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Abstract: The purpose of this paper is to investigate a warped product of hemi-slant submanifolds
on an S-manifold. We prove many interesting results for the existence of warped product hemi-slant
submanifold of the type Mθ × f M⊥ with ξα ∈ Mθ of an S-manifold. For such submanifolds, a
characterization theorem is proven. In addition, we form an inequality for the squared norm of the
second fundamental form in terms of the warping function and the slant angle. We also provide
some examples, and the equality case is also considered.
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1. Introduction

In 1963, the concept of a φ-structure on a smooth manifold M of dimension (2n + s)
was introduced by Yano [1] as a non-vanishing tensor field of type (1, 1) on M, which
satisfies φ3 + φ = 0 and has a constant rank r = 2n. φ-structures are almost complex if
(s = 0), and almost contact if (s = 1). In 1970, Goldberg and Yano [2] defined globally
framed φ-structures for which the sub-bundle kerφ is parallelizable. Then there exists
a global frame {ξ1, ξ2, . . . , ξs} for the sub-bundle kerφ, the vector fields ξ1, ξ2, . . . , ξs are
called the structure vector fields with dual 1-forms η1, η2, . . . , ηs such that g(φX, φY) =
g(X, Y)− ∑s

α=1 ηα(X)ηα(Y) for any vector fields X, Y in M, and then the structure is called
a metric φ-structure. In [3], a wider class of a globally framed φ-manifold was introduced by
the following definition: a metric φ-structure is said to be a K-structure if the fundamental
2-form Φ given by Φ(X, Y) = g(X, φY) for any vector fields X and Y on M is closed and the
normality condition holds, that is, [φ, φ] + 2 ∑s

α=1 ξα ⊗ dηα = 0, where [φ, φ] denotes the
Nijenhuis tensor of φ. A K-manifold is called an S-manifold if dηα = Φ for all α = 1, . . . , s.
An S-manifold is a Sasakian manifold if s = 1. For s ≥ 2, examples of an S-manifold are
presented in [3–6]. Furthermore, an S-manifold has been studied by several authors (see,
for example, [2,7–10]).

The geometry of slant submanifolds has been extensively investigated since Chen
defined and studied slant immersions in complex geometry as a natural generalization
of both holomorphic and totally real immersions [11,12]. Later, this study for almost
contact metric manifolds was expanded by Lotta [13].After that, Cabrerizo et al. [14]
studied these submanifolds in the case of K-contact and Sasakian manifolds. To generalize
these submanifolds, Papaghiuc [15] studied a new class of submanifolds known as semi-
slant submanifolds, which were then expanded by Cabrerizo et al. for contact metric
manifolds [16]. Recently, Carriazo [17] introduced the notion of anti-slant submanifolds,
which were later renamed pseudo-slant submanifolds because the name anti-slant appears
to refer to the fact that they lack a slant factor. However, in [18], Sahin refers to these
submanifolds as hemi-slant submanifolds. Several geometers have studied hemi-slant
submanifolds in various structures since then (see, for example, [19–21]).
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On the other hand, Bishop and O’Neill [22] initiated the concept of a warped prod-
uct in 1969 as a natural generalization of Riemannian product manifolds. The warped
product manifolds have their applications in general relativity. Many spacetime models
are warped product manifolds, including Robertson–Walker spacetime, asymptotically
flat spacetime, Schwarzschild spacetime and Reissner-Nordström spacetime. For more
information, see [23].

At the turn of this century, the idea of warped product submanifolds was introduced by
Chen in his series of papers [24,25]. He proved that the warped product CR-submanifolds
of the type M⊥ × f MT does not exist, where MT and M⊥ are holomorphic and totally real
submanifolds of a Kaehler manifold M, respectively. Then, he considered CR-warped prod-
ucts in a Kaehler manifold, which are warped products of the form MT × f M⊥. He showed
several fundamental results on the existence of CR-warped products in Kaehler manifolds,
such as optimal inequalities and characterizatios in [24–26]. Many geometers researched
warped product submanifolds for the various structures on Riemannian manifolds, as
inspired by Chen’s work [27–32]. Some researchers have also extended this approach to
warped product semi-slant and pseudo-slant submanifolds (see [32–36]). In [34], Sahin
showed that there are no warped product semi-slant submanifolds other than CR-warped
products in a Kaehler manifold introduced by Chen in [24,25]. Recently, Sahin studied
the warped product pseudo-slant submanifolds of a Keahler manifold under the name of
the hemi-slant warped product in [18]. He provided many interesting results, including a
characterization and an inequality by the mixed totally geodesic condition. In the context
of an S-manifold, we have seen no warped product semi-slant submanifolds other than a
contact CR-warped product submanifold [37].

In this paper, we investigate the warped product submanifold where one of the factors
is a slant and another is an anti-invariant, and we call such submanifolds warped product
hemi-slant submanifolds of an S-manifold.

This paper is organized as follows: Section 2 goes over some fundamental formulas
and definitions for an S-manifold and its submanifolds. We review the definitions of slant
and hemi-slant submanifolds in Section 3. In addition, we will study the integrability
conditions of distributions and some basic properties related to the totally geodesicness
of distributions involved in the definition of the hemi-slant submanifold. In Section 4, we
investigate a warped product hemi-slant submanifold. We obtain a characterization result
and then construct an example of such warped product immersions. In Section 5, we form
an inequality for the squared norm of the second fundamental form in terms of the warping
function and the slant angle.

2. Basic Concepts

An S-manifold is a (2n + s)-dimensional differentiable manifold M which carries
a (1, 1)-tensor field φ (φ—structure and has a constant rank 2n), s global vector fields ξα

(structure vector fields), and s 1-forms ηα satisfying [3]

φ2 = −I +
s

∑
α=1

ηα ⊗ ξα, φξα = 0, ηα ◦ φ = 0, ηα

(
ξβ

)
= δαβ, (1)

where I : TM → TM is the identity mapping. In addition, M admits a Riemannian metric
g such that

g(φX, φY) = g(X, Y)−
s

∑
α=1

ηα(X)ηα(Y), (2)

for any X, Y ∈ TM, the Lie algebra of vector fields on M. As an immediate consequence
of (2),

ηα(X) = g(X, ξα), (3)

g(φX, Y) = −g(X, φY) (4)
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Moreover, the S-structure
(

M, φ, ξα, ηα, g
)

is normal, that is

[φ, φ] + 2
s

∑
α=1

ξα ⊗ dηα = 0

where [φ, φ] is the Nijenhuis torsion of φ. Furthermore, in an S-manifold, we have

η1 ∧ η2 ∧ · · · ∧ ηs ∧ (dηα)
n ̸= 0 and ηα = Φ, α = 1, . . . , s

where Φ is the fundamental 2-form defined by Φ(X, Y) = g(X, φY).
For the Levi–Civita connection ∇ of g on an S-manifold, M can be expressed by

(
∇X φ

)
Y =

s

∑
α=1

[
g(φX, φY)ξα + ηα(Y)φ2X

]
, (5)

∇Xξα = −φX. (6)

for all X, Y ∈ TM.
Let L denote the distribution determined by −φ2 and µ. The complementary distribu-

tion is determined by φ2 + I and spanned by ξα, α = 1, . . . , s. If X ∈ L, then ηα(X) = 0 for
all α, and if X ∈ µ, then φX = 0.

The covariant derivative of φ is defined by(
∇X φ

)
Y = ∇X φY − φ∇XY (7)

for all X, Y ∈ TM.
Now, let M be an isometrically immersed submanifold in M with induced metric g.

Let TM be the Lie algebra of vector fields on M, and T⊥M the set of all vector fields normal
to M. If we denote the Levi–Civita connection induced on the tangent bundle TM by ∇
and ∇⊥ is the normal connection in the normal bundle T⊥M of M, then the Gauss and
Weingarten formulas are, respectively, given by

∇XY = ∇XY + h(X, Y), (8)

∇XV = −AV X +∇⊥
X V, (9)

for any vector field X, Y ∈ TM and V ∈ T⊥M, where h and AV are the second fundamental
form and AV the shape operator (corresponding to the normal vector field V), respectively,
for the immersion of M into M. They are related by

g(h(X, Y), V) = g(AV X, Y) (10)

For any X ∈ TM and V ∈ T⊥M, we write

φX = TX + FX, (11)

φV = tX + f X, (12)

where TX and tX are the tangential components, and FX and f X are the normal compo-
nents of φX and φV, respectively. The covariant derivatives ∇T and ∇F are defined by

(∇XT)Y = ∇XTY − T∇XY

(∇X F)Y = ∇⊥
X FY − F∇XY

for all X, Y ∈ TM. For a submanifold M of an S-manifold M by Equations (6), (8) and (11),

∇Xξα = −TX, (13)



Symmetry 2024, 16, 35 4 of 20

h(X, ξα) = −FX. (14)

Let p ∈ M and {e1, . . . , em, . . . , e2n+s} be an orthonormal basis of the tangent space
Tp M, then for a smooth function f on M such that e1, . . . , em are tangent to M at p. Then,
the mean curvature vector is H(p) = 1

m ∑m
i=1 h(ei, ei). Furthermore, the squared norm of the

second fundamental form h is defined by

∥h∥2 =
m

∑
j=1

m

∑
i=1

g
(
h
(
ei, ej

)
, h
(
ei, ej

))
.

and
hr

ij = g
(
h
(
ei, ej

)
, er
)
, i, j ∈ {1, 2, . . . , m}, r ∈ {m + 1, . . . , 2n + s}.

The gradient of a smooth function f on a manifold M, denoted as ∇⃗ f , is defined by

g
(
∇⃗ f , X

)
= X f ,

for any X ∈ TM.
For the submanifold tangent to the structure vector field ξα, the submanifold M is said

to be an invariant submanifold if φ
(
Tp M

)
⊂ Tp M, for every p ∈ M. Otherwise, M is said

to be an anti-invariant submanifold if φ
(
Tp M

)
⊂ T⊥

p M, for every p ∈ M.
A submanifold M tangent to ξα is said to be a contact CR-submanifold if there exists a

pair of orthogonal distributions D : p → Dp and D⊥ : p → D⊥
p , ∀p ∈ M such that

TM = D ⊕ D⊥ ⊕ ⟨ξα⟩,

where ⟨ξα⟩ is the S-dimensional distribution spanned by the structure vector field ξα, D is
invariant, i.e., φD = D and D⊥ is anti-invariant, i.e., φD⊥ ⊆ T⊥M.

3. Slant and Hemi-Slant Submanifold

In this section, we discuss the other classes of submanifolds tangent to ξα. If X and ξα

are linearly independent for each nonzero vector X tangent to M at p and the angle between
φX and Tp M is constant θ(X) ∈

[
0, π

2
]

for all nonzero X ∈ Tp M − ⟨ξα⟩, ∀p ∈ M, then M is
said to be a slant submanifold and the angle θ(X) is called slant angle of M. Obviously, if
θ = 0 or θ = π

2 , then M is an invariant or anti-invariant submanifold, respectively. A slant
submanifold which is not invariant nor anti-invariant is called a proper slant submanifold.

We recall the following result for the slant submanifold of an S-manifold [38].

Theorem 1. Let M be a submanifold of an S-manifold M such that ξα ∈ TM. Then, M is a slant
if and only if there exists a constant λ ∈ [0, 1] such that

T2 = λ

(
−I +

s

∑
α=1

ηα ⊗ ξα

)
(15)

Furthermore, in such case, if θ is a slant angle, then λ = cos2 θ.

The following relations are a straightforward consequence of (15):

g(TX, TY) = cos2 θ

[
g(X, Y)−

s

∑
α=1

ηα(X)ηα(Y)

]
, (16)

g(FX, FY) = sin2 θ

[
g(X, Y)−

s

∑
α=1

ηα(X)ηα(Y)

]
, (17)

for any X, Y ∈ TM.
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Now, for a slant submanifold M, it is easy to show the following result for subsequent use:

Theorem 2. Let M be a proper slant submanifold of an S-manifold M, such that ξα ∈ TM. Then,
for any X ∈ TM

(a) tFX = sin2 θ

(
−X +

s

∑
α=1

ηα(X)ξα

)
, (18)

(b) f FX = −FTX, (19)

Proof. From the relation (11), we have

φ2X = φTX + φFX,

for any X ∈ TM. Applying the Equations (1) and (12) and again by (11), we derive

−X +
s

∑
α=1

ηα(X)ξα = T2X + FTX + tFX + f FX.

Then, using Theorem 1, we arrive at the desired result by equaling the tangential and
normal components.

A submanifold M tangent to ξα is said to be a hemi-slant submanifold if there exists a
pair of orthogonal distributions D⊥ and Dθ on M such that TM = D⊥ ⊕ Dθ ⊕ ⟨ξα⟩, D⊥ is
anti-invariant, i.e., φD⊥ ⊆ T⊥M, Dθ is a proper slant with a slant angle θ ̸= π

2 .
If we denote the dimensions of D⊥ and Dθ by n1 and n2, respectively, then M is

an invariant (resp. an anti-invariant) submanifold if n1 = 0 and θ = 0 (resp. n2 = 0).
Also, the contact CR-submanifold and slant submanifold are special cases of a hemi-slant
submanifold with a slant angle θ = 0 and n1 = 0, respectively. A hemi-slant submanifold
M is a proper hemi-slant if neither n1 = 0 nor θ = 0 or π

2 .
A hemi-slant submanifold M of an S-manifold M is said to be mixed geodesic if

h(X, Z) = 0, for any X ∈ D⊥ and Z ∈ Dθ .
Now, we will discuss the integrability of distributions involved in the definition of a

hemi-slant submanifold of an S-manifold M, and we also investigate some basic properties
related to the totally geodesicness of the distributions.

For a hemi-slant submanifold M of an S-manifold M, we have

TM = D⊥ ⊕ Dθ ⊕ ⟨ξα⟩,

where ⟨ξα⟩ is the S-dimensional distribution spanned by the structure vector field ξα. Then,
for any X ∈ TM, put

X = P1X + P2X +
s

∑
α=1

ηα(X)ξα (20)

where Pi (i = 1, 2) are projection maps on the distributions D⊥ and Dθ . Now, operating φ
on both sides of Equation (20)

φX = FP1X + TP2X + FP2X.

It easy to see that
TX = TP2X, FX = FP1X + FP2X

and
φP1X = FP1X, TP1X = 0; TP2X ∈ Dθ .

Then, the normal bundle T⊥M can be decomposed as

T⊥M = φD⊥ ⊕ FDθ ⊕ ν, (21)
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where ν is the normal invariant sub-bundle under φ.
As D⊥ and Dθ are orthogonal distributions on M, g(X, Z) = 0 for each X ∈ D⊥ and

Z ∈ Dθ , then, by Equations (4) and (11), we may write

g(FX, FZ) = g(φX, φZ) = g(X, Z) = 0

That means the distributions φD⊥ and FDθ are mutually perpendicular. In fact, the
decomposition (21) is an orthogonal direct decomposition.

Now, the following lemmas play an important role in working out the integrability
conditions of distributions involved in this setting.

Lemma 1. Let M be a hemi-slant submanifold of an S-manifold M. Then,

AφYX = AφXY,

for all X, Y ∈ D⊥.

Proof. For any X, Y ∈ D⊥ and Z ∈ TM, using Equations (4) and (10), we find

g(AφYX, Z) = −g(φh(X, Z), Y)

Then, by the Gauss Formula (8), and since φD⊥ ⊂ T⊥M, we arrive at

g(AφYX, Z) = −g(φ∇ZX, Y)

Now, applying the Equations (3), (5), (7) and (9), we have the following

g(AφYX, Z) = g(AφXZ, Y) + g(φZ, φX)g(ξα, Y) + g(X, ξα)g(φ2Z, Y)

Since D⊥ and ⟨ξα⟩ are orthogonal, we derive

g(AφYX, Z) = g(AφXZ, Y)

The result follows from the above equation and by the symmetry of the shape operator.
This proves the lemma completely.

Lemma 2. Let M be a hemi-slant submanifold of an S-manifold M. Then,

[X, ξα] ∈ D⊥,

for all X ∈ D⊥.

Proof. For any X ∈ D⊥ and Z ∈ Dθ ,

g([X, ξα], TZ) = g
(
∇Xξα −∇ξα

X, TZ
)
= g

(
∇Xξα −∇ξα

X, TZ
)

From the relations (6), (7) and (11), we obtain

g([X, ξα], TZ) = g
(
∇ξα

TZ, X
)
= g

((
∇ξα

φ
)
Z, X

)
+ g
(

φ∇ξα
Z, X

)
− g
(
∇ξα

FZ, X
)

Using the Equations (1), (5), (8) and (9), we get

g([X, ξα], TZ) = −g
(
∇ξα

Z, φX
)
− g(h(ξα, Z), φX) + g(h(ξα, X), FZ)

Since X ∈ D⊥, so φX ∈ T⊥M and φX = FX. Thus, from (14), we obtain

g([X, ξα], TZ) = 0
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This proves the lemma completely.

Proposition 1. Let M be a proper hemi-slant submanifold of an S-manifold M. Then, the anti-
invariant distribution D⊥ is always integrable.

Proof. From the Gauss Formula (8), for any X, Y ∈ D⊥ and Z ∈ Dθ , we get

g([X, Y], Z) = g(∇XY, Z)− g(∇YX, Z) = g
(
∇XY, Z

)
− g
(
∇YX, Z

)
By (2) and (3), we find

g([X, Y], Z) = g
(

φ∇XY, φZ
)
+ ηα(Z)g

(
∇XY, ξα

)
− g
(

φ∇YX, φZ
)
− ηα(Z)g

(
∇YX, ξα

)
Then, using (4) and (6), we derive

g([X, Y], Z) = g
(

φ∇XY, φZ
)
− g
(

φ∇YX, φZ
)

From (1), (4), (5) and (7), we have

g([X, Y], Z) = g
(
∇X φY, φZ

)
− g
(
∇Y φX, φZ

)
= g

(
∇X φY, TZ

)
+ g
(
∇X φY, FZ

)
− g
(
∇Y φX, TZ

)
− g
(
∇Y φX, FZ

)
From the Equations (4) and (9), and using the orthogonality of vector fields, we obtain

g([X, Y], Z) = g
(

AφXY − AφYX, TZ
)
− g
(
∇X FZ, φY

)
+ g
(
∇Y FZ, φX

)
By Lemma 1, Equations (4) and (7), we get

g([X, Y], Z) = g
(

φ∇X FZ, Y
)
− g
(

φ∇Y FZ, X
)

= g
(
∇X φFZ, Y

)
− g
((
∇X φ

)
FZ, Y

)
− g
(
∇Y φFZ, X

)
+ g
((
∇Y φ

)
FZ, X

)
Using (1), (5), (12), and the fact that D⊥ and ⟨ξα⟩ are orthogonal, we arrive at

g([X, Y], Z) = g
(
∇XtFZ, Y

)
+ g
(
∇X f FZ, Y

)
− g
(
∇YtFZ, X

)
− g
(
∇Y f FZ, X

)
Then, by the relations (18) and (19), we get

g([X, Y], Z) = − sin2 θg
(
∇XZ, Y

)
+ sin2 θηα(Z)g

(
∇Xξα, Y

)
− g
(
∇X FTZ, Y

)
+ sin2 θg

(
∇YZ, X

)
− sin2 θηα(Z)g

(
∇Yξα, X

)
+ g
(
∇Y FTZ, X

)
Applying (6), (9) and by the orthogonality of vector fields, we derive

g([X, Y], Z) = sin2 θg
(
∇XY, Z

)
+ g(AFTZX, Y)− sin2 θg

(
∇YX, Z

)
− g(AFTZY, X)

Using the fact that the shape operator is symmetric, we arrive at

g([X, Y], Z) = sin2 θg([X, Y], Z)

which means that
cos2 θg([X, Y], Z) = 0

Since M is a proper hemi-slant submanifold, then cos2 θ ̸= 0, and hence we conclude
that g([X, Y], Z) = 0. Therefore, [X, Y] ∈ D⊥, for any X, Y ∈ D⊥, i.e., the anti-invariant
distribution D⊥ is integrable. The proof is complete.

From Proposition 1 and Lemma 2, we have the following corollary:
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Corollary 1. On a hemi-slant submanifold M of an S-manifold M, the distribution D⊥ ⊕ ⟨ξα⟩
is integrable.

Lemma 3. Let M be a hemi-slant submanifold of an S-manifold M. Then,

g([X, Y], ξα) = 2g(X, TY),

for any X, Y ∈ D⊥ ⊕ Dθ .

Proof. For any X, Y ∈ D⊥ ⊕ Dθ , we have

g([X, Y], ξα) = g(∇XY, ξα)− g(∇YX, ξα)

Applying Equations (4) and (13), the result follows.

From the above Lemma 3, we have the following:

Corollary 2. In an S-manifold the distribution D⊥ ⊕ Dθ is not integrable.

Lemma 4. Let M be a hemi-slant submanifold of an S-manifold M. Then, the slant distribution
Dθ is not integrable.

Proof. By Lemma 3, for any Z, W ∈ Dθ ,

ηα([Z, W]) = g([Z, W], ξα) = 2g(Z, TW)

By the definition of a hemi-slant submanifold the result follows.

Proposition 2. Let M be a proper hemi-slant submanifold of an S-manifold M. Then, the distribu-
tion Dθ ⊕ ⟨ξα⟩ is integrable if and only if

h(Z, TW)− h(W, TZ) +∇⊥
Z FW −∇⊥

W FZ

lies in FDθ , for each Z, W ∈ Dθ ⊕ ⟨ξα⟩.

Proof. By the relation (2), for any Z, W ∈ Dθ ⊕ ⟨ξα⟩ and X ∈ D⊥, we obtain

g([Z, W], X) = g(φ[Z, W], φX) + ηα([Z, W])ηα(X)

From the Equation (3) and (11), and the facts that TX = 0, and D⊥ and ⟨ξα⟩ are orthogonal,
we find

g([Z, W], X) = g(φ[Z, W], FX) = g
(

φ∇ZW, FX
)
− g
(

φ∇W Z, FX
)

Then, by the Equations (1), (4), (5) and (7), we have

g([Z, W], X) = g
(
∇Z φW, FX

)
− g
(
∇W φZ, FX

)
= g

(
∇ZTW, FX

)
+ g
(
∇ZFW, FX

)
− g
(
∇W TZ, FX

)
− g
(
∇W FZ, FX

)
Applying the Formulas (8) and (9) gives

g([Z, W], X) = g
(

h(Z, TW)− h(W, TZ) +∇⊥
Z FW −∇⊥

W FZ, FX
)

By the fact that FD⊥ and FDθ are mutually perpendicular, the result follows.

Now, we have the following results for a hemi-slant submanifold of an S-manifold.
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Lemma 5. On a hemi-slant submanifold M of an S-manifold M, we have

g(∇XZ, Y) = sec2 θ{g(h(X, TZ), φY)− g(h(X, Y), FTZ)}

for any X, Y ∈ D⊥ and Z ∈ Dθ ⊕ ⟨ξα⟩.

Proof. By the Gauss Formula (2), (3) and (8), for any X, Y ∈ D⊥ and Z ∈ Dθ ⊕ ⟨ξα⟩, we get

g(∇XY, Z) = g
(
∇XY, Z

)
= g

(
φ∇XY, φZ

)
Then, using the Equations (1), (5), (7), and the fact that D⊥ and ⟨ξα⟩ are orthogonal, we get

g(∇XY, Z) = g
(
∇X φY, φZ

)
Applying (3), (5), (7), and (9)–(11), we find

g(∇XY, Z) = −g(h(X, TZ), φY)− g
(
∇XY, φFZ

)
From the formulas (6), (12), (18) and (19), thus

g(∇XY, Z) = −g(h(X, TZ), φY) + sin2 θg
(
∇XY, Z

)
− g
(
∇X FTZ, Y

)
By the relations (8)–(10), we have

cos2 θg(∇XY, Z) = g(h(X, Y), FTZ)− g(h(X, TZ), φY)

Finally,
g(∇XZ, Y) = sec2 θ{g(h(X, TZ), φY)− g(h(X, Y), FTZ)}

This proves the lemma completely.

Lemma 6. On a hemi-slant submanifold M of an S-manifold M, we have

g(∇ZX, W) = sec2 θ{g(h(Z, X), FTW)− g(h(Z, TW), φX)}

for any Z, W ∈ Dθ ⊕ ⟨ξα⟩ and X ∈ D⊥.

Proof. Using the Formulas (1)–(3), (5), (7) and (8), for any Z, W ∈ Dθ ⊕ ⟨ξα⟩ and X ∈ D⊥,
we get

g(∇ZW, X) = g
(
∇Z φW, φX

)
= g

(
∇ZTW, φX

)
+ g
(
∇ZFW, φX

)
Applying (4) and (8), we find that

g(∇ZW, X) = g(h(Z, TW), φX)− g
(
∇Z φX, FW

)
From the relations (1), (4), (5) and (7), thus

g(∇ZW, X) = g(h(Z, TW), φX) + g
(
∇ZX, φFW

)
Using the Equations (4), (6), (12), (18) and (19), we arrive at

g(∇ZW, X) = g(h(Z, TW), φX) + sin2 θg
(
∇ZW, X

)
+ g
(
∇ZFTW, X

)
Then, by the relations (8)–(10),

cos2 θg(∇ZW, X) = g(h(Z, TW), φX)− g(h(Z, X), FTW)



Symmetry 2024, 16, 35 10 of 20

Finally, we get

g(∇ZX, W) = sec2 θ{g(h(Z, X), FTW)− g(h(Z, TW), φX)}

This proves the lemma completely.

Theorem 3. Let M be a hemi-slant submanifold of an S-manifold M. Then, the leaves of the
distribution D⊥ are totally geadesic if and only if

g
(

AFTZY − AφYTZ, X
)
= 0,

for any X, Y ∈ D⊥ and Z ∈ Dθ ⊕ ⟨ξα⟩.

Proof. For any X, Y ∈ D⊥ and Z ∈ Dθ ⊕ ⟨ξα⟩, by Lemma 5 and relation (10), we have

g(∇XZ, Y) = sec2 θg
(

AφYTZ − AFTZY, X
)

From (4), we get
g(∇XY, Z) = sec2 θg

(
AFTZY − AφYTZ, X

)
of which the assertion follows immediately.

Theorem 4. Let M be a hemi-slant submanifold of an S-manifold M. Then, the leaves of the
distribution Dθ ⊕ ⟨ξα⟩ are totally geadesic if and only if

g
(

AφXTW − AFTW X, Z
)
= 0,

for Z, W ∈ Dθ ⊕ ⟨ξα⟩ and X ∈ D⊥.

Proof. For any Z, W ∈ Dθ ⊕ ⟨ξα⟩ and X ∈ D⊥, by Lemma 6 and relation (10), we have

g(∇ZX, W) = sec2 θg
(

AFTW X − AφXTW, Z
)

From (4), we get
g(∇ZW, X) = sec2 θg

(
AφXTW − AFTW X, Z

)
of which the assertion follows immediately.

Thus, from Theorems 3 and 4 we can state the following theorem:

Theorem 5. Let M be a proper hemi-slant submanifold of an S-manifold M. Then, M is a locally
Riemannian product manifold of M⊥ and Mθ if and only if

AφXTZ = AFTZX,

for any X ∈ D⊥ and Z ∈ Dθ ⊕ ⟨ξα⟩, where M⊥ is an anti-invariant submanifold and Mθ is a
proper slant submanifold tangent to the structure vector fields ξα of M.

4. Warped Product Hemi-Slant Submanifold

A hemi-slant submanifold M is said to be a hemi-slant product if the distributions
D⊥ and Dθ are involutive and parallel on M, i.e., D⊥ and Dθ are integrable on M. In this
case, M is foliated by the leaves of these distributions. As a generalization of this product
manifold, we can consider the warped product manifold, which is defined as follows:

Let (M1, g1) and (M2, g2) be two Riemannian manifolds with Riemannian metrics and
a positive differentiable function f on M1. Consider the product manifold M1 × M2 with
its projections π1 : M1 × M2 → M1 and π2 : M1 × M2 → M2. Then, their warped product
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manifold M = M1 × f M2 is the Riemannian manifold M1 × M2 = (M1 × M2, g) equipped
with the Riemannian M = M1 × f M2 being the structure such that

g(X, Y) = g1(π1∗X, π1∗Y) + ( f ◦ π1)
2g2(π2∗X, π2∗Y),

for any vector field X, Y tangent to M, where ∗ is the symbol for the tangent maps. A
warped product manifold M = M1 × f M2 is said to be trivial, or simply a Riemannian
product manifold, if the warping function f is constant.

We recall the following result for warped product manifolds.

Lemma 7 ([22]). On a warped product manifold M = M1 × f M2. If X, Y ∈ TM1 and Z, W ∈
TM2, then

(i) ∇XY ∈ TM1,
(ii) ∇XZ = ∇ZX = (X ln f )Z,
(iii) nor(∇ZW) = −g(Z, W)∇⃗ ln f ,

where ∇ is the Levi–Civita connection on M and nor(∇ZW) is the normal component of ∇ZW
in TM2.

As a consequence, we have

∥∇⃗ f ∥2 =
m

∑
i=1

(ei( f ))2. (22)

for an orthonormal frame {e1, . . . , em} on M1. Furthermore, M1 is a totally geodesic sub-
manifold and M2 is a totally umbilical submanifold of M.

In this section, we shall discuss the warped product of an S-manifold, in particular
of a hemi-slant submanifold. Let M⊥ and Mθ be an anti-invariant and a proper slant
submanifolds of an S-manifold M, respectively. Then, we consider the warped product
hemi-slant submanifold of the form Mθ × f M⊥ such that the structure vector fields ξα

tangent to the base. Firstly, we have the following results for later use.

Lemma 8. Let M = Mθ × f M⊥ be a warped product submanifold of an S-manifold M such
that ξα ∈ Mθ , where Mθ and M⊥ are proper slant and anti-invariant submanifolds of M, respec-
tively. Then,

(i) g(h(X, Y), φZ) = g(h(X, Z), FY);
(ii) g(h(Z, W), FTX) = g(h(Z, TX), φW)− cos2 θ(X ln f )g(Z, W);
(iii) g(h(Z, W), FX) = g(h(Z, X), φW) + {(TX ln f ) + ηα(X)}g(Z, W);

for any X, Y ∈ TMθ and Z, W ∈ TM⊥.

Proof. (i) For any X, Y ∈ TMθ and Z ∈ TM⊥, by the Gauss formula, we get

g(h(X, Y), φZ) = g
(
∇XY, φZ

)
= −g

(
φ∇XY, Z

)
Using the Equations (1), (5) and (7), we obtain

g(h(X, Y), φZ) = −g
(
∇X φY, Z

)
From (4) and (9)–(11), we find

g(h(X, Y), φZ) = g
(
TY,∇XZ

)
+ g(h(X, Z), FY)

Apply (8) and Lemma 7 (ii), we arrive at

g(h(X, Y), φZ) = (X ln f )g(TY, Z) + g(h(X, Z), FY)
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From (4), and since Z ∈ TM⊥, so TZ = 0 which proves our assertion.
(ii) For any Z, W ∈ TM⊥ and X ∈ TMθ , we get

g(h(Z, W), FTX) = g(h(Z, W), φTX)− g
(

h(Z, W), T2X
)

By the relation (15), we obtain

g(h(Z, W), FTX) = g(h(Z, W), φTX) = g
(
∇ZW, φTX

)
− g
(
∇ZW, T2X

)
Then, using (4), (7) and (15), we find

g(h(Z, W), FTX) = −g
(

φ∇ZW, TX
)
− cos2 θg(W,∇ZX)

+ cos2 θηα(X)g(W,∇Zξα)

Applying the relations (1), (5), (7) and (13), we arrive at

g(h(Z, W), FTX) = −g
(
∇Z φW, TX

)
− cos2 θg(W,∇ZX)

Hence, from (9), (10) and Lemma 7 (ii), we get

g(h(Z, W), FTX) = g(h(Z, TX), φW)− cos2 θ(X ln f )g(Z, W)

(iii) By interchanging X by TX in (ii), we get

g
(

h(Z, W), FT2X
)
= g

(
h
(

Z, T2X
)

, φW
)
− cos2 θ(TX ln f )g(Z, W)

Note that, FT2X = − cos2 θFX. Then

− cos2 θg(h(Z, W), FX) = g
(

h
(

Z, T2X
)

, φW
)
− cos2 θ(TX ln f )g(Z, W)

From the Equations (10) and (15), we find

g(h(Z, W), FX) = g
(

AφW Z, X
)
− ηα(X)g

(
AφW Z, ξα

)
+ (TX ln f )g(Z, W)

Using (10), (14) and the fact that FZ = φZ since Z ∈ TN⊥, we arrive at

g(h(Z, W), FX) = g(h(Z, X), φW) + (TX ln f )g(Z, W) + ηα(X)g(φZ, φW)

Apply the relations (2) and (3), we conclude that

g(h(Z, W), FX) = g(h(Z, X), φW) + {(TX ln f ) + ηα(X)}g(Z, W)

This proves the lemma completely.

Now, we prove the following characterization theorem for a warped product hemi-
slant submanifold by using a result of [39].

Theorem 6. Let M be a proper hemi-slant submanifold of an S-manifold M such that ξα is a
tangent to the slant distribution Dθ . Then, M is a locally warped product manifold of the form
Mθ ×µ M⊥ such that Mθ is a proper slant submanifold and M⊥ is an anti-invariant submanifold
of M if and only if

AφZTX − AFTXZ = cos2 θX(µ)Z,

for any X ∈ Dθ ⊕ ⟨ξα⟩ and Z ∈ D⊥, where µ is a function on M such that W(µ) = 0, for any
W ∈ D⊥.
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Proof. Let M = Mθ × f M⊥ be a warped product manifold submanifold of an S-manifold
M. Then, for any X, Y ∈ TMθ and Z ∈ TM⊥, we get

g
(

AφZTX, Y
)
= g(h(TX, Y), φZ)

Using Equations (1), (4), (5), (7) and (8), we find

g
(

AφZTX, Y
)
= −g

(
∇Y φTX, Z

)
Applying (4), (6), (9), (11) and (15),

g
(

AφZTX, Y
)
= cos2 θg

(
∇YX, Z

)
+ g(AFTXZ, Y)

Thus, from (4), (7) and (8), we get

g
(

AφZTX − AFTXZ, Y
)
= 0

Hence, AφZTX − AFTXZ ∈ TM⊥ since Y ∈ TMθ . Also, from Lemma 8 (ii), and the fact
that h is symmetry, we obtain

g(h(W, Z), FTX) = g(h(W, TX), φZ)− cos2 θ(X ln f )g(Z, W)

Therefore,
AφZTX − AFTXZ = cos2 θX(µ)Z,

for any X ∈ Dθ ⊕ ⟨ξα⟩ and Z ∈ D⊥, where µ = ln f such that W(µ) = 0, for any W ∈ D⊥.
Conversely, let M be a proper hemi-slant submanifold with the slant distribution

Dθ ⊕ ⟨ξα⟩ and the anti-invariant distribution D⊥ satisfying

AφZTX − AFTXZ = cos2 θX(µ)Z, (23)

for any X ∈ Dθ ⊕ ⟨ξα⟩ and Z ∈ D⊥, where µ = ln f such that W(µ) = 0, for any W ∈ D⊥.
Then, by Lemma 6, we have

g(∇XY, Z) = sec2 θ{g(h(X, TY), φZ)− g(h(X, Z), FTY)}, (24)

for any X, Y ∈ Dθ ⊕ ⟨ξα⟩ and Z ∈ D⊥. By interchanging X by Y in (24), we find

g(∇YX, Z) = sec2 θ{g(h(Y, TX), φZ)− g(h(Y, Z), FTX)}. (25)

From (24) and (25), we get

cos2 θg([X, Y], Z) = g(h(X, TY), φZ)− g(h(Y, TX), φZ) + g(h(Y, Z), FTX)

− g(h(X, Z), FTY)

Using the fact that h is symmetry and (10), we have

cos2 θg([X, Y], Z) = g
(

AφZTY − AFTYZ, X
)
− g
(

AφZTX − AFTXZ, Y
)

Thus, by (23), and since M is a proper hemi-slant submanifold, we get g([X, Y], Z) = 0.
Hence, [X, Y] ∈ Dθ ⊕ ⟨ξα⟩ since Z ∈ D⊥. This means, Dθ ⊕ ⟨ξα⟩ is integrable. Also,
from (24), the fact that h is symmetry and (10), we have

cos2 θg(∇XY, Z) = g
(

AφZTY − AFTYZ, X
)

Then, by (23), we get g(∇XY, Z) = 0. Thus, ∇XY ∈ Dθ ⊕ ⟨ξα⟩ since Z ∈ D⊥. This mean
that the leaves of the distribution Dθ ⊕ ⟨ξα⟩ are totally geodesic in M. Therefore, Mθ is a
totally geodesic submanifold of M. From Prposition 1, we have D⊥ is integrable. If we



Symmetry 2024, 16, 35 14 of 20

consider h⊥ to be the second fundamental form of a leaf M⊥ of D⊥ in M, then for any
X ∈ Dθ ⊕ ⟨ξα⟩ and Z, W ∈ D⊥, we obtain

g
(

h⊥(Z, W), X
)
= g

(
∇ZW, X

)
+ g(∇ZW, X) = g

(
∇ZW, X

)
= g

(
φ∇ZW, φX

)
Using (1), (4), (5) and (7), we find

g
(

h⊥(Z, W), X
)
= g

(
∇Z φW, φX

)
= g

(
∇Z φW, TX

)
+ g
(
∇Z φW, FX

)
Then, using Formulas (4), (8) and the fact that h is the symmetry, (3), (5), (7) and (10),
we derive

g
(

h⊥(Z, W), X
)
= −g

(
AφW TX, Z

)
− g
(
∇ZW, φFX

)
Thus, by (4), (6), (8), (9), (12), (18) and (19) and the symmetry of the shape operator, we
find that

cos2 θg
(

h⊥(Z, W), X
)
= −g

(
AφW TX − AFTXW, Z

)
Then, from (23), we derive

g
(

h⊥(Z, W), X
)
= −X(µ)g(W, Z) = −g(W, Z)g

(
∇⃗µ, X

)
which means that

h⊥(Z, W) = −g(W, Z)∇⃗µ

where ∇⃗µ is the gradient of the fumction µ. Thus, M⊥ is a totally umbilical submanifold
of M with a mean curvature vector H⊥ = −∇⃗µ. Now, we can show that H⊥ is parallel
with the normal connection ∇F of M⊥ in M. Consider for any W ∈ D⊥ and X ∈ Dθ ⊕ ⟨ξα⟩,
we get

g
(
∇F

W H⊥, X
)
= −g

(
∇W∇⃗µ, X

)
= −Wg

(
∇⃗µ, X

)
+ g
(
∇⃗µ,∇W X

)
= −W(Xµ) + g

(
∇⃗µ, [W, X]

)
+ g
(
∇⃗µ,∇XW

)
= −X(Wµ)− g

(
∇X∇⃗µ, W

)
= 0,

since W(µ) = 0, ∀ W ∈ D⊥ and thus ∇X∇⃗µ ∈ Dθ ⊕ ⟨ξα⟩ and Dθ ⊕ ⟨ξα⟩ begin totally
geodesic. This means that the mean curvature H⊥ of M⊥ is parallel. Thus, the leaves of
the distribution D⊥ are totally umbilical with parallel mean curvature H⊥ in M and hence
M⊥ is a totally umbilical submanifold with parallel mean curvature in M. That is, M⊥ is
an extrinsic sphere in M. Therefore, M is a locally warped product manifold of the form
Mθ ×µ M⊥ by a result of Hiepko [39], which proves the theorem completely.

As an application of the Theorem 6, if we put s = 1, then we have the following:

Theorem 7 ([36]). Let M be a proper pseudo-slant submanifold of a Sasakian manifold M such that
ξ is tangent to the slant distribution Dθ . Then, M is a locally warped product manifold of the form
Mθ ×µ M⊥ such that Mθ is a proper slant submanifold and M⊥ is an anti-invariant submanifold
of M if and only if

AφZTX − AFTXZ = cos2 θX(µ)Z,

for any X ∈ Dθ ⊕ ⟨ξα⟩ and Z ∈ D⊥, where µ is a function on M such that W(µ) = 0, for any
W ∈ D⊥.

In the following, we construct an example of a warped product hemi-slant submanifold
of an S-manifold.
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Example 1. Consider a submanifold M of R8+s with the Cartesian coordinates (x1, y1, x2, y2, x3, y3,
x4, y4, t1, . . . , ts) and the almost contact structure

φ

(
∂

∂xi

)
=

∂

∂yi
, φ

(
∂

∂yj

)
= − ∂

∂xj
, φ

(
∂

∂tα

)
= 0,

for all 1 ≤ i, j ≤ 4 and α = 1, . . . , s. For any vector field

X = λi
∂

∂xi
+ µj

∂

∂yj
+

s

∑
α=1

να
∂

∂tα
∈ TR8+s,

then we have

φX = λi
∂

∂yi
− µj

∂

∂xj
and φ2X = −λi

∂

∂xi
− µj

∂

∂yj
= −X +

s

∑
α=1

ηα(X)ξα

It is clear that

g(X, X) = λ2
i + µ2

j +
s

∑
α=1

ν2
α and g(φX, φX) = λ2

i + µ2
j

Therefore,

g(φX, φX) = g(X, X)−
s

∑
α=1

η2
α(X).

Hence, (φ, ξα, ηα, g) is an S-structure on R8+s. Now, let us consider the immersion ψ of M into
R8+s as

ψ(u, v, w, z, t1, . . . , ts) = (u cos w, v cos w, z, z, u + v, u − v, u sin w, v sin w, t1, . . . , ts).

Then, the tangent bundle TM of M is spanned by the following orthogonal vector fields:

e1 = cos w
∂

∂x1
+

∂

∂x3
+

∂

∂y3
+ sin w

∂

∂x4
, e2 = cos w

∂

∂y1
+

∂

∂x3
− ∂

∂y3
+ sin w

∂

∂y4
,

e3 = −u sin w
∂

∂x1
− v sin w

∂

∂y1
+ u cos w

∂

∂x4
+ v cos w

∂

∂y4
, e4 =

∂

∂x2
+

∂

∂y2
;

e5 =
∂

∂t1
, . . . , e4+α =

∂

∂tα
.

Then, with respect to the given almost contact structure, we obtain

φe1 = cos w
∂

∂y1
+

∂

∂y3
− ∂

∂x3
+ sin w

∂

∂y4
, φe2 = − cos w

∂

∂x1
+

∂

∂y3
+

∂

∂x3
− sin w

∂

∂x4
,

φe3 = −u sin w
∂

∂y1
+ v sin w

∂

∂x1
+ u cos w

∂

∂y4
− v cos w

∂

∂x4
, φe4 =

∂

∂y2
− ∂

∂x2
;

φe5 = 0, . . . , φe4+α = 0.

Since φe3 and φe4 are orthogonal to TM, then D⊥ = Span{e3, e4} is an anti-invariant distribution,
and Dθ = Span{e1, e2} is a proper slant distribution with slant angle θ = arccos

(
1
3

)
such that

ξα = e4+α is a tangent to Dθ . Hence, M is a proper hemi-slant submanifold of R8+s. It is easy to
observe that both the distributions are integrable. If we denote the integral manifolds of Dθ ⊕ ⟨ξα⟩
and D⊥ by Mθ and M⊥, respectively, then the metric tensor g of the product manifold M is given by

g = 3du2 + 3dv2 +
s

∑
α=1

dt2
α +

(
u2 + v2

)
dw2 + 2dz2 = g1 +

(√
u2 + v2

2

)2

g2,
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where g1 = 3
(
du2 + dv2)+ ∑s

α=1 dt2
α is the metric tensor of Mθ and g2 = 2dw2 + 4

u2+v2 dz2 is
the mertic tensor of M⊥. Thus, M is a hemi-slant warped product of the form Mθ × f M⊥ with

warping function f =
√

u2+v2

2 , such that u, v ̸= 0.

From the above example, if we put s = 1, then M is a warped product hemi-slant
submanifold on a Sasakian manifold.

In [36], If we construct the example on an S-manifold, then we get the following:

Example 2. Consider a submanifold M of R6+s with the Cartesian coordinates (x1, y1, x2, y2, x3, y3,
t1, . . . , ts) and the almost contact structure

φ

(
∂

∂xi

)
=

∂

∂yi
, φ

(
∂

∂yj

)
= − ∂

∂xj
, φ

(
∂

∂tα

)
= 0,

for all 1 ≤ i, j ≤ 3 and α = 1, . . . , s. Then, it is easy to show that (φ, ξα, ηα, g) is an S-structure
on R6+s. Now, if we consider the immersion ψ of M into R6+s as

ψ(u, v, w, t1, . . . , ts) =
(

u, v, u cos w,
√

3v cos w, u sin w,
√

3v sin w, t1, . . . , ts

)
.

then the tangent bundle TM = D⊥ ⊕ Dθ ⊕ ⟨ξα⟩, where D⊥ = Span{e3} is an anti-invariant
distribution and Dθ = Span{e1, e2} is a proper slant distribution with slant angle θ = 5π

12 such
that ξα = e3+α tangent to Dθ . Hence, M is a proper hemi-slant submanifold of R6+s. If we denote
the integral manifolds of Dθ ⊕ ⟨ξα⟩ and D⊥ by Mθ and M⊥, respectively, then the metric tensor g
of the product manifold M is given by

g = 2du2 + 4dv2 +
s

∑
α=1

dt2
α +

(
u2 + 3v2

)
dw2 = g1 +

(√
u2 + 3v2

)2
g2,

where g1 = 2du2 + 4dv2 + ∑s
α=1 dt2

α is the metric tensor of Mθ and g2 = dw2 is the metric tensor
of M⊥. Thus, M is a hemi-slant warped product of the form Mθ × f M⊥ with warping function
f =

√
u2 + 3v2, such that u, v ̸= 0.

5. Inequality for Warped Product Hemi-Slant Submanifold

In this section, we form a sharp inequality for the squared norm of the second
fundamental form ∥h∥2 of a mixed totally geodesic warped product hemi-slant submanifold
in terms of the gradient of the warping function and the slant angle. First, we construct the
following frame fields for a warped product hemi-slant submanifold of an S-manifold to
develop the main result of this section.

Let M = Mθ × f M⊥ be an m-dimensional warped product hemi-slant submanifold of
an (2n + s)-dimensional S-manifold M, where M⊥ is an n1-dimensional anti-invariant
submanifold of M, and Mθ is a proper slant submanifold of M with the dimension
n2 = 2p + s such that ξα is tangent to Mθ . Let us consider the tangent spaces of M⊥
and Mθ by D⊥ and Dθ ⊕ ⟨ξα⟩ instead of TM⊥ and TMθ , respectively. We set the or-
thonormal frame fields of D⊥ and Dθ ⊕ ⟨ξα⟩, respectively, as {e1, e2, . . . , en1} and {en1+1 =
e∗1 , . . . , en1+p = e∗p, en1+p+1 = e∗p+1 = sec θTe∗1 , . . . , en1+2p = e∗2p = sec θTe∗p, en1+2p+1 =

e∗2p+1 = ξ1, . . . , em = e∗2p+s = ξs}, where θ is the slant angle of the immersion. Then, the

orthonormal frame fields of the normal sub-bundles of φD⊥, FDθ and ν, respectively, are
{em+1 = e1 = φe1, . . . , em+n1 = en1 = φen1}, {em+n1+1 = en1+1 = csc θFe∗1 , . . . , em+n1+p =
en1+p = csc θFe∗p, em+n1+p+1 = en1+p+1 = csc θ sec θFTe∗1 , . . . , e2m−s = em+n1+2p = em−s =
csc θ sec θFTe∗p} and {e2m−s+1 = em−s+1, . . . , e2n+s = e2(n−m+s)}. It is clear that the dimen-
sions of the normal subspaces φD⊥, FDθ and ν, respectively, are n1, 2p and 2(n − m + s).
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Theorem 8. Let M = Mθ × f M⊥ be an m-dimensional mixed totally geodesic warped product
hemi-slant submanifold of an S-manifold M such that ξα ∈ TMθ , where Mθ is a proper slant
submanifold of M with the dimension n2 = 2p + s and M⊥ is an anti-invariant submanifold of
dimension n1 of M. Then, we have the following:

(i) The squared norm of the second fundamental form of M satisfies

∥h∥2 ≥ n1 cot2 θ∥∇⃗ ln f ∥2 (26)

where ∇⃗ln f is the gradient of ln f along Mθ .
(ii) If the equality sign in (26) holds identically, then Mθ is totally geodesic and M⊥ is totally

umbilical submanifolds in M.

Proof. From the definition of h, we get

∥h∥2 =∥h
(

D⊥, D⊥
)
∥2+∥h(D, D)∥2 + 2∥h

(
D⊥, D

)
∥2

where D = Dθ ⊕ ⟨ξα⟩. Since M is a mixed totally geodesic, hence the third term of right
hand side should be identically zero, then we have

∥h∥2 =
m

∑
i,j=1

g
(
h
(
ei, ej

)
, h
(
ei, ej

))
=

2n+s

∑
r=m+1

m

∑
i,j=1

g
(
h
(
ei, ej

)
, er
)2

Using the orthonormal frame fields of D⊥ and D, we have

∥h∥2 =
2n+s

∑
r=m+1

n1

∑
l,k=1

g(h(el , ek), er)
2 +

2n+s

∑
r=m+1

2p+s

∑
i,j=1

g
(
h
(
ei, ej

)
, er
)2

The above equation can be separated for the φD⊥, FDθ and ν components as follows:

∥h∥2 =
n1

∑
r=1

n1

∑
l,k=1

g(h(el , ek), er)
2 +

n1+2p

∑
r=n1+1

n1

∑
l,k=1

g(h(el , ek), er)
2

+
2(n−m+s)

∑
r=m+1−s

n1

∑
l,k=1

g(h(el , ek), er)
2 +

n1

∑
r=1

2p+s

∑
i,j=1

g
(
h
(
ei, ej

)
, er
)2 (27)

+
n1+2p

∑
r=n1+1

2p+s

∑
i,j=1

g
(
h
(
ei, ej

)
, er
)2

+
2(n−m+s)

∑
r=m+1−s

2p+s

∑
i,j=1

g
(
h
(
ei, ej

)
, er
)2

We shall leave all the terms except the second term in (27) to be evaluated, then we derive

∥h∥2 ≥
n1+2p

∑
r=n1+1

n1

∑
l,k=1

g(h(el , ek), er)
2

=
n1+p

∑
r=n1+1

n1

∑
l,k=1

g(h(el , ek), er)
2 +

n1+2p

∑
r=n1+p+1

n1

∑
l,k=1

g(h(el , ek), er)
2

From the orthonormal frame field of FDθ , we arrive at

∥h∥2 ≥
p

∑
i=1

n1

∑
l,k=1

g(h(el , ek), csc θFe∗i )
2 +

p

∑
i=1

n1

∑
l,k=1

g(h(el , ek), csc θ sec θFTe∗i )
2
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Then, by Lemma 8 (ii)–(iii) , we find that

∥h∥2 ≥ csc2 θ
p

∑
i=1

n1

∑
l,k=1

[(Te∗i ln f ) + ηα(e∗i )]
2g(el , ek)

2 + cot2 θ
p

∑
i=1

n1

∑
l,k=1

(e∗i ln f )2g(el , ek)
2

= n1 csc2 θ
p

∑
i=1

[(Te∗i ln f ) + g(e∗i , ξα)]
2 + n1 cot2 θ

p

∑
i=1

(e∗i ln f )2

= n1 csc2 θ
p

∑
i=1

(Te∗i ln f )2 ± n1 csc2 θ
2p+s

∑
i=p+1

(Te∗i ln f )2 + n1 cot2 θ
p

∑
i=1

(e∗i ln f )2

= n1 csc2 θ
2p+s

∑
i=1

(Te∗i ln f )2 − n1 csc2 θ
p

∑
i=1

g
(

e∗p+i, T∇⃗ ln f
)2

+ n1 cot2 θ
p

∑
i=1

(e∗i ln f )2

Using the considered orthonormal frame fields, the above formula can be written as

∥h∥2 ≥ n1 csc2 θ
2p+s

∑
i=1

(Te∗i ln f )2 − n1 csc2 θ sec2 θ
p

∑
i=1

g
(

Te∗p+i, T∇⃗ ln f
)2

+ n1 cot2 θ
p

∑
i=1

(e∗i ln f )2

By (16), and the fact that for a warped product submanifold of an S-manifold, ξα ln f = 0,
we arrive at

∥h∥2 ≥ n1 csc2 θ
2p+s

∑
i=1

(Te∗i ln f )2 − n1 cot2 θ
p

∑
i=1

(e∗i ln f )2 + n1 cot2 θ
p

∑
i=1

(e∗i ln f )2

Using the fact that Te∗i = cos θe∗i , for i = 1, . . . , 2p + s, we find

∥h∥2 ≥ n1 csc2 θ cos2 θ
2p+s

∑
i=1

(e∗i ln f )2

To satisfy (22), the above expression can be simplified as

∥h∥2 ≥ n1 cot2 θ∥∇⃗ ln f ∥2

which is inequality (26). If the equality sign holds in (26), then from the leaving terms in (27),
we get the following relations from the fifth and the sixth terms of (27) g(h(D, D), FDθ) = 0,
g(h(D, D), ν) = 0 which implies that

h(D, D) ⊥ FDθ , h(D, D) ⊥ ν ⇒ h(D, D) ∈ φD⊥ (28)

Also, from the fourth term of (27) and Lemma 8 (i) for a mixed totally geodesic warped
product submanifold, we find g

(
h(D, D), φD⊥) = 0 which means that

h(D, D) ⊥ φD⊥ (29)

Thus, by using (28) and (29), we get h(D, D) = 0, using this relation with the fact that Mθ

is totally geodesic in M [22], we conclude that Mθ is totally geodesic submanifold in M.
Furthermore, from the leaving first and third terms of (27), we get g

(
h
(

D⊥, D⊥), φD⊥) = 0,
g
(
h
(

D⊥, D⊥), ν
)
= 0, which implies that

h
(

D⊥, D⊥
)
⊥ φD⊥, h

(
D⊥, D⊥

)
⊥ ν ⇒ h

(
D⊥, D⊥

)
∈ FDθ (30)
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Thus, since M is a mixed totally geodesic, from Lemma 8 (ii) and (30), we arrive at

g(h(Z, W), FTX) = − cos2 θ(X ln f )g(Z, W) (31)

for any Z, W ∈ TM⊥ and X ∈ TMθ . Hence, by the relations (30), (31) and the fact that M⊥
is totally umbilical in M [22], we find that M⊥ is totally umbilical submanifold in M. This
completes the proof.

As an application of the Theorem 8, if we put s = 1, then we have the following:

Theorem 9 ([36]). Let M = Mθ × f M⊥ be an m-dimensional mixed totally geodesic warped
product submanifold of a Sasakian manifold M such that ξ ∈ TMθ , where Mθ is a proper slant
submanifold, and M⊥ is an n1-dimensional anti-invariant submanifold of M. Then, we have the
following:

(i) The squared norm of the second fundamental form of M satisfies

∥h∥2 ≥ n1 cot2 θ∥∇⃗ ln f ∥2 (32)

where ∇⃗ ln f is the gradient of ln f along Mθ .
(ii) If the equality sign in (32) holds identically, then Mθ is totally geodesic in M, and M⊥ is

totally umbilical submanifold of M.

6. Conclusions

In this paper, we extend the study of the warped product submanifolds of an S-
manifold. Firstly, we obtained the integrability conditions of distributions involved in
the definition of a hemi-slant submanifold. After that, we proved interesting results for
the existence of warped product hemi-slant submanifolds of the type Mθ × f M⊥ with
ξα ∈ Mθ of an S-manifold. Also, we proved the characterization theorem on the existence
of such submanifolds and provided some examples. Finally, we formed an inequality for
the squared norm of the second fundamental form in terms of the warping function and
the slant angle. The case for equality is also considered.
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