that a manual
drawing is not a feature of descriptive geometry. We should not be fooled by the fact
that even with the introduction of 3D-CAD/CG, the essence of hand-drawing descriptive
geometry is that one of the most useful ways to facilitate understanding and firmly fix
memories is to simultaneously use the senses, namely the “eyes” and motor organs, such
as the “hand”, since these things are connected in a similar way when acquiring any type
of knowledge [3].

Visual perception and its modeling, control and learnability have been investigated
by neuroscience research. The connection between visual perception and consciousness
has also been analyzed [4]. According to Stachel, “Descriptive Geometry is the interplay
between the 3D situation and its 2D representation, and between intuitive grasping and rig-
orous logical reasoning” [1]. Therefore, in addition to the theory of projection, descriptive
geometry also includes the techniques of modeling curves and surfaces, as well as the intu-
itive approach of elementary differential geometry and 3D analytical geometry. Descriptive
geometry has two main purposes. Firstly, it provides a method of imaging 3D objects, and
secondly it facilitates the recognition of body shapes by their exact description, as well as
to derive truths and mathematical regularities arising from their shape and position.

Orthogonal projection is the most commonly used method for mapping 3D space onto
a 2D plane.

When projecting physical “real” surfaces of Euclidean space onto a plane using orthog-
onal projection, elevation data are usually also supplied. Cartography, geodesy, mining,
road and railway construction and river regulation, as well as solving certain tasks in
forestry require a special representation method of descriptive geometry, the one view
representation with the indication of elevations [5].

In earth sciences, cartographic data are supplemented with a large amount of informa-
tion during the recording and analysis of the results of seismic monitoring measurements [6].
The field observations of topography are supplemented with measurement data require
global optimization tools and robust statistical techniques to manage the data and extract
additional information in order to build an extended groundwater flow model of the re-
search area [7]. The topographic representation of the complex surface of the terrain is the
basis of digital elevation models DEMs in the professional terminology. In this case, there
is a risk of losing a large amount of detailed topographical information due to traditional
interpolation methods. To avoid this, a new method based on sliding windows has been
proposed to improve the resolution of DEMs [8].

In another research area, the microtopography of machined surfaces is measured
using sensor technology, based on metric orthogonal projection. The effect of the use of a
round milling insert on the surface topography was studied at different cutting speeds. The
surface roughness could be determined from the trace of the tool geometry on the workpiece
taking into account the kinematics which in turn depends on the different cutting speed
and possibly other process characteristics as well. By changing the surface roughness, the
friction between the motion-transmitting machine parts, as well as the wear and corrosion
resistance, and the creep strength of the parts can be influenced [9]. Although the evaluation
of surface quality is applied with 2D parameters during engineering practice, the analysis
of the microtopography of the curved surfaces with a 3D optical microscope also provides
information about the integrity of the surface, for which it is also necessary to determine
the appropriate viewpoints [10]. In an additional area of research, finite element tests of a
2D cross-section are carried out for the analysis of 3D cylindrical industrial facilities and the
physical phenomena occurring in them, for example also in thermal models prepared for
individual industrial applications. In a lumped heat capacity model prepared for transient
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heat convection analysis in cross-air flow, the Finite Element Analysis simulations used
with the ANSYS Fluent code are also performed in 2D sections, the results of which also
show that the geometric shape of the 2D section has a clear effect on heat loss as well [11].

Among the types of multi-view representation, the two-view Monge representation is
the most frequently used during engineering activities [12]. The most important informa-
tional value of the descriptive geometric procedures is that the dimensions and location of
the spatial shapes can be clearly determined (provided with additional information, such
as regarding their movement) [13].

Monge realized that descriptive geometry has a great importance in the field of
engineering, and the treatment of space in this way also gives rise to the study of the
properties of curves. Though most of the lines in any industrially created objects are
the straight lines, using of the curves is so frequently required that the designer should
always be prepared to apply them with confidence and competence. Facility in handling
curved lines can come only as effect of the accurate knowledge of the general principles for
governing of the curve generation or from practice on some concrete cases.

One of Monge’s most talented students was Theodore Olivier, who is primarily known
for creating three-dimensional moving models of descriptive geometric processes. Olivier’s
moving models led to the study of movement transmission by means of descriptive geome-
try, which provided the basis for differential geometric analyses [14]. The time stability of
steps leading to Olivier’s results can also be excellently observed in the typical case of the
generation of 2D curves, according to which the interpretation of the synthetic geometric
evolution of the roulettes is the basis of their analytical definition. For the computer 2D
graphic representation and 2D animation of roulettes, their analytical formulation based
on their synthetic geometric analysis is required, which leads all the way to the topic of
related surface pairs and the gearing [15].

According to Olivier’s theory, an imaginative collaboration between the physical
implementation of the synthetic geometric evolution of roulettes and the virtual display
of its analytical determination can be realized by operating drawing educational robots
combined with the Desmos dynamic geometry software developed for this purpose and
operated with adjustable drive pairs [16]. The tooth profile of elliptical gears with a
continuously variable gear ratio has a special geometry, an ellipse involute instead of the
“standard” circular involute- Its 3D printed model of which was also created to support the
developed process based on its mathematical geometrical definition [17]. The changing
ratio noncircular gear drives are imaginative machine parts that offer a wide range of
applications. In some special engineering fields, these solutions (determined by the use
of transported lines of actions, resulting in variable axis distance and tooth profile [18], or
even by applying the basic law of gearing, the function of alternating profile offsets at the
constant axis distance was determined within certain limits [19]) can have many advantages
over traditional solutions. In the field of novel approaches to the design of space curves
corresponding to the most diverse boundary conditions, such as the optimization of the
movement paths of robot arms, the industry constantly floods researchers with challenges.
An up-to-date hybrid algorithm has been developed in its geometrically also new approach,
which determine that trajectory of a robot arm with the lowest cycle time between two
given points, avoiding obstacles from a space of possible ones [20].

The determination of the twisting, which replaces the movement between two different
positions of the motion trajectories, was also inserted into the constructive geometric model
developed for the investigation of kinematic drive pairs with the descriptive geometrical
methods [21]. Following Theodore Olivier’s idea on the practical application of theoretical
mathematical research should be tuned to physical realizations, the definition and visual-
ization of the time-like axis of helical hypersurfaces [22] is also a possible connection point
between mathematics and engineering research fields.

In the case of machining a spiroid worm with axis adjustment, the effectiveness of
the knowledge of the momentary torsion axis and the correct choice of the descriptive
geometrical projections is demonstrated, among other things, by the use of views following
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the motion transmission processes when determining the drive pin profile for eliminating
the thread pitch fluctuation. In the case of machining with traditional thread grinding,
the generatrix of the reference cone of the conical worm must be placed onto the path
of the thread grinder, namely its axis must be set with the semi-angle of the reference
cone, with a drive pin converting the direction of motion. The momentary screw axes
of the time-dependent relative motion of interconnected space systems allow us to infer
the momentary poles in the corresponding views. In the corresponding views, the radius
drawn from the momentary pole to the moving point is perpendicular to the trajectory
tangent. By selecting the appropriate length of the tangent, the drive pin profile can be
constructed, namely accurately calculated, in an explicit form [23].

By defining the spatial kinematics method for following the operation of the drive
pairs with mathematical precision, in the mathematical model built on properly interpreted
views, the tooth surface points of the gear wheel connected to the Archimedean worm
can be generated with the numerical procedure developed for this purpose, which is a
mathematical geometrical modeling of the gear tooth surface [24].

The second of the two main purposes of descriptive geometry is to improve the
mathematical visual perception of objects in three-dimensional space [25]. For the modeling
procedures of the imaging of spatial objects, several concepts worthy of consideration have
been created [26].

A serious challenge for applied optical research is to harmonize the operation of optical
imaging systems and the toolbox of geometric optics with mathematical formulas in such a
way that, by following the imaging processes perceptible to the human eye, it helps visual
recognition while also supporting the evolving of geometric awareness [27].

Several computer imaging techniques exist that simulate a critical property of human
vision namely imperfection resulting from highly effective wave front aberration that vary
from person to person. In addition to existing vision simulation techniques, there are
many new challenges in rendering algorithms to simulate aberrant human vision [28].
An exact solution for connecting visualization with conscious geometric interpretation is
computer-enhanced descriptive geometry (CeDG), a modern scientific approach to solving
and creating computer modelling of three-dimensional (3D) geometric systems through
descriptive geometry procedures. The contribution of the new approach to the field of
science is the inheritance of the laws of projective geometric invariants bearing the signs of
duality, which ensure reliability and accuracy at the same time. To support the theoretical
foundations, the procedure has been also presented by determining the intersection curve
of two surfaces in a parametric implicit functional form [29].

A special form of modelling was published during a promising research of three-
dimensional virtual data visualization tools and methods. The relationship of the different
life formats that can be used as input data was represented using a sphere-based visualiza-
tion technique, the ends of the nodes were placed on the sphere and the relationships were
displayed with tube-like surfaces [30].

A number of concepts have been created for modelling spatial objects, which are
widely recognized [31]. The relationships of the different file formats that can be used as
input data were represented using a sphere-based visualization technique; the ends of the
nodes were placed on the sphere with the relationships displayed as tube-like surfaces [32].

During the creation of a model of an existing physical 3D object, one of the many
problems that arise can be classified as difficulties associated with the geometric accuracy
of the data and the visualization quality of the result. The main reason mentioned for
modelling problems is that none of the current computer-aided design (CAD) software
packages have sufficient tools to accurately map the measurement data of an object to
be modelled from all the necessary aspect. For this reason, the process of 3D modelling
consists of a relatively large proportion of manual work, such as when arranging individual
points and in the case of approximation of curves and surfaces. In some cases, it is necessary
to generalize the model in the CAD system, which reduces the accuracy and field data
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quality. As a possible solution, the use of topological codes and the use of the new specific
CAD services created was also proposed in a study by Bartonek and co-authors [33].

Only those with sufficient skills in descriptive geometry are able to professionally use
CAD modelling programs due to communication based on views taken from descriptive
geometry [34]. Just as the importance of mathematical knowledge continues to increase
with the transfer of calculation work to computers, an increasingly high level of geo-
metrical knowledge is also required to operate it increasingly sophisticated modelling
software [35–38]. The spatial form imagined by the mathematical geometric definition is
realized during the physical implementation (industrial production) and will be influenced
by several technological and production processes related factors [39]. One possible abstract
formulation of this process is mathematical geometric modelling [40]. A number of techno-
logical and processing parameters are added to the mathematical geometric parameters of
the surfaces of parts during production, resulting in deviation from the originally defined
ideal surface.

Among other things, production geometry focuses on the theory of the geometry
of tools that machine the industrial parts, the examination and analysis of the surface
deviation of the machined parts compared to the geometrically defined surfaces, and the
development of the related manufacturing processes, all which are based on descriptive
geometry. For production geometry challenges, an acceptable answer must be given every
time which, while obviously limited by the available technologies and resources, should
nevertheless result in the smallest deviations possible between the manufactured and the
mathematically defined surfaces.

Olivier’s research was unique for a long time in the two main fields of the tooth-
generation theory of mechanisms, teeth meshing conditions and manufacturing geometry.
In his work published in 1842, he even separated the tooth surface theory from the analytical
(mathematical) and enveloping (geometrical) methods [41]. According to his interpretation,
the question of tooth meshing in its entirety belongs to descriptive geometry. According to
Gohman, tooth theory is a special area of the discipline of mathematics, where researchers,
in contrast to other areas of mathematics science, should only take small steps forward,
always looking for the next safe point.

The essential role both scientists played in creating the foundations of today’s spatial
tooth theory is indisputable [40]. In worm gear drive research, a “Worm Scientific School”
has been established at the University of Miskolc, producing 13 defended doctoral disserta-
tions. Synthetic geometry supported by analytical geometry was applied to analyze the
structure and operation of technical constructions, such as for the production geometry
development of the components of conical and cylindrical worm gear drive pairs during
the creation of the constructive geometric model. The mathematical geometric generation
of helicoidal surfaces in the constructive geometric model sets the direction for the devel-
opment regarding the correct machining of cylindrical and conical worms and that of their
production geometry [42].

A typical example of the production geometry examinations was aimed at comparing
the modified geometric parameters of spur gears having normal involute teeth and the
related technological parameters were compared with the manufacturing parameters to
reveal the correlations in order to advance the technological design [43]. In the industrial
applications, instead of the elemental toothing created by mutual enveloping, so-called
profile offset toothing is often used, which can increase the load capacity and prevent
malfunctions. However, since there is no solution that is favorable from all aspects at the
same time for the selection of the profile shift coefficients, the basis of the decision is always
a careful consideration of the operating conditions and the expected damages. However,
with appropriate objective functions, it is possible to take into account several aspects at
the same time to choose the profile shift coefficient, including the suitable lubricating film
thickness, linear wear, gear tooth bending stress, and Hertzian stress, which affect tooth
damage and operating conditions [44].
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The production geometry of the components of the conical worm gear drives is a
serious challenge, especially in connection with the analysis of the undercutting. The
boundary line of the curvature interference has been investigated for the tooth surface of a
gear enveloped by a conical helicoid surface. By analyzing the effect of the main design
parameters on the curvature interference, the positions on the concave tooth surface of the
gear with a chance of undercutting were delimited [45].

A detailed analysis of the contact between the worm gear tooth surfaces of the worm
gear and the involute worm tooth surface can be made by applying the mathematical model
for the dynamical analysis of the involute cylindrical worm gear drive tests regarding the
load. Using the torsional oscillating dynamical model, which clearly follows the geometric
interpretation, the influence of the geometric parameters the calculation of deviations,
velocities or accelerations at any random node of the dynamic model can be investigated,
and together with other dynamic characteristics the position of the lubricant in the contact
zone between the tooth surfaces can be analyzed, because if it is displaced, metal contact
and wear occur [46]. The geometry of worm teeth has a significant effect on the design of
the lubricating wedge, which is important in terms of increasing wear resistance, service
life and efficiency [47].

The operating surfaces of drive pair elements are produced by enveloping the surface
of the machining tool surface. The increase in the variety of technological solutions also
requires the continuous adaptation and investigation of tool geometry. And the develop-
ment of tool geometry itself carries the geometrical challenges of descriptive geometry. The
idea of the theoretical analysis of the descriptive geometry was related to the wear test of
the tool, which was carried out by our Worm Scientific Research Group in the DifiCAD
Engineering Office, which has a cooperation agreement with the University of Miskolc. A
special approach to ensuring reconstruction from digitized images was proposed in the
field of tool geometry research related to our Worm Scientific Research Group. Measur-
ing the wear of the cutting edge of the tool with only one CCD (Charge-coupled Device)
camera and a distance meter placed next to its lens already gave rise to doubts about the
accuracy of the measurement [48]. It is preferable in terms of geometric accuracy to test the
cutting-edge wear based on the true-to-size Monge representation with images taken with
two CCD cameras positioned at right angles to each other, as can be seen in Figure 1.
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Figure 1. Schematic layout of the relationship between the images taken by CCD cameras, arranged
perpendicularly to each other and facing the v1 and v2 projector lines, and Monge mapping.

For a given cutting edge curve, the image plane system can be defined in an infinite
number of ways.
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Definition 1. An image plane system {K1, K2} consisting of mutually perpendicular image planes
together with the first projector line v1 perpendicular to the first image plane, and the second
projector line v2 perpendicular to the second image plane defines a Monge projection.

Hereinafter, the statements are made using the term as defined above. Therefore, not
only the image plane system, but also the Monge projection can be used for a curve g in an
infinite variety of ways. The formulated task was to determine the criteria for the positions
of the image plane systems of the Monge mapping relative to an object fixed in the space,
to be meet so that the fixed object of the space can be clearly reconstructed only from the
two projections on the image planes of the Monge representation only, without any other
information [49]. The reconstructibility of the g curve does not change when the image
planes are exchanged, so taking this symmetry property into account, all possibilities were
considered [50].

2. Method of Ensuring the Bijectivity of Monge’s Representation by Defining the
Directions of the Views

The need to investigate bijectivity has been created by the requirement to reconstruct
digitized Monge images during the research work in. Spatial objects are represented by their
surface edges and lines, so as a first step the examination should be limited to these. While
Monge’s representation of the point is always clear if the generally known conventions are
met, anomalies may arise in the practical application of descriptive geometry, for example
during the reconstruction of curves, which must be consciously kept in mind. For example,
neither the representation of a circle in general location nor that representation of a profile
straight line is clear due to reconstruction complications, so the reconstruction in these
cases is not clear from only two digitized images without additional information. For these
and similar occurrences the descriptive geometry has found special clarifications to ensure
bijectivity up to now. In the case of curve mapping, the reconstruction may require some
additional information such as correspondence marking. To ensure the reconstruction
when representation of the curves g, the appropriate placement of the image plane system
was formulated as tasks, in accordance with engineering expediency.

2.1. Examining the Spatial Curve

In the case of the Monge representation of the differential geometrically interpreted
curve g, the coordinate planes [xy] and [yz] of a Cartesian coordinate system are fitted to
the image planes K1 and K2 of the Monge representation, respectively. In this arrangement,
the y coordinate axis will be the intersection straight line of the two image planes, namely
the x12 axis.

Theorem 1. If the image curves g′ and g′′ of the curve g can be described by the functions y→f1(y)
and y→f2(y), respectively, in the corresponding Cartesian coordinate planes of the image planes,
where x = f1(y) and z = f2(y) i.e., its points have coordinates P(f1(y), y, f2(y)), then any part of the
curve g can be clearly reconstructed from its images.

A sketch of the curve, which can be clearly reconstructed from its projections, is shown
in Figure 2.
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Proof of Theorem 1. The function is such a subset of the Descartes product without
identical first terms and no different second terms. Therefore, to one y there is assigned
only one f1(y) ≡ P′ fitting to the plane [xy] ≡ K1 and one f2(y) ≡ P′′ fitting to the plane
[yz] ≡ K2. These lines assigning P′ and P′′ to a single y value is located perpendicular to the
coordinate axis y ≡ x12 axis. Thus, after the merging of the image planes K1 and K2, the (P′,
P′′) forms an ordered pair of points to which only one spatial point P belongs. Therefore,
any point of the curve g and thus any part of it can be clearly reconstructed. □

Corollary 1. If the images g′ and g′′ of a curve g in the O[x, y, z] coordinate system of a Monge
projection can be written separately as functions of y→f1(y) and y→f2(y), then no single profile
plane of the Monge projection intersects more than one point each from g′ and g′′ each.

Theorem 2. If the image curves g′ and g′′ of the curve g cannot be written in the corresponding
Cartesian coordinate planes as function x = f1(y) and z = f2(y), respectively the assignments and
y→f1(y) and y→f2(y) are not functions, then there is a part of curve g, that cannot be clearly
reconstructed from its two images.

A sketch of the curve, which cannot be clearly reconstructed from its projections
without additional information, is shown in Figure 3.
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Figure 3. Non bijective representation of the curve g.

Proof of Theorem 2. Since the projected curves g′ and g′′ of the spatial curve g cannot
be formed as functions, but obviously they are curves, on the corresponding Cartesian
coordinate planes, a single y has several f1(y) ≡ P′ points lying on the plane [xy] ≡ K1 and
several points f2(y) ≡ P′′ lying on the plane [yz] ≡ K2. These image points P′ and P′′ fitting
to a recall line perpendicular to the axis y ≡ x12 can optionally be arranged to form ordered
pairs of points, to which the spatial points P belong. So, there exists a point of the curve g
and a neighbor of this point that cannot be reconstructed from only two images. □

Corollary 2. If the image curves g′ and g′′ in the corresponding coordinate planes of the given
Cartesian coordinate system cannot be written as functions x = f1(y) and z = f2(y) then

1. there exist profile planes of the Monge projection that intersect the curve g in more than one
point, and

2. there is at least one profile plane tangent to g.

Theorem 3. If either of the image curves g′ and g′′ of the curve g cannot be written in the
corresponding Cartesian coordinate plane as a function x = f1(y) or z = f2(y) but the other image is a
double projection, and this can be written as functions z = f2(y) or x = f1(y), then any part of g can
be clearly reconstructed from only two images.

A sketch of the projections of such a curve can be seen in Figure 4. One image of this
curve cannot be written as a function on the corresponding Cartesian coordinate plane, but
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the other image is a double projection, that can be written as a function, so any part of the
curve can be clearly reconstructed from only its two images.
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Proof of Theorem 3.

1. Assume that from the image curves g′ and g′′ of the curve g, g′ is a double projection,
and it can be written as a function x = f1(y), and the g′′ cannot be written as a function
z = f2(y) on the corresponding Cartesian coordinate plane. In this case, a single y
corresponds to a point f1(y) ≡ P′ fitting to the plane [xy] ≡ K1 and several points
f2(y) ≡ P′′ fitting to the plane [yz] ≡ K2. These one P′ and several P′′ points located
perpendicular to the y ≡ x12 axis can be assigned to each other to form ordered pairs
of points, to which several spatial P points belong. Thus, any point of the curve g and
thus any part of it can be clearly reconstructed from only two images.

2. If the image curve g′′ is a double projection which can be written as a function z = f2(y)
and g′ cannot be written as a function x = f1(y), the proof is the indices 1 and 2, as well
as ′, and ′′ can be done in the same way as in case 1 by exchanging the signs. □

Corollary 3. If either of the image curves g′ and g′′ of the curve g cannot be written in the
corresponding Cartesian coordinate plane as a function x = f1(y) or z = f2(y), but the other image is
a double projection, and this can be written as a function z = f2(y) or x = f1(y), then there is at least
one profile plane that touches g.

Theorem 4. If the curve g does not have a tangent parallel to the profile straight directional, then
the representation of any part of the curve is bijective.

Proof of Theorem 4. If the curve g does not have a tangent in the profile direction, this
means that the tangent at any point P0 with parameter u0 of its images is not in the direction
of the recall line, namely the recall line intersects the examined curve in point P0. So, there
is no point P0 of the curve g with parameter u0, in the region of which all points P−1 and P1
with parameters u−1 and u1 are located on one side of the recall line of the point P0, where
u−1 < u0 < u1. This means that there is no curve segment that has two points on a recall
straight line. Because each recall straight line has only one point on the curve g, any point
on curve g can be reconstructed from its two images, which means that the representation
of the curve is bijective. □

All of this follows from the fact that not all points of a curve can be marked with letter
and comma.

2.2. Correspondence between Ordered Orthogonal Projections and Real Number Triplets

For a fixed curve of the space, the image plane system can be taken in an infinite
number of ways. Among the Monge projections that can be added to a fixed curve of the
space, there may be those in which the representation of any part of the curve is bijective,
and other in which the representation of part of the curve is not bijective.
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Theorem 5. Regarding a spatial object, the same result is obtained during the reconstruction
procedure in all Monge projections that can be moved into each other by parallel displacement.

Proof of Theorem 5. Since the parallel translation is a congruence transformation, the
translation does not change the image curves. □

Figure 5 shows some Monge projections that can be transformed into each other by
parallel displacement.
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Therefore, in what follows, two Monge projections will be considered identical if their
reference systems, namely their image plane systems can be moved into each other by
parallel displacement. Based on the above, in order to facilitate the further investigations, a
point O is fixed in the space, and it is expected that the image planes and projector lines of
the Monge projections fit to this point. While the x12 axis, namely the intersection line of
the two image planes can be characterized by 2 free parameters, for example two spherical
coordinates, the image planes can be described by 1 free parameter in the possibilities of
rotation around the x12 axis. Consequently, Monge projections can be described with 3 free
parameters in addition to the previous restrictions. After all this, a number triple has been
assigned to each Monge projection, with its elements having the geometric meaning of an
angle. However, before assigning these, it is necessary to define the directed angles of the
straight line.

2.2.1. Directed Angles of the Straight Line

In order to create the definitions, an O[x, y, z] Cartesian coordinate system has to be
fixed in the space. Directed angles of the straight line have been determined in this space
fixed Cartesian coordinate system.

Definition 2. The first directed angle α (0 ≤ α ≤ π) of the straight line e passing through the
origin point O is the angle, by which the semi-axis x+ can be rotated towards its first projection e′ of
the straight line e on the plane [xy] in the direction of the semi-axis y+, counter- clockwise as viewed
from a point at infinity on the semi-axis z+ (Figure 6). The first directed angle should be α = 0, if the
straight line e coincides with the axis z. The first directed angle of the straight line bypassing the
origin point O is the same as that of the one running parallel to it and passing through the origin
point O.
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Definition 3. The second directed angle β (0 ≤ β ≤ π) of the straight line e passing through the
origin point O is the angle, by which the semi-axis y+ can be rotated to its second projection e′′ of the
straight line e on the plane [yz] in the direction of the semi-axis z+, counter- clockwise viewed from
a point at infinity on the semi-axis x+ (Figure 6). The second directed angle should be β = 0, if the
straight line e coincides with the axis x. The second directed angle of the straight line e bypassing the
origin point O is the same as that of the one running parallel to it and passing through the origin O.

Definition 4. The third directed angle γ (0 ≤ γ ≤ π) of the straight line e passing through the
origin point O is the angle by which the semi-axis z+ can be rotated to the third projection e′′′ of
the straight line e on the plane [zx] in the direction of the semi-axis x+, counter-clockwise viewed
from the infinity point of the semi-axis y+ (Figure 6). The third directed angle should be interpreted
according to γ = 0, if the straight line e coincides with the axis y. The third directed angle of the
straight line e bypassing the origin point O is the same as the third directed angle of the straight line
parallel to it passing through the origin point O.

Theorem 6. If the image planes of the image planes system {K1, K2} of a Monge projection fit to a
fix point O of the space, then the Monge projection is defined by its projector lines v1 and v2 passing
through the origin O.

Proof of Theorem 6. The image planes K1 and K2 will be perpendicular v1, and v2,
respectively. There are an infinite number of these pairs of planes, but the Monge systems
are derived from each other with a parallel display, namely these are equivalent from the
point of view of the present examination. □

Theorem 7. If a given Monge projection is bijective or nonbijective with respect to a given curve g,
then the Monge projection obtained by exchanging the image planes K1, K2 and projector lines v1,
v2 is also bijective or nonbijective with respect to the given curve g.

Proof of Theorem 7. By exchanging the image planes K1 and K2 and the projector lines v1,
v2 the image curves g′ and g′′ of the g curve do not modify, only their comma notations are
exchanged, namely g′ becomes g′′ and g′′ becomes g′ because of the symmetry property. □

The goal is to create a mapping between the Monge projections and the number triplets
that clearly characterize them, using the real directed angles defined above, in such a way
that all ordered two-images must be discussed.

2.2.2. The Relationship between the Triplets of Directed Angles and the Monge Projections

Figure 5 shows some Monge projections that can be transformed into each other by
parallel displacement.
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Theorem 8. In addition to those Monge projections, whose projector lines v1 and v2 fulfil both the
v1 ∈ [zx] and v2 /∈ [zx] conditions, define three independent parameters (α, β, γ) in a space fixed
Cartesian coordinate system O[x, y, z] as follows: the first directed angle of the first projector line v1
of the Monge projection should be parameter α, while the second directed angle should be parameter
β, and the third directed angle of the second projector line v2 should be parameter γ.

Figure 5 shows some Monge projections that can be transformed into each other by
parallel displacement.

Remark 1. The mapping between the Monge projections satisfying the condition given in the
Theorem 8 and the directed angles in the range 0 ≤ α, β, γ ≤ π is injective, but not surjective.

Proof of Theorem 8. The proof is divided into two parts: 1, when v1 /∈ [zx], and 2, when
v1,v2 ∈ [zx].

1. The first projector line v1 is not on the coordinate plane [zx] of the O[x, y, z] Cartesian
coordinate system. The rotation of x+ on the plane [xy] by α into the direction of y+

yields the first image v1
′ of the projector line v1, to which the plane V1 fits and is

perpendicular to the plane [xy]. Then, the rotation of y+ on the plane [yz] by into
the direction of z+ results the second image v1

′′ of the projector line v1, to which the
plane V2 fits and is perpendicular to the plane [yz]. Since the assumption v1 /∈ [zx] is
hold, there exists a straight line of intersection of planes V1 and V2, serving as the first
projector line v1 of the sought Monge projection. Then, the rotation of z+ on the plane
[zx] with γ into the direction of x+ yields the third image v2

′′′ of the projector line v2,
to which the plane V3 fits and is perpendicular to the plane [zx]. Again, due to our
assumption v1 /∈ [zx], the plane N perpendicular to v1 can never coincides with plane
V3, so there is a straight line of intersection of planes N and V3. This is the second
projector line v2 of the Monge projection (Figure 7). Based on Theorem 6, the projector
lines v1 and v2 determine the Monge projection.

2. The first and second projector lines v1 and v2 fit on the coordinate plane [zx] of
the Cartesian coordinate system O[x, y, z]. In this case, the corresponding Monge
projection is derived from the directed angles triplet (α, β, γ) by rotating z+ in the
direction of x+ by γ on the plane [zx]. This will be the second projector line v2 of the
sought Monge projection, and then the first projector line of v1 is perpendicular to it
as shown in Figure 8. □
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Figure 8. The lines v1, v2 of Monge projections fitting to the plane [zx] of the space fixed Cartesian
coordinate system O[x, y, z].

It must also be stated here that based on Theorem 6, the projector lines v1 and v2
determines the Monge projection. Since v1 has a first and a second directed angle and v2
has a third directed angle by definition, each Monge projection can be assigned one number
triple only. According to the reverse assignment, each point of the Monge cuboid defines a
triplet of real numbers, the geometric meaning of which is a directed angle, which provides
a Monge projection respected to the given curve.

Definition 5. In the O[α, β, γ] Cartesian coordinate system, the subset of the elements of the
directed angle triples (α, β, γ) within the range [0, π] to which a Monge projection clearly belongs
is called a Monge cuboid.

After examining which are the triplets satisfying the conditions 0 ≤ α, β, γ ≤ π that
cannot be assigned to a Monge projection, due to the statements made previously, the
points of the π × π × π cube that do not belong to the Monge projection to the Monge
cuboid can also be determined.

The points satisfying the following condition are located inside the Monge cuboid as
illustrated by Figure 9.

0 < α < π, 0 < β < π/2 and π/2 < β < π, 0 < γ < π (1)
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Points satisfying the following conditions are located on the surface of the Monge
cuboid as illustrated by Figure 9.

− 0 < α < π, β = π, 0 < γ < π

− 0 < α < π, 0 < β < π/2 and π/2 < β < π, γ = π

− α = π, β = π/2, 0 < γ < π/2 and π/2 < γ < π

− α = 0, β = π/2, γ = π/2
− α = π, β = 0, γ = π

 (2)

In summary, according to the presented procedure, a Monge projection is assigned to
a point of the Monge cuboid by interpreting the triplet of angle parameters as coordinates.
Inversely, any point of the Monge cuboid defines a Monge projection by interpreting its
coordinates as a triplet of directed angles. A mathematical mapping is created between
Monge projections and Monge cuboid points. This method covers all two orthogonal
projections assigned to each other that are relevant in engineering due to their symmetry
property due to their interchangeability. This is suitable for carrying out our analyses,
because the test of reconstructability with respect to a curve results in the same conclusion
by exchanging the first and second views. The presentation of the method was based on
what was described in the literature [49].

2.3. Application of the Method

When applying the method, there are 3 important points to consider:

1. The curve must be positioned in a fixed O[x, y, z] initial Cartesian coordinate system.
2. The direction cone formed from the directions of the tangents of the curve must be de-

termined, that is, the tangents of the curve must be moved parallel to themselves into
a properly selected point of the z axis, such as the origin O, by parallel displacement.

3. Examining the mutual positions of the profile planes of the Monge projections and the
directional cone, it is necessary to find the cases when they do not have a common line.

The correctness of the method can be immediately checked and verified by the practi-
tioners of descriptive geometry through the examples presented below.

2.3.1. Procedure for Representing a Straight Line

It is advisable to choose the mutual position of the straight line and the Cartesian
coordinate system as simply as possible. Therefore, it is convenient to define line e as one
coinciding with one of the coordinate axes, such as the z, as shown in Figure 10.

In this case, the direction cone of the straight line e is formed by the tangents moved to
the point O characterized by coordinates (0, 0, 0), namely the axis z itself. Consequently, in
any Monge projection, it is not possible to reconstruct the line e from only its two images, in
which the profile plane P of the Monge projection also fits the axis z, namely P is an element
of the planes series fitting on the axis z, unless the straight line e is a projector line. In the
case of the representation of the line e coinciding with coordinate axis z, the nonbijective
subset of the Monge cuboid can be determined in three position of the profile plane, which
are explained in the following:

1. In the first case, the profile plane labeled P1 fits on the [zx] coordinate plane, namely
P1 ≡ [zx], as well as the projector lines v1 and v2 do not fit on either the z or x
coordinate axes. In this case, the subset to be found is declared by angle triples
satisfying the following conditions

α = π, β = π/2, 0 < γ < π/2 and π/2 < γ < π (3)

2. In the second case, the profile plane labeled P2 fits on the [yz] coordinate plane,
namely P2 ≡ [yz], as well as the projector lines v1 and v2 do not fit on either the y
or x coordinate axes. In this case, the subset to be found is declared by angle triples
satisfying the following conditions
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α = π/2, 0 < β < π/2 and π/2< β < π, γ = π (4)

3. In the third case, as outlined in Figure 10, the profile plane in position P3 contains on
the z coordinate axis, but does not contain either of the x or y coordinate axes, and
none of the projector lines lie onto the z coordinate axis.

In this case, the first directed angle value can be chosen according to the conditions
0 < α < π/2 and π/2 < α < π. In the case of a fix α value, the second directed angle can be
chosen according to the conditions 0 < β < π/2 and π/2 < β < π. In the case of a fixed α

and β, what conditions γ fulfills was investigated.
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Figure 10. The straight line e coincides with axis z, and the profile planes fitted to it are in positions
P1, P2 and P3 with contained projector lines vi and vj (i,j = 1,2 and i ̸= j), which do not coincide with
any of the coordinate axes.

To examine the projector lines lying the profile plane P3 the direction vector of the first
projector line v1 should be v1(v1x, v1y, v1z), the direction vector of the second projection
line v2 should be v2(v2x, v2y, v2z) as shown in Figure 11.
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In the case of P3, the n normal vector of the first projector plane V1 lying to the v1 and
v2 projector lines should be n = (v1y, −v1x, 0).

Since v2⊥v1 and v2⊥n, due to the following relation

v2 = v1 × n (5)

the coordinates of the v2 second projector line are(
v1x · v1z , v1y · v1z , − v2

1x − v2
1y

)
(6)

As can be seen in Figure 11, in the case of conditions α, β, γ ̸= 0, π, relation

cos2 α = v2
1x/

(
v2

1 x + v2
1y

)
(7)

and based on Figure 11, under the α, β, γ ̸= 0, π conditions, the following simple relation-
ships can be established

tgα = v1y/v1x
tgβ = v1z/v1y
tgγ = v2x/v2z

 (8)

and the α, β, γ ̸= π/2 exclusions, the following conclusions can be drawn

ctgα = v1x/v1y
ctgβ = v1y/v1z
ctgγ = v2z/v2y

 (9)

Based on the known trigonometric relations presented in (8) and (9), the following
equation can be obtained for a fixed pair of (α, β)

γ = arctg(−cosα · sinα · tgβ) (10)

Coordinates of the points belonging to the nonbijective subset of the Monge cuboid
fulfill the following conditions in the case of the straight line e lying on the z coordinate axis

− α = π, β = π/2, 0 < γ < π/2 and π/2 < γ < π

− α = π/2, 0 < β < π/2 and π/2 < β < π, γ = π

− 0 < α, β < π/2 and π/2 < α, β < π, γ ̸= 0 ⇒ γ = arctg(−cosα · sinα · tgβ)

 (11)

2.3.2. Procedure for Representing a Circle

The examination has been carried out in the case of a circle on the [xy] plane with its
center in the origin of the Cartesian coordinate system. In this case, by shifting the tangents
of the circle to the origin point O, the special cone of the tangent directions is a series of
straight lines in a radial position on the [xy] plane with the origin O as the center. The
direction cone of the circle is intersected by the profile plane of every Monge projection
passing through the origin, that is, the circle has a tangent in the profile direction. It should
be noted that if the profile plane coincides with the plane [xy], the two images of the circle
are each a diameter-length section. If the first projector line v1 or the second projector line
v2 lies in the plane [xy], then one of the images of the circle is a diameter-length section,
namely a double projection, so it can be described as a function on the corresponding
Cartesian coordinate plane, while the other image is a circle or an ellipse. In this exceptional
case, the representation of the circle with the given location is bijective. For the reasons
listed earlier, there are two cases to be considered:

1. If the v1 ∈ [xy] and v2 /∈ [xy] are fulfilled, the representation of the given circle is
bijective. For v1 /∈ x, see Figure 12a). For v1∈x and v2∈z, see Figure 12b).
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2. Where v2 ∈ [xy] and v1 ∉ [xy], the fulfillment of the v1∈z condition is determined by 
the directed angles α = 0, β = π/2 and γ = π/2 as shown in Figure 13a), so the circle 
can be clearly represented. If v2 ∈ [xy] and v1 ∉ [xy] are fulfilled as shown in Figure 
13b), the representation of the given circle is bijective. 

Figure 12. The circle contained by the plane [xy] with its center origin. (a) The projector lines v1 and
v2 coincide with the coordinate axes x and z, respectively. (b) The projector line v1 is contained by the
coordinate plane [xy] but not coincides with any of the coordinate axes and the projector line v2 is on
the normal plane N of the v1 projector line.

2. Where v2 ∈ [xy] and v1 /∈ [xy], the fulfillment of the v1∈z condition is determined
by the directed angles α = 0, β = π/2 and γ = π/2 as shown in Figure 13a), so the
circle can be clearly represented. If v2 ∈ [xy] and v1 /∈ [xy] are fulfilled as shown in
Figure 13b), the representation of the given circle is bijective.
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Figure 13. The circle contained by the coordinate plane [xy] with its center in the origin O and (a) the
v1 projector line coincide with the coordinate axis z, respectively the v2 projector line coincide with
the coordinate axis x. (b) the v1 projector line is contained on the coordinate plane [xy] but not
coincide with any of the coordinate axes and the projector line v2 is on its normal plane N.

Based on the reasoning, the triplets of directed angles that meet the following condi-
tions are interpreted as coordinates and such as result the points of the bijective part of the
Monge cuboid with respect to the circle placed in the determined position

− 0 < α < π, β = π, 0 < γ < π/2 and π/2 < γ < π

− α = π, β = 0, γ = π

− 0 < α < π, 0 < β < π/2 and π/2< β < π, γ = π/2
− α = 0, β = π/2, γ = π/2

 (12)
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The three free parameters represented by the directed angle parameters satisfying the above
conditions define suitable directions for locating the two CCD cameras, so that the circle
can be reconstructed from the two images taken by them.

2.3.3. Procedure for Representing a Helix

The center line of the helix should practically coincide with the z coordinate axis of the
Cartesian coordinate system, as shown in Figure 14.
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Because of the cyclicity of the curve, the helix has been examined for one thread pitch.
The parametric equation of one thread of the helix with the thread pitch parameter p on a
cylinder with radius r and axis z is

x = r · cosφ
y = r · sinφ

z = p ·φ

 (13)

where p ∈ R \{0}, r ∈ R+, 0 ≤ φ < 2π.
The derivate coordinates of the helix result in the tangent vectors re

xe = r · sin φ
ye = −r · cosφ
ze = p

 (14)

The direction cone of the helix is created by the tangents moved parallel to themselves
to the origin point O. The half opening angle of the direction cone of the tangent vectors
is the constant angle ω. In any Monge projection, whose profile plane P2 contains two
generatrixes of the direction cone of the tangents as shown in Figure 15, the representation
of a pitch of the helix results two tangents in profile direction.

This means that there is a part of the helix whose representation is not clear, namely it
is not bijective in the Monge projection belonging to the profile plane at position P2.

If the profile plane of a Monge projection contains one tangent straight line of the cone
of tangents to one thread of the helix, as that can be seen in the profile plane at position
P1 in Figure 15, then at the point belonging to the profile-oriented tangent straight line
of the helix, the tangent straight line intersects the image curves, namely this point is the
singular points of the image curves, due to the cyclicity of the helix and its images. In this
case, any part of the helix can be clearly reconstructed from its two images. If the cone of
the tangential directions of the helix does not have a single common straight line with the
profile plane of the Monge projection, namely the profile plane in position P0 as shown in
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Figure 15. In this case, the images of the helix are curtate cycloids (Figure 16) or planar
curves, which are in affine relationship to the curtate cycloids and contain inflection points.
In the case of such a Monge projection, any segment of the helix can be unambiguously
reproduced from its first and second images.
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Figure 15. The schematic illustration of the relative positions between the direction cone of the
tangents with the z-axis helix and the profile planes of the Monge projections, when they have two
common component lines in the P2 position, one common component line in the P1 position and no
common component line in the case of the P0 position of the profile plane.
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Figure 16. A complete turn of a curtate cycloid created by the inner point C0 of the circle rolling on a
straight line without slipping.

The normal vectors n(nx, ny, nz) are perpendicular to the tangent planes of the cone of
tangent directions of the helix. The normal vectors placed at the origin O create the normal
cone, as shown in Figure 17.
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Figure 17. The cones of the tangent and normal directions of the helix.
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The generatrixes of the normal cone of the helix are the normal of the tangent planes
of the tangent cone. Let us take the direction vector of the normal cone generatrix n. Let us
have the vector n(nx, ny, nz) as the unit vector, namely |n| = 1, and z(0, 0, 1) defined as
one coinciding with the axis z.

The scalar product of the unit vectors

n · z = |n| · |z| · cos(90◦ −ω) = sinω (15)

and
n · z = nx · 0 + ny · 0 + nz · 1 (16)

so
nz = sinω (17)

Due to the condition |n| = 1.

n2
x + n2

y + n2
z = 1 (18)

Substituting the result of Equation (17) into Equation (18) yields the equation

n2
x + n2

y + sin2 ω = 1 (19)

which may be converted into the following form

n2
x + n2

y = cos2 ω (20)

Equation (18) is the equation of a circle with a radius of cosω.
It can be established that the tangent direction cone of the stated helix and the profile

plane P of a Monge projection, in event that the condition is fulfilled

n2
x + n2

y > cos2ω (21)

will have two common cone generatrixes, while in case of

n2
x + n2

y = cos2 ω (22)

will have one common cone generatrix. If

n2
x + n2

y < cos2ω (23)

no common cone generatrix is present.
The aim is to determine the n(nx, ny, sinω) normal vectors satisfying relations (22)

and (23), and to provide the coordinates α, β, γ of the points of the Monge cuboid that
define bijective Monge projections for the given helix. Profile planes perpendicularly to the
normal vectors, then the Monge projections belonging to the profile planes, and finally to
specify some conditions of the relations between the α, β, γ coordinates of the points of the
Monge cuboid.

In summary, the goal is to provide the coordinates α, β, γ of the points of the Monge
cuboid that define bijective Monge projections for the given helix.

Since the projector lines v1 and v2 are perpendicular to each other, so their direction
vectors v1 and v2 are also perpendicular to each other, as a result of which the following
relation is fulfilled

v1 · v2 = 0 (24)

The relation (24) can be converted into the following forms using the coordinates of
the direction vectors v1(v1x, v1y, v1z) and v2(v2x, v2y, v2z)

v1x · v2x + v1y · v2y + v1z · v2z = 0 (25)
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This may be further converted as

v2y = −(v1x · v2x + v1z · v2z)/v1y (26)

I. In the first part of the examination, the assumptions α,β,γ ̸= 0,π/2,π are considered.

It is known that
n = v1 × v2 (27)

which can be written in the following forms

nx = v1y · v2z − v2y · v1z (28)

and based on Equations (8) and (9)

nx = (ctgβ+ ctgα · tgγ+ tgβ) · v1z · v2z (29)

as well as
ny = v1z · v2x − v2z · v1x (30)

and based on Equations (8) and (9)

ny = (tgγ− ctgβ · ctgα) · v1z · v2z (31)

furthermore
nz = v1x · v2y − v2x · v1y (32)

and based on Equations (8) and (9)

nz = (− ctgα− tgβ · ctgγ− tgα) · v1x · v2x (33)

Since 0 < ω < π/2, the equation nz = sinω ̸= 0 is fulfilled. In this case, the substitution
with the equations (9) and (28)–(33) gives

nx/nz =
(

tgα · ctgγ+ tgβ+ tgα · tg2β · ctgγ
)

/(−ctgα− tgβ · ctgγ− tgα) (34)

as well as
ny/nz = (tgα · tgβ− ctgγ)/(−ctgα− tgβ · ctgγ− tgα) (35)

Substitution with the equation nz = sinω gives

nx = sinω ·
(

tgα · ctgγ+ tgβ+ tgα · tg2β · ctgγ
)

/(−ctgα− tgβ · ctgγ− tgα) (36)

as well as
ny = sinω · (tgα · tgβ− ctgγ)/(−ctgα− tgβ · ctgγ− tgα) (37)

From the above, the following conclusions can be drawn based on the relationships
(22) and (23):

If the tangents and the axis of a helix form an angle ω, then the triplets (α, β, γ)
satisfying the relation

((tgα·ctgγ+ tgβ+ tgα·tg2β·ctgγ)/(−ctgα− tgβ·ctgγ− tgα))
2

+((tgα · tgβ− ctgγ)/(− ctgα− tgβ·ctgγ− tgα))2 ≤ ctg2ω
(38)

are the coordinates of the points belonging to the bijective subset of the Monge cuboid.
It should be noted that in the Monge projections defined by the triplets satisfying

condition (38), the images of the helix will contain singular points.
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If ω = π/4, the triplets α = π/6, β = π/6 and γ = π/3 fulfills the condition (38), so
as shown in Figure 18, any section of the helix can be reconstructed from only two of
its images.
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Figure 18. Demonstration of the bijective representation of the helix when of ω = π/4 in the Monge 
projection assigned to the triplet of directed angles (π/6, π/6, π) by the computer program developed 
for this purpose. 

Figure 18. Demonstration of the bijective representation of the helix when of ω = π/4 in the Monge
projection assigned to the triplet of directed angles (π/6, π/6, π) by the computer program developed
for this purpose.

Condition (38) is fulfilled for ω = π/4 and for the angular triplet α = π/4, β = π/4,
γ = π/4. Since the left and right sides of condition (38) are equal in this case, the helix has a
profile direction tangent intersecting of a complete course of it, so any section of it can be
clearly reconstructed from its two images, as shown in Figure 19.
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Figure 19. Demonstration of the bijective representation of the helix when ω = π/4 in the Monge
projection assigned to the triplet of directed angles (π/4, π/4, π/4) by using the computer program
created for this procedure.

In the case of ω = π/4, the triplet α = π/3, β = π/4, γ = 2·π/3 does not fulfill the
condition (38), so in the Monge projection belonging to these directed angles there are
parts of a complete run of the helix that cannot be clearly reconstructed based on their two
images only, without any additional information (Figure 20).
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Figure 20. A nonbijective representation of the helix in that Monge projection, which is determined
by its projector lines directions calculated from the three directed angles (π/3, π/4, 2π/3) with the
computer program developed for this purpose, in the case of ω = π/4.

Note that when the angles formed by the projection lines and the axis of the helix are
greater than ω, then the profile plane of the Monge projection defined by the projection
lines will intersect the direction cone of the helix in two generatrixes, so the two image
curves g′ and g′′ have two tangents in the profile direction.

II. In the second part of the examination, the relation (38) should be modified for the
coordinates nx, ny, nz of the vectors n belonging to the previously excluded cases of
α, β, γ ̸= 0, π/2, π;

1. The examination of the points on the surface of the Monge cuboid must be per-
formed in several steps.

1.(i). The points determined by the coordinates

• α = π, β = 0, γ = π belong to the nonbijective subset of the Monge cuboid;
• α = 0, β = π/2, γ = π/2, also belong to the nonbijective subset of the Monge cuboid;

1.(ii). Among the points defined by coordinates corresponding to the conditions 0 < α < π,
β = π, 0 < γ ≤ π, those whose coordinates correspond to the following sub-criteria,
such as the

• 0 < α < π, β = π, γ = π/2, always result a bijective Monge projection due to the
condition 0 < ω<π;

• 0 < α < π, β = π, γ = π, always result a nonbijective Monge projections to the given
helix, because of the circle shown second image;

• 0 < α < π, β = π, 0 < γ < π/2, π/2 < γ < π, should be assumed in these cases, so that
|v1| = 1.

Then, the coordinates of the unit length direction vector of the first projector line are

v1
(
cosα, sinα, 0

)
(39)

and the coordinates of the direction vector of the second projector line is

v2
(
−sinα, cosα, sinα · tgγ

)
(40)

The vector product of the vectors v1 and v2 is

n
(

sin2 α · tgγ, − cosα · sinα · tgγ, 1
)

(41)
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Based on (38), if the condition

sin4 α · tg2γ + cos2 α · sin2 α · tg2γ ≤ ctg2ω (42)

is fulfilled, the helix representation is bijective in the Monge projections belonging to the
resulting angle triplets;

1.(iii). In the case of points defined by the coordinates corresponding to the conditions
0 < α < π, 0 < β < π/2, π/2 < β < π, γ = π, those whose coordinates correspond to the
following sub-criteria

• α = π/2, 0 < β < π/2, π/2 < β < π, γ = π always results nonbijective Monge projections;
• 0 < α < π/2, π/2 < α < π, 0 < β < π/2, π/2 < β < π, γ = π, the v2x = 0, and nx, nz, v1x,

v1z ̸= 0,

Let us have nz = sinω. Then, based on (8), (9), (26), (29), (31), (33) the coordinates of
the normal vector will be as follows

nx = sinω · (−tgβ− ctgβ)/ctgα (43)

ny = sinω · ctgβ (44)

nz = sinω (45)

In this particular case, when the condition

(−tgβ− ctgβ)2/ctg2α+ ctg2β ≤ ctg2ω (46)

is satisfied, the resulting Monge projections will always be bijective;
2. Examination of the inner points of the Monge cuboid must also be carried out in

several steps.

2.(i). Among the points defined by coordinates corresponding to the conditions α = π/2,
0 < β < π/2 and π/2 < β < π, 0 < γ< π, those whose coordinates correspond to the
following sub-criteria:

• in the case of α = π/2, 0 < β < π/2, π/2 < β < π and γ = π/2, the v1x = 0, and the
v2 ∈ x, so v2y, v2z = 0

Then, let us have v2x = 1. Furthermore, if the identities nx = 0, ny = v1z and nz = −v1y
= sinω, plus ny = −sinω·tgβ are fulfilled, every triplet that satisfies

tg2β ≤ ctg2ω (47)

condition, results a bijective Monge projection for the given helix;

• In the case of α = π/2, 0 < β < π/2, π/2 < β < π and 0 < γ < π/2, π/2 < γ < π, the
v1x = 0. Since γ ̸= π/2, therefore v2 /∈ [xy], so nx ̸= 0, and since γ ̸= 0, π and the
v2 /∈ [yz], consequently nz ̸= 0.

In the case of triplets also satisfying the condition(
(ctgβ+ tgβ) + tg2γ

)2
/ctg2β · tg2γ ≤ ctg2ω (48)

the resulting Monge projections will always be bijective for the given helix;

2.(ii).The points with coordinates corresponding to the conditions 0 < α < π/2, π/2 < α < π,
0 < β < π/2, π/2 < β < π, γ = π/2 define Monge projections, the second projector line
v2 of which lies on the [xy] plane, so v2z = 0. In the case of triplets also satisfying
the condition

tg2β ·
(

1 + tg2α
)

/(−tgβ− tgα) ≤ ctg2ω (49)
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the resulting Monge projections will always be bijective for the given helix.
In the case of ω = π/4, the number triplet α = π/3, β = π/3, γ = π/2 does not fulfill

the condition, so in the resulting Monge projection the helix has a part which cannot be
clearly reconstructed from only two images (Figure 21).
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If the angle between the axis and the tangents of the helix is ω with each other, then
the bijective subset of the Monge cuboid for the helix with the specified location will be
created by number triplets (α, β, γ), that satisfy the following inequalities:

− in case α, β, γ ̸= 0, π/2, π :
(
(
tgα·ctgγ+ tgβ+ tgα· tg2 β·ctgγ

)
/(−ctgα− tgβ·ctgγ− tgα))2

+((tgα·tgβ− ctgγ)/(−ctgα− tgβ·ctgγ− tgα))2 ≤ ctg2 ω;


− in case 0 < α < π, β = π, γ = π/2;

}
− in case 0 < α < π, β = π, 0 < γ < π/2 and π/2 < γ < π :

sin4 α·tg2γ+ cos2α· sin2 α·tg2γ ≤ ctg2ω;

}
− in case 0 < α < π/2 and π/2 < α < π, 0 < β < π/2 and π/2 < β < π, γ = π :

(−tgβ− ctgβ)2/ ctg2 α+ ctg2 β ≤ ctg2 ω;

}
− in case α = π/2, 0 < β < π/2 and π/2 < β < π, γ = π/2 :

tg2 β ≤ ctg2 ω;

}
− in case α = π/2, 0 < β < π/2 and π/2 < β < π, 0 < γ < π/2 and π/2 < γ < π :(

(ctgβ+ tgβ) + tg2γ
)2/ctg2β·tg2γ ≤ ctg2 ω;

}
− in case 0 < α < π/2 and π/2 < α < π, 0 < β< π/2 and π/2 < β < π, γ = π/2 :

tg2 β·
(
1 + tg2 α

)
/(−tgβ− tgα) ≤ ctg2 ω;

}



(50)

The bijective subset of the Monge cuboid for the helix of the specified position in the
case of the complementary angle ω = π/4, has been displayed by the green inner points
and blue bisector and surface points shown in Figure 22.
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The bijective subset of the Monge cuboid for the helix of the specified position in the 
case of the complementary angle ω = π/4, has been displayed by the green inner points 
and blue bisector and surface points shown in Figure 22. 
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Figure 22. Inner points of the bijective subset of the Monge cuboid are marked in green (a), and its 
boundary points and bisector points in blue (b), relative to the helix with the specified location. 

2.3.4. Procedure for Representing a Cubic Curve 
It also applies in this case that if none of the tangents of the curve are in the profile 

direction, then any part of the curve of the 3D Euclidean space can certainly be clearly 
reconstructed from only two mutually perpendicular orthogonal projections, namely the 
representation of any part of the curve is bijective. The examination of the spatial curve 
was carried out in the case of the third-order curve. Let the position vectors p0 and p3 
pointing to the starting and ending points of the curve P0 and P3 be given, as well as the 
corresponding starting and ending tangent vectors t0 and t1, as shown in Figure 23. 

Figure 22. Inner points of the bijective subset of the Monge cuboid are marked in green (a), and its
boundary points and bisector points in blue (b), relative to the helix with the specified location.

2.3.4. Procedure for Representing a Cubic Curve

It also applies in this case that if none of the tangents of the curve are in the profile
direction, then any part of the curve of the 3D Euclidean space can certainly be clearly
reconstructed from only two mutually perpendicular orthogonal projections, namely the
representation of any part of the curve is bijective. The examination of the spatial curve
was carried out in the case of the third-order curve. Let the position vectors p0 and p3
pointing to the starting and ending points of the curve P0 and P3 be given, as well as the
corresponding starting and ending tangent vectors t0 and t1, as shown in Figure 23.

Symmetry 2024, 16, x FOR PEER REVIEW 27 of 38 
 

 

 
Figure 23. This schematic illustration of the shape of the Hermite arc of the third-order spatial curve. 

The third-order parametrically determined polynomial form of the spatial curve is 
suitable for the examination of the reconstructibility from its images. The equation of the 
third-order curve, characterized by the parameter u can be written into the following form 𝐫(𝑢) = 𝐚ଷ · 𝑢ଷ + 𝐚ଶ · 𝑢ଶ + 𝐚ଵ · 𝑢 + 𝐚଴ (51) 

where practically u ∈ [0,1], and the derived tangent vectors are given in the form 𝐫 (𝑢) = 𝐞ଵ · 𝑢ଶ + 𝐞ଶ · 𝑢 + 𝐞ଷ (52) 

Because of the condition u ∈ [0,1], the identities are obtained 𝐚଴ = 𝐩଴𝐚ଵ = 𝐩ଷ𝐚ଶ=-3 ⋅ 𝐩଴+3 ⋅ 𝐩ଷ-2 ⋅ 𝐭଴ − 𝐭ଷ𝐚ଷ=2 ⋅ 𝐩଴ − 2 ⋅ 𝐩ଷ + 𝐭଴ + 𝐭ଷ
ൢ (53) 

Accordingly, the tangent vectors will be 𝐞ଵ=6 ⋅ 𝐩଴-6 ⋅ 𝐩ଷ + 3 ⋅ 𝐭଴ + 3𝐭ଷ𝐞ଶ=-6 ⋅ 𝐩଴+6 ⋅ 𝐩ଷ-4 ⋅ 𝐭଴-2 ⋅ 𝐭ଷ𝐞ଷ = 𝐭଴ ൡ (54) 

Tangent vectors pass through the origin point O. Any profile plane on which none of 
the tangent vectors lie determines a Monge projection, which always results in a bijective 
representation of the given curve. The normal vectors n(nx, ny, nz) of the planes containing 
any of the tangent vectors are perpendicular to the tangent vectors lying in it; therefore, 
the following equation is fulfilled, namely 𝐧 · 𝐫 (𝑢)=0 (55) 

that can be formed in the following form n୶·rex(𝑢)+n୷·rey(𝑢)+n୸·rez(𝑢) = 0 (56) 

as well as ൫n୶·e1x+n୷·e1y+n୸·e1z൯ · 𝑢ଶ + ൫n୶·e2x+n୷·e2y+n୸·e2z൯ · 𝑢 + ൫n୶·e3x+n୷·e3y+n୸·e3z൯ = 0 (57) 

To specify the conditions of bijective Monge projections, it is necessary to determine 
the vectors n(nx, ny, nz), for which the quadratic equation for the parameter u has no solu-
tion.  

In the following, the vectors n(nx, ny, nz) in Equation (57) must be determined, for 
which the quadratic equation with respect to the u parameter has no solution in the case 
of the specified eij (i = 1,2,3 and j = x,y,z) values. The profile planes determined by such 
normal vectors do not have a tangent to the examined curve, therefore in the Monge 

z

y
x

P3

0P

0t

O

3t

0p

3p

Figure 23. This schematic illustration of the shape of the Hermite arc of the third-order spatial curve.

The third-order parametrically determined polynomial form of the spatial curve is
suitable for the examination of the reconstructibility from its images. The equation of the
third-order curve, characterized by the parameter u can be written into the following form

r(u) = a3·u3 + a2·u2 + a1·u + a0 (51)

where practically u ∈ [0,1], and the derived tangent vectors are given in the form

re(u) = e1·u2 + e2·u + e3 (52)

Because of the condition u ∈ [0,1], the identities are obtained

a0 = p0
a1 = p3
a2= −3 · p0+3 · p3−2 · t0 − t3
a3= 2 · p0 − 2 · p3 + t0 + t3

 (53)
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Accordingly, the tangent vectors will be

e1= 6 · p0−6 · p3 + 3 · t0 + 3t3
e2= −6 · p0+6 · p3−4 · t0−2 · t3
e3 = t0

 (54)

Tangent vectors pass through the origin point O. Any profile plane on which none of
the tangent vectors lie determines a Monge projection, which always results in a bijective
representation of the given curve. The normal vectors n(nx, ny, nz) of the planes containing
any of the tangent vectors are perpendicular to the tangent vectors lying in it; therefore, the
following equation is fulfilled, namely

n·re(u)= 0 (55)

that can be formed in the following form

nx·rex(u) + ny·rey(u) + nz·rez(u) = 0 (56)

as well as

(
nx·e1x + ny·e1y + nz·e1z

)
· u2 +

(
nx·e2x + ny·e2y + nz·e2z

)
· u +

(
nx·e3x + ny·e3y + nz·e3z

)
= 0 (57)

To specify the conditions of bijective Monge projections, it is necessary to determine the
vectors n(nx, ny, nz), for which the quadratic equation for the parameter u has no solution.

In the following, the vectors n(nx, ny, nz) in Equation (57) must be determined, for
which the quadratic equation with respect to the u parameter has no solution in the case of
the specified eij (i = 1,2,3 and j = x,y,z) values. The profile planes determined by such normal
vectors do not have a tangent to the examined curve, therefore in the Monge projections
related to these profile planes the curve representation is bijective. For the normal vector of
the profile plane of all bijective Monge projections, the value of the discriminant of equality
(57) is negative, that is

(
nx·e2x + ny·e2y + nz·e2z

)2 − 4·
(
nx·e1x + ny·e1y + nz·e1z

)
·
(
nx·e3x + ny·e3y + nz·e3z

)
< 0 (58)

For the sake of clarity, a reference [50], proposes writing the constant values of the
condition of the negative discriminant in the forms ci and cij (i,j = 1,2,3) giving a new form
of the inequality:

c1·n2
x + c2·n2

y + c3·n2
z + c12·nx·ny + c13·nx·nz + c23·ny·nz < 0 (59)

Monge cuboid points satisfying the equation formed from the inequality in the follow-
ing way

c1·n2
x + c2·n2

x + c1·n2
y + c3·n2

z + c12·nx·ny + c13·nx·nz + c23·ny·nz = 0 (60)

separate the points resulting in bijective and nonbijective representations.
According to another reference [49], when α, β, γ ̸= 0, π, π/2, the reconstruction

is ensured with the directions of the projector lines determined by the directed angles
corresponding to the following condition

c1·
(
tgα·ctgγ + tgβ+ tgα·tg2β · ctgγ

)2/(−ctgα− tgβ · ctgγ− tgα)2+

c2·(tgα·tgβ− ctgγ)2/(−ctgα− tgβ · ctgγ− tgα)2 + c3+
c12·

(
tgα·ctgγ+ tgβ+ tgα·tg2β · ctgγ

)
· (tgα·tgβ− ctgγ)/

(−ctgα− tgβ · ctgγ− tgα)2+
c13·

(
tgα · ctgγ + tgβ+ tgα · tg2β · ctgγ

)
/(−ctgα− tgβ · ctgγ− tgα)+

c23·(tgα · tgβ− ctgγ)/(−ctgα− tgβ · ctgγ− tgα) < 0


(61)
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3. Result and Application in Mechanical Engineering Practice

One of the special scientific research areas of our Worm School of Science, which deals
with the geometry of the tooth surfaces of helicoid surfaces and connected gears [51–56],
as well as the machining geometry approach to the mathematical determination in their
production, is the analysis of the production geometry development in the case of the
cylindrical worm with a circular profile in axial section as shown in Figure 24, and the gear
connected to it.
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Figure 24. The helicoid worm with arc profile in axial section. 
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Figure 24. The helicoid worm with arc profile in axial section.

The very complicated machining process of the gear tooth surface can be facilitated by
enveloping the surface of the worm connected to the gear. This may be done by means of
direct motion mapping (Figure 25), which can be performed with the worm cutter formed
from the worm.
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Figure 25. Worm gear driving and the worm cutter [56].

In order to increase the precision of the production, the wear of the hob can be moni-
tored with CCD cameras during production. The use of two CCD cameras perpendicular to
each other to facilitate precise monitoring utilizes the theoretical base provided by Monge
mapping. In addition to the ratios of the tool edge size and the distance from the cameras,
the geometric corrections to eliminate distortion were performed using the “Contour2”
program on the digitized images, which can be considered as the two projection images [52].
The cutting edge may be considered as a cubic curve with its digitized images taken with
the two CCD cameras serving as images projected onto the first and second image planes
in Monge mapping. During the reconstruction from the images of the Monge mapping,
it is indifferent which image is the first and which is the second, i.e., the images are inter-
changeable, i.e., they have symmetry properties, which also applies to the numbering of
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the CCD cameras. The wear test of the cutting-edge curve with CCD cameras can only be
performed if any part of the curve can be clearly reconstructed from its two images.

As shown in Figure 26a, reconstructibility must be ensured not only for the cutting
edge, but also for the intersected arc between the foot cylinder and the tooth face surface to
set the tool into the same position for the testing.
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Figure 26. The worm gear hob tooth with (a) the cutting-edge curve marked with blue line and root
cylinder curve marked with green line on the face surface H and the projector directions v1 and v2;
(b) the angle of the chip groove ω1 in addition to the usual notations [40].

The appropriate form of examination of the cutting-edge curve, which has changed as
a result of the operation, is the interpolating third-order Bezier curve, whose connection
with the Hermite arc is shown in Figure 27.
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Figure 27. Schematic sketch of the relationship between a Bezier curve and a Hermite arc interpolating
to the same spatial curve.

It is advisable to select the cutting-edge points P3 and P0 on the addendum and root
cylinder, so that the points P2 and P1 between them could be defined proportionally to
their distance from the axis. The interpolating Bezier curve has four selected points with
their position vectors p0, p1, p2, p3 on the cutting edge of the hob, and its parameters u0, u1,
u2, u3 satisfy the condition ui ̸= uj, if i ̸= j, as well as u0 = 0 and u3 = 1. The coordinates of
the position vectors b0, b1, b2, b3 of the control points B0, B1, B2, B3 have to be calculated,
which will determine the interpolation Bezier curve passing through the selected points so
that the following equation is fulfilled

b(ui) = pi (i = 0, . . . , 3) (62)
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Bezier curve using the Bernstein polynomials is

b(u) =
n
∑

j=0
Bn

j (u) bj Bn
j (u) =

(
n
j

)
uj(1 − u)n−j (i = 0, . . . , 3) (63)

Because of the Bezier curve passes through the selected points P0, P1, P2 and P3, it can
be defined by the following equation

b(u) =
n

∑
j=0

Bn
j (u) bj (j = 0, . . . , 3) (64)

Using Equation (62) the following linear inhomogeneous equation system can be created
p0
p1
p2
p3

 =


B3

0(u0) B3
1(u0) B3

2(u0) B3
3(u0)

B3
0(u1) B3

1(u1) B3
2(u1) B3

3(u1)
B3

0(u2) B3
1(u2) B3

2(u2) B3
3(u2)

B3
0(u3) B3

1(u3) B3
2(u3) B3

3(u3)

·


b0
b1
b2
b3

 (65)

Calculation had to be performed separately for each coordinate, and its clear solution
was the result of the condition specified by us. Thus, the bi vectors (i = 0,. . .,3) pointing
to control points B0, B1, B2, B3 of the Bezier curve passing through the selected points P0,
P1, P2, P3 can be calculated based on Equation (65). The relationship between the p0, p1,
p2, p3 position vectors of the control points of the Bezier curve and the position vectors of
the start and end points p0 and p3, as well as the start and end tangents t0 and t3 of the
Hermite arc can be characterized by the following relations based on the literature [49] and
according to the guidance of Figure 27.

p0 = b0
p3 = b3
t0= 3 · b1 − 3 · b0
t3= 3 · b3 − 3 · b2

 (66)

According to our previous analyses [42], the third-degree Bezier curve approaches the
cutting edge within the permitted tolerance zone, if the four points of the cutting edge are
selected proportionally between the addendum and dedendum cylinder to specified the
interpolating Bezier curve, and these were parameterized in proportional length of chord.
The inequality (61) varies according to the coordinates of the points of the cutting edge. The
CCD cameras positioned using these coordinates with defined directed angles can make in
principle produce reconstructable images of the cutting edge.

In the field of view of the CCD cameras positioned according to inequality (61),
additional conditions should be formulated for the nearby hob tooth surfaces also require
the formulation of.

In addition, a third condition is discussed in this article, which eliminates the projector
lines that do not reach in the axis direction the examined cutting edge due to the next hob
tooth. If the normal vector nh of the face surface is determined from the coordinates of the
points P3 and P0 measured on the cutting edge, as well as the coordinates of the points L3
and L0 measured on the root cylinder curve by the cross product of the difference vectors
of the position vectors pointing to the points according to the following relation

nh = (p3 − p0)× (l3 − l0) (67)

then a strong condition has been established. The angles between the nh normal vector and
the v1 and v2 direction vectors of the projector lines can be determined as follows

arccos(nh · v1/|nh| · |v1|) = εh1 (68)
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and
arccos(nh · v2/|nh| · |v2|) = εh2 (69)

Furthermore, the angles between the face surface H of the hob tooth and the projector
lines v1 and v2 projecting into the direction of the axis, can have a maximum value ω1
as shown in Figure 26b). This means that the minimum value of the angles εh1 and εh2
between the direction vectors of the projector lines and the normal vector nh must be
90o −ω1 for the chip groove angle of size ω1, as it can be written as

εh1, εh2 ≤ 90◦ −ω1 (70)

With the visualized procedure, a solution can be selected simultaneously from the
subset of solutions in the case of three unknown inequalities, as shown in Figure 28.
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During the machining of parts, this procedure will facilitate the continuous monitoring
of changes in the size and shape of the cutting edge of the tool, which affects the quality of
the machined surface.

4. Discussion

The computer technology evolution greatly reduced the cost of designing and proto-
typing mechanisms. Software packages available on the market and the exponential devel-
opment of computers offer a huge number of possibilities while results can be achieved
in a much shorter time. The primary task of those engineers who undertake the whole
process from design to implementation is to select compatible software packages that meets
industrial requirements. During the design process of the drives, by examining the effect
of several possible modifications of the geometric parameters of its elements (production
accuracy, quality, standard profile angle and gear width), the optimal solution can be
selected using a computer program based on the Taguchi method, which is an optimization
procedure based a numerous steps of planning, transacting and interpreting results of
matrix tests to determine the most suitable value of the control parameters [57].
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A wide selection of tools is available for surface measurement, such as mechanical
stylus profilometers, noncontact optical ones, and scanning probe microscopes to take a
cross-sectional contour of the air topography data of the investigated surfaces [58]. Several
recent reports deal with examinations on optical measurements [59], mainly with diffractive
relief structures [60] as well as with interference microscopy [61] and confocal and spiral
scanning [62], factoring in the comparative papers on various technologies [63]. Some
researchers have also discussed the comparability of the surface parameters resulting from
the profile and the areal measurements [64,65].

Each of these software’s means of communication between designers and constructors
rely on Monge’s two-view representations of the 3D [66]. The importance of the production
geometry is also demonstrated, for example, by the fact that in order to improve the
operating characteristics of hypoid gears, which can be achieved by optimally changing
the related tooth surfaces, that can be realized by modifying the settings of the machine
tool. The purposes of the multi-objective optimization procedure created with numerical
methods were to minimize the maximum contact pressure of the teeth, the transmission
error, and the average temperature of the gears in their contact zone, and to maximize
the mechanical efficiency in the case of hypoid gear drives [67]. The wear resistance and
service life of cutting tools are also affected by the tribological behavior of the different
coatings produced with different production parameters [68]. The design and construction
of most mechanisms require a unique approach due to various considerations, which
represents a constant challenge for today’s engineers. A lot of procedures have been
prepared to generate the production geometry of machining tools for helicoidal surfaces
with constant thread pitch based on the principle of mutual envelopment of surfaces
according to the theorems of Olivier and Gohman. A numerical solution suitable for
profiling the grinding wheels to generate the helicoidal surface of the threaded ball-nut
motion conversion mechanism is based on the theory of derivation and intersection of
surfaces. The points of the approximation tool profile accepted as the final result are the
intersection curve points of the derivative surface and the workpiece surface, determined
by an initial value problem of an ordinary differential equation system. The smallness of
the deviation of the resulted approximation tool profile from the geometrically defined
surface, namely its accuracy according to engineering terminology, also depends on the
density of the calculated points [69].

The determination of the points of theoretical tooth surfaces for various drives compo-
nents must be produced according to the machining process with a mathematical toolbox
aimed at the format suitable for the purpose [70]. The theoretical tooth surface can be
meshed by any number of its discrete points in the mathematical model made for checking
the accuracy. Manufacturing accuracy, referring to the quality of the machined surface,
is usually measured with a coordinate measuring machine, establishing the difference
between the coordinates of the theoretical tooth surface points treated as a reference and
the coordinates of the manufactured tooth surface points measured with the coordinate
measuring machine. All this can be reviewed in the case of the creation of a mathematical
model describing the machining of the tooth surfaces of bevel gears with curved teeth,
where the coordinates of the known points of the theoretical tooth surface in the grid points
are the reference values on the coordinate measuring machine, which can be compared
with the coordinates of the points measured on the manufactured surface [71].

Using exact geometric construction, an interesting motion geometrical result has been
published at the operating of the roller freewheel fulfilling the base requirement, that
the housing profile, and the hub should create a taper gap, so the roller center has to be
functional along a logarithmic spiral [72].

The geometrical design of the drive pair components has a significant effect on achiev-
ing the desired efficiency, since the correct formation of the lubricating wedge is essential
in terms of reducing friction and wear during operation [73]. Many forward-looking de-
velopments have been also made using graphical systems for the further development of
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technical tools [74]. The simulation and movement study of the Mechanical Integrator 3D
Model can also help to understand the processes [75].

When studying the production geometry of the drive pairs, tests can also be carried
out regarding the profile error-free production [76] in order to avoid undercutting. Several
geometry-based methods can be used to increase efficiency, such as the coordinate geometry
toolbox supplemented with numerical methods [77] and simulation and analytical tools [78]
for different type of drives.

By modeling the targeted theoretical tooth sides of the complicated worm gear that
fits the cylindrical worm in the three-dimensional CAD software, and by manufacturing
the worm gear using a CAM process, and then comparing the contact patterns of the exper-
imental and analytical teeth, it can be concluded that they can be considered to be of the
same approximation as required in the industry, and as a result, the manufacturing method
has been already validated [79]. The selection of projections is decisive for examining
changes in shape and kinematic geometry during machining with high-feed face milling,
since at low feed, the effect of the material forming of the side edge has been the most
critical, the chip becomes deformed perpendicular to it, while the primary part of chip
removal gradually moves to an edge perpendicular to the tool axis as the feed increases.
For effective chip removal, the two edges can be tested separately and together, for which a
mathematical model was carried out to create the basis of the (Finite Element Method) FEM
examinations [80]. The reliability of finite element simulations and other methods strongly
depends on the applied constitutive models [81]. When forming materials with higher
strength in the automotive industry, by increasing fuel efficiency, vehicles also achieve the
necessary safety standards, taking into account that during production, the geometry also
varies depending on the properties of the material [82].

An important part of our research work was also the examination of the profile
distortions of the grinding wheel during worm surface machining with a CCD camera [83],
which was able to recognize the contour of the working surface of the grinding wheel, from
which it was possible to make decisions about the need for re-sharpening.

5. Conclusions

In the course of our research, during the machining of the worm gear with a hob, a
new mathematical procedure has been developed for positioning the CCD cameras with
mathematical precision to ensure that the cutting-edge curve can be reconstructed from
digitized images for wear measurement. The cutting-edge wear tester must be in the same
position for each measurement. To set the hob into one position, a surface element had to
be selected that does not take part in the machining; therefore, its shape does not change.
The cutting curve of the root cylinder and the face surface of the hob tooth are suitable for
this purpose.

At the same time, by positioning CCD cameras, it is also necessary to ensure the
reconstruction of the intersection curve between the face surface of the hob tooth and
the bottom cylinder. In order to simultaneously correctly adjust the CCD cameras to the
intersected curve between the tooth surface and the root cylinder and to the curve of
the cutting edge, so that they only have to be reconstructed from two images taken as
perpendicular projections, the data can be derived from the points of the bijective subset of
the Monge cuboid with respect to both curves. The directed angles belonging to the point
chosen from the bijective subsets of the Monge cuboid determine the directions, in which
the CCD cameras should be positioned. This procedure has been developed to measure the
wear of the cutting edge of the hob during processing, with which the spatial deformation
of the cutting-edge curve can be reconstructed only from digitalized images taken with
two CCD cameras using the methods of constructive descriptive geometry. A new third
condition has been formulated mathematically, according to which the next tooth of the
hob should not be an obstruction to record the images taken of the cutting edge, that is, the
cameras facing to the direction of the axis could reach the cutting edge. To determine the
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condition to solve this problem, the relationship between the normal of the face surface of
the hob tooth and the projector lines has been determined.

The aim of this endeavor was to make abstract mathematical ideas useful for practical
implementations. The theoretical limitation of this study is that it only deals with edge
curves, and the mechanical limitation is the dependence on the quality of the tools.

An open question in my future geometrically oriented research is how the parame-
ters defining Monge mappings should be defined in the projective model instead of the
Euclidean spatial model, so that their set shows additional advantages.
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Society: Gundelsheim, Germany, 2001. Available online: https://api.eda.eme.ro/server/api/core/bitstreams/91cc925d-072e-43
70-9e76-3af6aaa19e90/content (accessed on 31 October 2023). (In Hungarian)

49. Balajti, Z. Theoretical Analysis and Application of the Monge Representation in Engineering Practice; University of Miskolc: Miskolc, Hun-
gary, 2015; 101p, ISBN 978-963-358-097-4. Available online: https://www.researchgate.net/publication/372855431_A_Monge_
abrazolas_elmeleti_elemzese_es_alkalmazasa_a_mernoki_gyakorlatban_Miskolc_2015_ISBN_978-963-358-097-4_101_o (accessed
on 31 October 2023).

50. Balajti, Z.; Dudás, I. The Monge Theorem and Its Application in Engineering Practice. Int. J. Adv. Manufturing Technol. 2017, 91,
739–749. [CrossRef]

51. Dudás, I.; Bányai, K.; Bodzás, S. Finishing production of spiroid worm shaft by varied center distance and by applying grinding
wheel banking angle correction. Int. Rev. Appl. Sci. Eng. 2016, 7, 13–19. [CrossRef]

52. Dudás, L. Modelling and simulation of a new worm gear drive having point-like contact. Eng. Comput. 2013, 29, 251–272.
[CrossRef]

53. Bodzás, S. Connection analysis of surfaces of conical worm, face gear and tool. Ph.D. Thesis, University of Miskolc, Miskolc,
Hungary, 2016; p. 120. Available online: http://midra.uni-miskolc.hu/document/18016/11619.pdf (accessed on 31 October
2023). (In Hungarian)

54. Mándy, Z. Intelligent Manufacturing System and Geometrically Exact Manufacture of the Helicoid Surfaces. Ph.D. Thesis,
University of Miskolc, Miskolc, Hungary, 2022; p. 105. Balajti, Z., Ed. Available online: http://193.6.1.94:9080/JaDoX_Portlets/
documents/document_40897_section_38553.pdf (accessed on 31 October 2023). (In Hungarian)

55. Ábel, J. Computer Based Constructive Geometric and Analytical Development of the Manufacturing Geometry of Worm
Gear Drive Pairs. Ph.D. Thesis, University of Miskolc, Miskolc, Hungary, 2023; p. 99. Balajti, Z., Ed. Available online:
http://midra.uni-miskolc.hu/document/43049/41118.pdf (accessed on 31 October 2023). (In Hungarian)

56. Balajti, Z. Determination of Undercutting Avoidance for Designing the Production Technology of Worm Gear Drives with a
Curved Profile. Machines 2023, 11, 56. [CrossRef]

57. Stanojevic, M.; Stojanovic, B.; Bankovic, N. Analysis of Influential Geometric Parameters on the Safety Factor on the
Sides of Gear Pairs in the Gearbox Using Taguchi Method. In Proceedings of the 11th international conference on Qual-
ity System Condition for Successful Business and Competitiveness, Kopaonik, Serbia, 17–19 May 2023; Available online:
https://www.researchgate.net/publication/373160923_ANALYSIS_OF_INFLUENTIAL_GEOMETRIC_PARAMETERS_ON_
THE_SAFETY_FATOR_ON_THE_SIDES_OF_GEAR_PAIRS_IN_THE_GEARBOX_USING_TAGUCHI_METHOD (accessed on 31
October 2023).

58. Gao, W.; Haitjema, H.; Fang, F.Z.; Leach, R.K.; Cheung, C.F.; Savio, E.; Linares, J.M. On-machine and in-process surface metrology
for precision manufacturing. CIRP Ann. 2019, 68, 843–866. [CrossRef]

59. Jiao, F.; Liu, L.; Cheng, W.; Li, C.; Zhang, X. Review of optical measurement techniques for measuring three-dimensional
topography of inner-wall-shaped parts. Measurement 2022, 202, 111794. [CrossRef]

60. Lu, W.; Chen, S.; Zhang, K.; Zhai, D. Characterization of diffractive relief structures over large areas by stitching interference
microscopic topography. Measurement 2022, 202, 111850. [CrossRef]

61. Guo, J.; Zhai, D.; Lu, W.; Chen, S. Topography measurement of helical grooves on a hemisphere based on stitching interference
microscopy. Opt. Laser Technol. 2022, 152, 108133. [CrossRef]

62. Ying, R.; Cui, Y.; Huang, J.; Liang, D.; Wang, Y. Precise measurement of surface topography with microstructures based on
differential confocal and spiral scanning. Measurement 2021, 184, 110004. [CrossRef]

63. Leksycki, K.; Królczyk, J.B. Comparative assessment of the surface topography for different optical profilometry techniques after
dry turning of Ti6Al4V titanium alloy. Measurement 2021, 169, 108378. [CrossRef]

64. Schmidt, J.; Thorenz, B.; Schreiner, F.; Döpper, F. Comparison of areal and profile surface measurement methods for evaluating
surface properties of machined components. Procedia CIRP 2021, 102, 459–464. [CrossRef]

65. Svetlik, J.; Baron, P.; Dobransky, J.; Kocisko, M. Implementation of computer system for support of technological preparation
of production for technologies of surface processing. In Applied Mechanics and Materials, Proceedings of the ROBTEP 2014: 13th
International Conference on Industrial, Service and Humanoid Robotics, High Tatras, Slovakia, 15–17 May 2014; Trans Tech Publications
Ltd.: Zurich, Switzerland, 2014; Volume 613, pp. 418–425, ISBN 978-303835202-0.
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