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Abstract: In this work, we present a grid study oriented to capture 3D flow simulations around
smooth and wrinkled cylinders that could have practical applications in various engineering areas.
The study considers three Reynolds numbers, namely, a benchmark Re = 2.14× 104 and two orders of
magnitude above and below it. The main contributions of the paper relate to the optimization of the
computational mesh for the spanwise direction of the wind flow that results from the computational-
mathematical framework employed, in addition to a novel visualization technique that unfolds
features in the recording data that could otherwise be hidden when using traditional plots. We
compare our benchmark results with those reported by other authors to conclude that the intermediate
resolution grids employed with the widest spanwise provide acceptable results. Furthermore, the
new visualization technique offers significant advantages compared to traditional pressure maps,
regarding clarity for observing and interpreting local flow disturbances, making variations with Re
clearer, and by enabling the detection of asymmetries.

Keywords: CFD-meshing; square cylinder; flow visualization; polar charts; taxicab measure; force
coefficients; SnappyHexMesh-OpenFOAM

1. Introduction

Flow around square cylinders at a Reynolds number (Re) of around 104 is widely
studied given its relevance to characterize fluid performance in the subcritical range,
and its adaptability to industrial and energy problems. Its main applications relate to
ocean engineering–energy production [1,2], drag reduction [1,3,4], and the aerodynamic
optimization of squared-rectangular vehicles [5–7].

Most of these developments involve computational fluid dynamics (CFD) simulations
oriented to improve passive control, e.g., for designing geometries that control the flow or
through modifications to the cylinder’s shape. Here, a trade-off arises for maximizing the
accuracy of the results at the lowest computational cost, which leads to a structural and
refinement meshing problem given the type and extent of the modifications required.

As a fluid dynamics problem, computational simulations must be validated with
experimental results. Some published experimental data can be found in [8], corresponding
to a smooth-squared cylinder at Re = 2.14 × 104. Likewise, Ref. [9] performed wind-tunnel
measurements using rectangular cylinders with different aspect ratios and inclination
angles, covering 300 < Re < 3 × 104, including Re = 2.14 × 104. In addition, Ref. [10]
worked with different types of cylinders, including the square case at Re = 3.4 × 104, while
Ref. [11] undertook experiments and simulations at Re = 2 × 104 and 2.2 × 104. Most of
these works focused on the effects of turbulence near the wake and measurement of the
corresponding force coefficients.

The flow around regular objects is relevant for engineering applications as it helps
to understand wake formation and the (time-averaged) loads around buildings. For this
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reason the visualization of the flow around a square-section cylinder has received consider-
able attention, for example via detailed laser Doppler velocimetry (LDV) studies by [12] at
Re = 1.4 × 104 and [8] at the Reynolds number mentioned above, both at zero incidence.
The authors of [13] extended studies of a similar kind considering non-zero incidence,
i.e., considering the orientation of the rectangle, by means of particle image velocimetry
techniques (PIV) at Re = 4× 103, 1.0× 104, and 2.0× 104. These research developments pre-
sented classical velocity contours, vector fields, or streamlines. In this sense, our proposal
offers an alternative visualization tool to characterize related phenomena that could, for
instance, complement the implementation studies presented by [14]. These authors stud-
ied numerically the aerodynamic characteristics of a rounded-corner square cylinder for
Re = 2.2 ×−104 − 1.0 × 106, in addition to other engineering key problems, like those pre-
sented by [15,16], who studied experimentally the aerodynamic effects of surface-mounted
ribs on square-section high-rise buildings.

Current practice for the reproduction of smooth-squared and low-modified cylin-
der cases is the building of computational arrays with structured meshes, adding non-
uniformity near the walls of the cylinders. Given the symmetry of the object, the majority of
these works capture 2D-flow effects, disregarding other effects taking place in the spanwise
direction, but using large amounts of cells to try and accurately reproduce the experimental
results. In this regard, the Re = 2.14 × 104 is of special interest as it relates to one of the
two benchmark problems recognized by the European Research Community on Flow,
Turbulence and Combustion (ERCOFTAC) in 1996 [17].

Some numerical studies and schemes used to scrutinize the benchmark address drag
reduction by modification of the front or rear side of the bluff body with very large eddy
simulations (VLES) [1], the reproduction of flow with LES, and spectral vanishing viscosity
methods covering a near-wall region [11]. These examples include three types of models,
namely, 2D unsteady Reynolds-averaged simulations (URANS), 3D LES/RAS, and 3D
improved delayed detached eddy simulations (IDDES) [18]. Moreover, the following
techniques provide added elements to the discussion: the Spalart–Allmaras model and
DES [19], LES and the Smagorinsky model [20–22], VLES [23], and partially averaged
Navier–Stokes (PANS) simulations [24,25].

It is worth mentioning that all of the works cited above used structured computational
arrays, which work well when the cylinder (object) has a simple shape that can be built
up with structured-meshing elements that are available in commercial software. Yet,
meshing complex geometry using structured meshes is particularly difficult. Indeed, the
addition of a boundary layer or a certain non-uniformity near the object requires much extra
refinement and could become hard to implement with structured meshes alone [26]. Thus,
when dealing with complex geometries, unstructured meshes become highly attractive
to fit the object’s shape without affecting the quality and accuracy of the results. To the
best of our knowledge, the only two reported works that have used a non-structured mesh
are [25,27]. Ref. [25] developed the meshing with ANSYS ICEM, to then perform their
simulations in OpenFOAM. The size of their computational array is similar to those of the
abovementioned studies and has uniform extrusion in the spanwise direction, inflation
layers near the walls, and non-uniformity moving away from the object, leading to around
5 × 106 cells. In turn, Ref. [27] designed their simulations in a similar way to our approach
in the present study: the object was constructed in FreeCAD and applied an unstructured
mesh in OpenFOAM, but targeting a different Reynolds number, that is Re = 4 × 104.

In this work, we simulated the flow around a square cylinder at Re = 2.14 × 102,
Re = 2.14 × 104, and Re = 2.14 × 106, by carrying out 3D-delayed detached eddy simu-
lations (DDES) with the Spalart–Allmaras model as the closer. For the intermediate Re
(benchmark problem), five unstructured computational arrays were tested systematically
by narrowing down their depth in the spanwise direction (leading to a change in cell num-
ber) while observing the lateral limits of the domain. We used the SnappyHexMesh tool
embedded in OpenFOAM (version 2012) [28], which is a free, open source CFD software
Author Reply: (version v2012, released by OpenCFD Ltd.—ESI Group, mainly located in
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Bracknell, England) that allows simulating fluid–structure interactions. This software was
used by some of the works mentioned above but using structured meshes, specifically
by [1,23,24]. Once having optimized the computational array, our study puts forward
two innovations:

1. A detailed description of the benchmark case, providing explicit characteristics of the
mathematical-computational framework that optimizes the computational resources
to produce comparable 3D flow disturbances with experiments and other simulations.

2. A polar visualization of time-averaged flow variables in concentric shells surrounding
the object, leading to a novel classification of the flow patterns resulting from the
proposed visualization. Moreover, a proper extension of the benchmark to different
Re and to non-smooth cylinders is suggested.

The paper is organized as follows: All the considerations relating to the design of
our computational model are introduced in Sections 2.1 and 2.2. Section 2.3 presents the
grid convergence study and includes the preliminary results for the optimization of the
grid. Then, we discuss the results with respect to our first contribution in Section 3.1, and
cover the second in Section 3.2. We extend our discussion on the proposed visualization
technique in Section 4. Final remarks are presented in Section 5. Except where otherwise
specified, we use the terms square, cylinder, and object, without distinction throughout our
study case, as well as grid and mesh.

2. Computational-Mathematical Model
2.1. Governing Equations and Numerical Method

The unsteady numerical simulations of the incompressible flow were performed by
embedding a delayed detached eddy simulations (DDES) solver. The DDES model was
merged with the Spalart–Allmaras (SA) model [29,30], which is based on the modified
turbulent viscosity ν̃:

D
Dt

(ρν̃) = ∇ · (ρDν̃ν̃) +
gb2
σνt

ρ|∇ν̃|2 + gb1ρS̃ν̃ − gw1 fwρ

(
ν̃

d̃

)2
+ ζν̃. (1)

In Equation (1), ρ is the density of the fluid, ζ refers to the shear stress, the turbulent
viscosity (νt) is recovered by νt = ν̃ fν̃1, with fν̃1 ≡ fν̃1(ν̃), and d̃ is the length scale
defined by,

d̃ = max[LRAS − fd, max(LRAS − LLES, 0)], (2)

The RAS scale is LRAS = λ, with λ ≡ the distance from the analyzed cell to the closest
solid wall; the LES scale is LLES = ψgDES∆, with the MIN function ψ ≡ ψ(σνt) as a low
Reynolds number correction function and gDES∆ as a length proportional to the local grid
spacing ∆ = max(∆x, ∆y, ∆z), where gDES is a constant. In this way, Equation (2) allows
varying the length scale in Equation (1) depending on the proximity to the closest solid
wall, from a full RAS model when it is far apart, to a full LES model when it is sensibly
close. The transition between scales is also softened by the delay function

fd = 1 − tanh[(gd1λd)
gd2 ], (3)

where λd is a MIN function depending on the velocity vector of the fluid
u = (ux, uy, uz), its viscosity ν and the distance λ, so that λd ≡ λd(u, ν, λ). This construction
was fully implemented in a cube-root volume formulation by the function cubeRootVol.
The coefficients fw, gb1, gb2, gd1, gd2, gw1, gDES, σνt and functions ψ, λd, and the rest of the
implicit parameters of the model were set to default values [31,32].

Regarding the method of solution, OpenFOAM is designed to work with unstructured
meshes, utilizing the finite volume method (FVM) to construct a way of integrating the
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Navier–Stokes equations over a 3D control volume V, leading to the general scalar transport
equation for our problem as the conservative form∫

V

δ

δt
(ρϕ)dV +

∫
V
∇ · (ρϕu)dV =

∫
V
∇ · (Γ∇ϕ)dV +

∫
V

SϕdV, (4)

with source Sϕ for each property ϕ (components of velocity and mass). Equation (4) is
then discretized by the divergence theorem to produce a system of algebraic equations of
the form Ax = b to be solved, where A ≡ coefficient matrix, x ≡ vector of variables, and
b ≡ source vector. For our numerical simulations, the discretization process was performed
by using a conditionally stable second-order implicit-backward for time schemes, Gauss
linear for gradient schemes, Gauss linear limited for divergence and Laplacian schemes,
and linear interpolation to transform the cell-center quantities to face centers. Although it is
worth mentioning that investigating the discretization process performed by OpenFOAM
is outside the limits of this study, readers with a special interest in step-by-step similar
procedures are referred to [14,33,34].

To achieve the above purpose, we implemented the PISO (Pressure Implicit with
Splitting of Operators) algorithm, which is a transient incompressible (in OpenFOAM [35])
iterative procedure that splits the operators into an implicit predictor and multiple explicit
corrector steps, seeking to obtain close approximations of the exact solution of the difference
equations at each time-step, with the accuracy in terms proportional to the powers of the
time-step size. Further details of the PISO algorithm are found in [36,37]. In pisoFOAM,
pressure is fully implicit, with the coupling of the velocity and pressure equations being
handled through the iterations, by evaluating the initial solutions and then correcting
them. For this, we delimited a maximum of three corrections without extra-correction for
mesh non-orthogonality. In this context, the resulting algebraic equations were solved by
different methods: a generalized geometric-algebraic multi-grid (GAMG) solver method
for pressure, with a Gauss–Seidel method as a smoother, and a preconditioned pipelined
conjugate residuals (PPCR) solver to override solution tolerance for the final pressure,
and a symmetric Gauss–Seidel solver for the rest of the variables. These and all other
parameters and methods were set according to default values of the motorbike example in
OpenFOAM-v2012, see the tutorials [38] for more details (once installed, refer to directory:
OpenFOAM/OpenFOAM-v2012/tutorials/incompressible/pisoFoam/LES/).

2.2. Meshing, Initial, and Boundary Conditions

The computational domain is defined in Cartesian coordinates. According to Figure 1,
the origin of the system is located at the center of the squared cylinder, characterized by
length L, height H, and width D, along the x, y, and z axes, respectively. The main flow
aligns with the x-direction and the cylinder traverses the entire domain in the z-direction;
thus, H is taken as the characteristic length of the system. We set H = 5 m and L = H for
all the numerical tests; note that the values of D are described in Section 2.3.

For defining limits of the computational domain, we used three levels of boundary
conditions (see Figure 1). Inflow and outflow boundaries were located at x = −4.5H and
x = 9.5H, respectively. In turn, symmetry boundaries were implemented at the rest of the
borders of the domain, enclosed within y = ±4.5H (up and down), and z = ±0.5H (front
and back). Finally, the non-slip boundary was implemented at the walls of the cylinder. The
objects (cylinders) were designed in FreeCAD and imported as a STereoLithography (STL)
file by means of the surfaceFeatureExtractDict tool of OpenFOAM, extracting the edges
of all angles. We used FreeCAD version 0.18, with its latest version being accessible at [39].

The initial and boundary values of the parameters at each boundary and internal
fields are shown in Table ??. Re = U∞ H/ν = 2.14 × 104 is obtained by fixing a free stream
velocity U∞ = 10 m/s in the x-direction at the inlet, and considering a kinematic viscosity
ν = 0.00233644 m2/s, which is defined in the directory constant/transportProperties.
In order to reproduce the experimental setup of [8], we define a uniform turbulence intensity
I = 2% at the inlet, leading to a turbulent energy of k = (3/2)(U∞ I)2 = 0.06 m2/s2; it was
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modeled by the function kqRWall for cells at the cylinder’s wall. In addition, the turbulent
kinematic viscosity νt is calculated at the inlet and outlet boundaries, and modeled at the
cylinder by the function nutUSpaldingWall. The modified turbulent viscosity is set to
ν̃ = 5ν in all the domain, excepting for cells near to the cylinder’s wall in which ν̃ = 0,
as usually suggested [29,40]. Then, the lower (2.14 × 102) and higher (2.14 × 106) Re are
obtained by modifying the kinematic viscosity by two orders of magnitude, respectively.

Table 1. Initial and boundary conditions of the parameters and variables of the model. For the
internal field the initial condition only applies.

Parameter Boundary Fields Internal Field

Inlet Outlet Up & Down Front & Back Cylinder’s
Walls

U fixedValue
(10, 0, 0)

inletOutlet
inlet = (0, 0, 0)

outlet = (10, 0, 0)
symmetry symmetry noSlip uniform

(10, 0, 0)

p zeroGradient fixedValue
0 symmetry symmetry zeroGradient uniform

0

k fixedValue
0.06

inletOutlet
inlet = 0.06

outlet = 0.06
symmetry symmetry kqRWallFunction

0.06
uniform

0.06

νt
calculated

0
calculated

0 symmetry symmetry
nutUSpalding
WallFunction

0

uniform
0

ν̃
fixedValue
0.0116822

inletOutlet
inlet = 0.0116822

outlet = 0.0116822
symmetry symmetry fixedValue

0
uniform

0.0116822

The mesh consists of two uniform-structured grid sections (Zones A and B), one scaled-
non-structured grid section (Zone C), and an additional more refined non-structured grid
section (Zone D), as shown in Figure 2. Zone A is a coarse grid whose cells consist of
quasi-cubes of 1 m3 approximate volume, i.e., H/5 per side, with the aim of properly
implementing the cube-root volume formulation; the grid is the background of the entire
mesh and was defined by the blockMesh tool of OpenFOAM. The rest of the zones were
implemented by means of the SnappyHexMesh tool. Zone B is a prismatic-rectangular
region defined from (x, y, z) = (0.5H,−H,−0.5H) to (x, y, z) = (9.5H, H, 0.5H), covering
the wake with a refinement level 3. According to the SnappyHexMesh tool, this means that
the length of each base cell’s side is divided into 23 parts leading to H/40 per side; this
would be into 24 (H/80) for level 4, and so on. Zone C presents three refinement levels that
change with the distance from the cylinder: the maximum refinement level L, depending on
each test, was set from the cylinder’s wall to a radial distance of 0.05H, then, level 3 up to a
distance of 0.5H, and level 1 (H/10 per side) up to 2H. The latter was implemented with
the mode distance of the SnappyHexMesh tool. Zone D conforms with the cells defining
the STL geometry, in which the surface-wise minimum and maximum refinement level
were set to level L.

When two different refinement levels overlap, the higher resolution prevails. The
parameter nCellsBetweenLevels was set to 1 in order to scale the mesh between the
different levels using a distance equal to the size of 1 cell of the lower level. All the
other parameters for the meshing were set according to the default values of the motorbike
example that was mentioned above.
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FRONT VIEW

TOP VIEW

U∞

U∞

Inlet Outlet

Inlet Outlet

Symmetry

Symmetry

Symmetry

Symmetry

4.5H

9.5H4.5H

4.5H 9.5H

D

H

H

H

x

x

z

y
4.5H

Figure 1. Schematic representation of the problem showing the selected scales and boundary types
for two plane views.

Zone A

Zone C

Zone B

Zone D

Figure 2. Section view, in plane x–y, of the four mesh zones of the computational array, showing
Zones A–D. Zone D is difficult to see since it delimits the object and has the highest resolution.

2.3. Grid Convergence Study

To validate our computational-mathematical model at the benchmark Re = 2.14 × 104,
we tested its spatial convergence by mesh arrays with different cell refinements and cylinder
depths, looking to identify the most viable mesh that validated the flow while optimizing
the computational resources. We considered four resolution levels, from L3 to L6, applied
to the three narrowest arrays: D20, D40, and D60. A detailed description of the referred
mesh arrays is shown in Table 2 where it can be seen that the total number of cells increases
linearly according to the depth of the array. In turn, a change in refinement from L3 to L4
implies an increase of less than 10%, while passing from L4 to L5 leads to an increase of
more than 50%, and from L5 to L6 increases the number of cells by almost 400%. This was
a first reason to focus our main study on L5. Thus, two meshes with depth D80, D100, and
a maximum refinement level of 5 were also included for use once the grid was calibrated
for convergence.
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Table 2. Depth of the array and number of cells per refinement level of each mesh. The meshes are
named DDLL, where D is the percentage of depth (in terms of H) and L is the maximum level used.

Name of Depth Cells
Mesh (H) Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Total

D20L3 0.2 2152 3352 3624 254,656 0 0 0 263,784
D40L3 0.4 4304 6704 7248 509,312 0 0 0 527,568
D60L3 0.6 6456 10,056 10,872 763,968 0 0 0 791,352

D20L4 0.2 2152 3352 3624 252,000 21,248 0 0 282,376
D40L4 0.4 4304 6704 7248 504,000 42,496 0 0 564,752
D60L4 0.6 6456 10,056 10,872 756,000 63,744 0 0 847,128

D20L5 0.2 2152 3352 3624 250,624 10,944 170,496 0 441,192
D40L5 0.4 4304 6704 7248 501,248 21,888 340,992 0 882,384
D60L5 0.6 6456 10,056 10,872 751,872 32,832 511,488 0 1,323,576
D80L5 0.8 8608 13,408 14,496 1,002,496 43,776 681,984 0 1,764,768
D100L5 1.0 10,760 16,670 18,120 1,253,120 54,720 852,480 0 2,205,960

D20L6 0.2 2152 3352 3624 250,560 5952 44,032 1,363,968 1,673,640
D40L6 0.4 4304 6704 7248 501,120 11,904 88,064 2,727,936 3,347,280
D60L6 0.6 6456 10,056 10,872 751,680 17,856 132,096 4,091,904 5,020,920

In order to keep the Courant number below 1, the time interval was set to
∆t = 2 × 10−3 s, ∆t = 1 × 10−3 s, and ∆t = 5 × 10−4 s, for meshes with a maximum refine-
ment level of 3, 4, and 5–6, respectively. To standardize the data representation, the graphics
and results are dimensionless, e.g., (X, Y, Z) = (x, y, z)/H, (Ux, Uy, Uz) = (ux, uy, uz)/U∞
and T = tU∞/H.

The simulation time of each test was limited to 60 s; however, our analysis excludes
data recorded before t = 10 s to disregard the transition period—according to this, the
dimensionless time considered for each simulation becomes T = 100 units. The start
time for data processing is illustrated for drag Cd and lift Cl coefficients in Figure 3. For a
clear visualization, only mesh arrays with a maximum refinement level of five are plotted.
Beyond the chaotic initial period, large-scale similarities between arrays can be seen in both
time series, highlighting the synchronicity shown in Cl from T = 60.

The mean and RMS estimations for both the drag and the lift coefficients are plotted in
Figure 4. There it can be seen that the drag coefficients seem to converge at the maximum
refinement level. Convergence is reached for the average and for the RMS from the mesh
arrays with refinements L5 and L6.

This also applies for lift, which fluctuates around zero for all meshes.
Figure 5 shows changes in the mean streamwise velocity UMean

x , the root mean square
(RMS) of the streamwise URMS

x , the cross-stream URMS
y , and the spanwise URMS

z velocities,
recorded between the downstream edge of the cylinder (X = 0.5) to X = 5.0. As expected,
convergence can be mainly observed in Figure 5a–c, where the dotted and dotted-dashed
lines (L3 and L4) differ more from L5 and L6. The narrowness of the mesh seems to
have stronger effects in the spanwise direction Figure 5d, where the flow disturbances
also converge but to a different curve, depending on the depth of the array. So, it can be
deduced that the flow is more restricted along the z-axis for the narrowest arrays, which
could cause the lower variations observed. In turn, the RMS of the streamwise direction
Figure 5b shows some discrepancies of about 0.05 dimensionless units between X = 1
and X = 4, when passing from D40L5 and D60L5 to D40L6 and D60L6. Although it is a
relatively small difference, we did not find a clear physical-computational cause for this
effect, so it could also be associated with narrowness, as suggested by other authors, for
example those mentioned in Section 3.1.2.

The above observations lead us to disregard meshes involving D20 and D40, and to
further explore D60 together with two wider meshes, D80 and D100. The latter were not
considered during the grid convergence study because of limitations in our computational
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resources (mainly with L6). To perform the tests, we ran simulations in parallel using the
scotch method from the decomposeParDict utility of OpenFOAM with 24 subdomains.
We used a cluster with Intel® Xeon® CPU E5-2680 v3 at 2.50 GHz with 48 Cores and
131.072 GB RAM, having available 500 GB of storage. All the above settings of the present
section apply for both the grid convergence study and the main study.
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Figure 3. Cd (a) and Cl (b) time series, for mesh arrays with L5 as maximum, tagging the dimension-
less time that separates the transition period from the analyzed time.
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Figure 5. Cont.
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Figure 5. Perturbed wake along the flow direction in the central line Y = 0, obtained with meshes with
depths D20, D40, D60, and all considered refinement levels (12 meshes in total). In the legend, color
refers to the depth of the array, while the line type denotes its maximum level of refinement, so that
their addition gives the name of the mesh plotted, in accordance with Table 2. (a) Mean streamwise
velocity. (b) RMS streamwise velocity. (c) RMS cross-stream velocity. (d) RMS spanwise velocity.

3. Numerical Results
3.1. Validation with Literature and Meshing Optimization

As the grid was calibrated for convergence, our L5’s computational arrays were ranked
according to the computational cost and the accuracy of the results, dismissing those with
D20 and D40. At this stage, we compared the results of the former arrays with data reported
in the literature for the benchmark. The drag Cd and lift Cl coefficients were targeted and
characterized with the respective mean and RMS values. In turn, the wake was analyzed
across the near and far zones by scrutinizing the streamwise Ux, cross-stream Uy, and
spanwise Uz components of the velocity.

3.1.1. Drag and Lift Coefficients

Table ?? lists the mesh parameters, the estimated force coefficients, and the computa-
tional cost, and, whenever possible, compares these with the equivalent values derived from
simulations and experimental results reported in the literature. It is worth highlighting that
all of our meshes have similar resolution, as expressed in Section 2.2, so that the difference
in the number of cells is caused by the depth of the array. Furthermore, our computational
arrays seem finer than similar works reported in the literature [1,8,19,22–24]; see, for exam-
ple, the depth and distance from the origin to the input, output, and top/bottom boundaries
(columns 2, 4–6 of Table ??). Our arrays are similar to the experimental setup reported by [8]
with regards to the input, output, and top/bottom distances, yet smaller than the simulation
setups [1,19,22–24]. Notably, our largest array (D100L5) is four times smaller in depth than
the shortest arrays reported in the literature. This compactness allows reducing the number
of cells in comparison with previous simulation setups without loosing resolution.

The file size of our meshes increases linearly with the depth and the amount of cells
of the array, but the CPU time increases non-linearly. The estimated values of CdRMS are
similar across all our meshes. They are also consistent with the corresponding values
obtained by [1,22], although [19] reported a value 200% higher. Although we observed a
slight increment of Cdmean, the depth of the array affects neither the Cdmean nor the ClRMS
results. Moreover, our Cdmean results are in good agreement with the experimental data,
showing relatively small discrepancies of 6–7% that fall within the range encountered in
most other simulations. No definitive conclusions can be drawn from the ClRMS results
since we obtained values between 1.47 and 1.71, which slightly overlap the values reported
in previous studies, with values of this parameter ranging between 1.03 and 1.5.
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Table 3. Force coefficients, CPU time, file size, and some characteristics of our computational arrays
compared with previous results reported in the literature. In, Out, and TB refer to the distance from
the origin to the Input, Output, and Top/Bottom boundaries. CPU time and file size were measured
at the end of the simulation (T = 100), following the setup and parameters in Section 2. * The number
of cells in [24] is not specified clearly.

Mesh
(Name)

Depth
(H)

Cells(
×106) In

(H)
Out
(H)

TB
(H)

CPU Time
(h)

File Size
(GB) Cdmean CdRMS ClRMS

D60L5 0.6 1.32 “ “ “ 30.9 68.6 2.33 0.29 1.58

D80L5 0.8 1.76 “ “ “ 42.3 91.4 2.36 0.22 1.53

D100L5 1.0 2.21 “ “ “ 53.1 114.0 2.36 0.26 1.71

PANS & k-ω [24] 4.0 0.40 * 5.0 15.0 7.0 - - - - -

VLES & k-ϵ [1] 4.0 2.00 6.5 13.5 7.0 - - 2.3 0.26 1.03

DES & SA [19] 4.0 8.47 10.5 20.5 7.5 - - 2.4 0.65 1.26

LES & SGS [22] 4.0 1.00 7.9 16.3 7.9 - - 2.0–2.3 0.16–0.20 1.2–1.5

LES & SGS [23] 9.8 3.00 10.0 24.0 7.0 - - 2.2 - -

Experimental [8] 14.0 - 3.0 8.0 4.9 - - 2.2 - -

3.1.2. Wake Flow Study

Turbulence was also analyzed along the flow direction (x) in its central line Y = 0,
and in the transverse direction (y) along four separate lines: X = 1, 2.5, 4, and 6, by
referring to the streamwise and cross-stream velocities. The results were compared with
the experimental data reported by [8] as well as with some available simulations performed
with the PANS & k-ω model by [24], with the VLES and k-ϵ model [1], and by [19], who used
a similar approach to that proposed in our work: the DES and SA model, but quadrupling
the number of cells of D100L5.

Figure 6 shows the changes in UMean
x , URMS

x , URMS
y , and URMS

z , recorded between the
end of the cylinder (X = 0.5) and near the output boundary (X = 8.0). There, we can see
that our results capture the general behavior of all the variables qualitatively, although
they slightly overpredict the UMean

x values, Figure 6a, reported in [8], between the domain
X = 1.5 and X = 8.0. In turn, the VLES [1] and PANS [24] simulations start to diverge
from X = 3 for that variable, whereas the DES and SA scheme proposed by [19] shows
differences in the far wake (from X = 6).

Furthermore, our results are consistent with the experimental data (mainly with D80L5
and D100L5) for URMS

x , Figure 6b, in the same order to [1] and close to [24]. In contrast to
these, [19] tends to magnify URMS

x from X = 1. For URMS
y , our simulations and those by [1]

reproduce the turbulent effect in the near wake, with a small gap, but are distinguished
from the experimental results in X = 5, while [19,24] captured disturbances patterns all
along the line Y = 0. Although Lyn (1995) and Chakraborty (2020) reported no values for
URMS

z , the results of D80L5 and D100L5 reproduce the peak observed between X = 1–1.5,
which reaches URMS

z = 0.3 and coincides with the results reported by [1,19]. However, the
curve obtained by [1] falls quickly from X = 2 and fits our mesh D60L5, whose behavior
could be influenced due to the narrowest configuration of the array.

Figures 7–10 show our results and their comparison with the data found in [8], as well
as with the simulations by [19,24] (only reported for X = 1). Our results are consistent
between them and are in general agreement with the experimental data. For some cases in
the near-middle wake, our simulations clearly reproduce the disturbed experimental flow
better than the results reported in the literature (Figures 8a,b and 9a,b), while being slightly
worse in the near (Figure 7a), and far wake (Figures 7d, 8d, and 10d).

Based on the results shown up to this point, we can say that the widest meshes (D80L5
and D100L5) converge and show consistency across all the variables and are more effective
in capturing the flow patterns than the other narrower meshes (D20L5 and D40L5). The
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former also match the experimental results reported by [8], with more or less accuracy
than previous simulation works, depending on the different zones of the analyzed flow. In
contrast to heavy arrays, our meshes obtained acceptable results from 1.32 to 1.76 million
cells (D60L5 and D80L5), which helped to minimize the computational cost.
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Figure 6. Perturbed wake along the flow direction in the central line Y = 0, obtained with meshes
with a maximum refinement level of 5. (a) Mean streamwise velocity. (b) RMS streamwise velocity.
(c) RMS cross-stream velocity. (d) RMS spanwise velocity.
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Figure 7. Cont.
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(d) X=6.0

Figure 7. Mean streamwise velocity along the transverse direction in different X’s lines of the wake.
(a) X = 1. (b) X = 2.5. (c) X = 4. (d) X = 6.
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(c) X=4.0
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Figure 8. RMS streamwise velocity along the transverse direction in different X’s lines of the wake.
(a) X = 1. (b) X = 2.5. (c) X = 4. (d) X = 6.
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Figure 9. RMS cross-stream velocity along the transverse direction in different X’s lines of the wake.
(a) X = 1. (b) X = 2.5. (c) X = 4. (d) X = 6.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Uy
RMS

Y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Uy
RMS

Y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Uy
RMS

Y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Experimental
D60L5
D80L5
D100L5
PANS & k − ω
DES & SA

(a) X=1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Uy
RMS

Y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Uy
RMS

Y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Uy
RMS

Y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Experimental
D60L5
D80L5
D100L5
PANS & k − ω

(b) X=2.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Uy
RMS

Y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Uy
RMS

Y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Uy
RMS

Y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Experimental
D60L5
D80L5
D100L5
PANS & k − ω

(c) X=4.0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Uy
RMS

Y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Uy
RMS

Y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Uy
RMS

Y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Experimental
D60L5
D80L5
D100L5
PANS & k − ω

(d) X=6.0

Figure 10. RMS spanwise velocity along the transverse direction in different X’s lines of the wake.
(a) X = 1. (b) X = 2.5. (c) X = 4. (d) X = 6.
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3.2. Advances in Flow Characterization

Techniques for improving visualization were compared in terms of how easily they
conveyed essential and precise information of the flow around the cylinder. Figure 11
shows the most common way to report flow around an object—a time-averaged map of
the pressure coefficients. Notwithstanding that this representation is useful to illustrate
the general shape of high/low pressure zones of each picture, it is difficult to examine
other characteristics, such as the delimitation and quantification of quick transitions, e.g.,
flow separation, near wake (0.5 < X < 1), etc. Moreover, a comparison between maps
shows that this form of representation is neither optimal for detecting flow disturbances
induced by changes of Re, Figure 11c vs. Figure 11e, nor the asymmetries of a bluff
body, Figure 11a,c,e vs. Figure 11b,d,f, respectively. In contrast, plotting the statistical
variables along strategic lines, such as those represented in Figures 5–10, represents a better
alternative that tackles the issues of capturing the wake features highlighted above. Yet,
this Cartesian representation does not fit well around the object, where the flow follows
encircling patterns.
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Figure 11. Maps of the averaged coefficient pressure (Cpmean) around the cylinder for six study cases,
noting the five dimensionless taxicab perimeters enclosing it: r1 = 0.05, r2 = 0.1, r3 = 0.2, r4 = 0.5,
r5 = 1.0.

At this point, we discuss the use of polar charts by averaging the flow variables in
concentric layers (shells) at different distances from the geometrical center of the object,
which are highlighted by ri, i = 1, 2, 3, 4, 5, in the maps of Figure 11. A taxicab (or Manhat-
tan) metric was selected to allow minimizing the difference in cells belonging to each angle
interval for our object geometry. Nevertheless, another measure could be more suitable for
different types of objects, e.g., the Euclidean distance for a circular cylinder.

Figure 12 shows the resulting CpMean-patterns when using the new visualization
approach, covering the range of cases Re = {2.14 × 102, 2.14 × 104, 2.14 × 106}, with smooth
and wrinkled surfaces, the latter achieved by adding deterministic-systematic roughness
on the topside of the object. A total of 10 equispaced circular bumps with the same shape
were placed (see Figure 13). Each bump is circumscribed to a cylinder of diameter equal to
6% of H that spans the main object in the spanwise direction.

Figure 12. Cont.
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Figure 12. Flow patterns of CpMean for six study cases (a–f), averaged inside five dimensionless
taxicab distance ranges, ri, i = 1, . . . , 5. Negative values are plotted with smooth lines.

Each bow in a chart represents the variable averaged at the corresponding shell, tagged
by colors in the legend. The polar axis was discretized with a spacing of three degrees. The
dot lines represent positive values and the smooth lines represent negative ones.

H

H

0.06H

Figure 13. Scheme of the non-smooth cylinder. The ten equally spaced bumps with diameter 0.06H
cross the surface of the object in the spanwise direction.
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4. Discussion on the Visualization Technique

All charts of Figure 12 approximate the silhouette of a pigeon facing right but with
particular characteristics. For example, at the lower Re, the unaltered flow near the top-rear
side is reflected in the backward direction of the pigeon’s wings Figure 12a,b. This contrasts
with the results derived from the medium and higher Re, which draw extended wings. The
technique reveals additional features that distinguish the middle and higher Re, mainly at
the top/bottom sides of the external (red) bow. It should be noted that the roughness of the
cylinder is expressed mainly by local ripples on the internal (purple) bow Figure 12b,d,f.

The complementary Figures A1–A5 in Appendix A were produced with the same
visualization technique displayed in Figure 12, considering separate flow variables. As
seen in these charts, the symmetry of flow disturbances also forms silhouettes of different
flying insects and birds with the five bows, namely: UMean

x —a butterfly spreading wings
facing left; UMean

y —a butterfly with wings in front; URMS
x —a moth; URMS

y —a beetle; and
CpRMS—a board type of bird/insect. Added to the highlights discussed above for the
CpMean-patterns, it is worth noting that: (i) similar patterns could be observed across all
study cases; (ii) each variable defines a different silhouette regardless of the Reynolds
number or the slight increase in roughness; (iii) the magnitude of the RMS values is
considerable higher for the middle and higher Re cases, which characterize the turbulence;
(iv) a wrinkled cylinder causes sharpened shapes at the top and rear sides.

Now, through a finer analysis of the benchmark (Re = 2.14 × 104), the flow patterns
can be inferred from the different variables in Figures 12c and A1c–A5c. Starting from 180◦

in the clockwise direction, we observe near-zero values for all the velocity variables at the
shortest taxicab distance—see the purple bows in Figures A1c–A4c, which are related to
the stagnation point lying around the highest positive pressure zones in Figure 12c, and the
corresponding lowest variation in Figure A5c—all caused by the “first” impact of the fluid
with the cylinder. Here, it is important to note that our visualizations effectively capture
and enable quantifying the gradual increase and decrease in UMean

x and CpMean for the
same (180◦) direction but moving away from the object (bows r2 → r5). The scrutiny also
reveals a peak in the averaged velocities and a corresponding reversal of the averaged
pressure at angles of about 135◦ caused by the flow relief at the up-left corner of the square,
differing in their transition to 90◦. Indeed, for UMean

x , bows close to the object (r1 and
r2) return to near-zero values, while bows in the far encircling flow (r4 and r5) reach the
largest values, leading to the shape of a butterfly spreading wings; this represents the flow
beyond the boundary layer that runs freely in the mainstream direction. In consequence,
for UMean

y , r4 and r5 settle to low values in that transition, leading to the butterfly with
wings in front. In contrast to these velocity components and also in consequence of the
above phenomenon, CpMean presents a sudden change in the high negative relative values
in that transition (for incompressible flow, OpenFOAM supports expressing the pressure in
comparison to the free-stream pressure defined, i.e., setting the zero-value to it), reaching
its absolute maximum past 90◦.

Recirculation at the rear side (angles > 90◦) can be deduced from the contrast in
the directions (line types) of the velocity components, also showing a peak in the values
around 70◦ and 45◦ for UMean

x and only at 45◦ for UMean
y , while both components return to

zero-values at 0◦ due to vorticity. In turn, the lowest pressure near the object is maintained
up to around 45◦ where a small rapid increment occurs. In contrast, the low pressure far
from the object further decreases at 45◦ to reach its lowest value at 0◦, shaping the pigeon’s
head. We also note that, due to symmetry, the flow preserves the above characteristics at
the bottom side of the object, including the corresponding change in direction for UMean

y .
Numerical asymmetry at the wake around the x-axis is easily observed for variables related
to the RMS-values, mainly for URMS

x and CpRMS.
In this way, while stressing that we are dealing with a benchmark problem, the

above classification could facilitate the description (or dissemination) of the flow variables’
behavior, by stimulating metacognitive skills as a concise, practical, and easy-to-remember
tool for technicians/students that need be familiarized with the problem or to verify the
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obtained solutions. Furthermore, the proposed technique opens up new avenues on flow
characterization for scientists and engineers, for example, in defining inverse problems
to connect flow disturbances to small-size modifications in object shape, or when looking
to expand this pattern recognition methodology to non-symmetrical objects. Systematic
studies considering different types of asymmetries are recommended for the exploration of
the flow effects; this will be addressed in a forthcoming communication.

Finally, although a few of the above observations could be inferred from Figure 11,
most could not be directly obtained and quantified from that picture, such as the precise
location at which the changes occur, the flow asymmetries caused by the wrinkled surface,
and the contrast between the positive and negative values that become lower since the color
palette needs to cover a wider range of tones. In contrast, the combination of polar charts
with the taxicab-metric-based shells enabled clear capture of most of these characteristics
even through a laminar-turbulent transition. All this is supported by the fact that the
insect/bird silhouettes are formed and maintained not only for CpMean but also stand for
the other variables considered in the study.

5. Conclusions

We presented a flow visualization study on the simulation of flow around a smooth-
square cylinder at three Reynolds numbers through the laminar-turbulent transition: Re
= {2.14 × 102, 2.14 × 104, 2.14 × 106}, and considering the respective cases with wrinkled
cylinders. The investigation was firstly validated by a grid study considering five narrow
computational arrays composed of structured and non-structured grids, varying the depth
(z-axis). Guided by the thesis that narrowness affects the 3D-turbulence flow characteristics,
we determined the optimal mesh that closely approximated the results published by other
authors and which minimized the computational effort and file size.

Our visualization of the results consisted of projecting spatio-temporally average
flow variables acting on shells on a polar domain. This enabled observation of patterns
at different taxicab distances from the object that were not visible when using standard
visualization techniques. The enhanced plots revealed significant details on the flow
disturbances linked to the mean and RMS averaged values of the velocity and pressure,
which otherwise translate on subtle gradients that are observable on the initial pressure
maps. We, therefore, recommend the use of polar charts instead of traditional maps of
variables for a better description of the flow around objects.

Notably, the novel flow patterns resembled what we called bird-shape and insect-like
silhouettes that helped to enhance our understanding on the effect of lower (laminar flow)
and higher (turbulent flow) Re on the pressure fields, even with the presence of roughness
on the symmetric surface. The proposed technique also makes easier the recognition of
patterns across the map and the identification of the controlling parameters. Similar visual-
ization methodologies could be explored for other symmetric or quasi-symmetric objects.
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Appendix A. Flow Encircling Patterns

Appendix A.1. UMean
x —Butterfly (Spreading Wings)

Figure A1. Flow patterns of UMean
x for six study cases (a–f), averaged inside five dimensionless

taxicab distance ranges, ri, i = 1, . . . , 5. Negative values are plotted with smooth lines.
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Appendix A.2. UMean
y —Butterfly (Wings in Front)

Figure A2. Flow patterns of UMean
y for six study cases (a–f), averaged inside five dimensionless

taxicab distance ranges, ri, i = 1, . . . , 5. Negative values are plotted with smooth lines.
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Appendix A.3. URMS
x —Moth

Figure A3. Flow patterns of URMS
x for six study cases (a–f), averaged inside five dimensionless

taxicab distance ranges, ri, i = 1, . . . , 5.
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Appendix A.4. URMS
y —Beetle

Figure A4. Flow patterns of URMS
y for six study cases (a–f), averaged inside five dimensionless

taxicab distance ranges, ri, i = 1, . . . , 5.
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Appendix A.5. CpRMS—Board Bird/Insect

Figure A5. Flow patterns of CpRMS for six study cases (a–f), averaged inside five dimensionless
taxicab distance ranges, ri, i = 1, . . . , 5.
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