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Abstract: The phenomenon of droplet impact on moving surfaces is widely observed in fields such as
transportation, rotating machinery, and inkjet printing. Droplets exhibit non-axisymmetric behavior
due to the motion of solid surfaces which significantly determines core parameters such as contact
time, maximum spreading radius, and bounding velocity, thereby affecting the efficiency of related
applications. In this study, we focus on the kinetics and morphology of the non-axisymmetric
bouncing behaviors for droplets impacting on a moving superhydrophobic surface (SHPS) within
the normal (Wen) and tangential (Wet) Weber numbers. Considering the influences of the moving
surface on the contact area and contact time, the previous scaling formula for the horizontal velocity
of droplets has been improved. Based on the velocity superposition hypothesis, we establish a
theoretical model for the ratio of the maximum spreading radius at both ends depending on Wen

and Wet. This research provides both experimental and theoretical evidence for understanding and
controlling the non-axisymmetric behavior of droplets impacting on moving surfaces.

Keywords: droplet; superhydrophobic substrate; contact time; spreading dynamics

1. Introduction

During the process of liquid droplet impact, various phenomena such as stacking,
rebounding, and splashing can occur under the influence of the droplet properties and
surface characteristics [1–3]. The rebound process refers to the lateral spreading of the
droplet, with the conversion of kinetic energy to surface energy, gradually reaching the
maximum spreading length Dmax, after which the droplet recoils towards the center until
it reaches a certain degree of contraction. Subsequently, the droplet rebounds from the
surface [4–6]. The phenomenon of droplet impact has been extensively studied both
numerically and experimentally [7,8]. The rebound behavior of liquid droplets is influenced
by various factors such as droplet properties [9,10], droplet radius and velocity [11,12],
surface properties [13,14], and incident angle [15,16].

In previous studies on droplet impact, the predominant focus was on stationary
surfaces, and the maximum spreading length of the impacting droplet was dependent on
the normal Weber number Wen, especially in cases involving low viscosity and limited
wetting ability [17]. When a droplet impacts on a stationary flat surface, the contact time
was found to be contingent upon the radius and independent of the impact velocity [18]. In
this context, contact time is defined as the duration from the first contact of the droplet with
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the surface to its complete detachment. Research into contact time has garnered practical
applications in the field of self-cleaning surfaces [19]. Here, the design of macro-textures
and microstructures can effectively reduce the contact time [20,21].

However, in practical applications, droplet impact phenomena mostly occur on mov-
ing surfaces, such as raindrops impacting aircraft wings and wind turbine blades [22], the
size of the droplets influencing the process of extinguishing fires [23], and the directional
transport of droplets in inkjet printing [24]. A few studies have found that on the SHPSs, as
the speed of the moving surface increases, elevated surface velocities amplify the extension
of impacting droplets, consequently leading to a reduction in contact time [25,26]. Similar
findings have also been observed on moving surfaces with macroscopic structures and
wetting patterns [27].

These conclusions mostly analyze droplets from a kinematic perspective, focusing on
droplet spreading and contact time. There are still some conclusions related to momentum.
Some studies suggest the main cause of momentum transfer is the aerodynamic Leidenfrost
effect [28]. This phenomenon refers to the thin air film formed between the droplet and
the moving surface, which is the primary factor generating viscous forces on the droplet.
By analyzing the forces acting on the thin air film between droplet and surface, scaling
relationships can be derived to summarize the contact time, spreading ratio, and horizontal
distance. These dynamic conclusions have been well validated [29]. However, in these
experiments, the presence of an air film between the liquid droplet and the surface was not
distinctly observed. Droplets will inevitably come into contact with the surface, and the
reason for this difference may be due to insufficient surface velocity to generate a noticeable
air layer. We tend to the view that the transfer of horizontal momentum is caused by the
viscous boundary layer developing in the liquid [30]. Throughout the impact process,
energy dissipation due to viscous losses is observed. The fundamental physical principle
of non-axisymmetric bouncing dynamics is the transfer of horizontal momentum during
the impact process, gradually shifting from the bottom to the top of the droplet. Based on
this, a formula related to the horizontal velocity of droplets has been proposed [31]; while
the feasibility of this velocity formula has been well validated, there are still some sections
for improvement. For example, in the derivation of this formula, the spreading region
of the droplet is considered to be circular, which is accurate when impacting a stationary
surface but imprecise on a moving surface, where the spreading region is elongated [29,32].
Furthermore, the contact time of the droplet is also assumed to be the same as the contact
time on a stationary surface τs, whereas on a moving surface the contact time τm is shorter
than τs [25,26].

Moreover, there is still a lack of satisfactory solutions regarding how the spreading
range of droplets is influenced by surface motion. In this study, the fundamental dynamic
behaviors of droplet impact on moving surfaces are focused on being revealed, and a more
accurate correction has been made to the scaling formula for the droplet horizontal velocity,
as well as an analysis of the asymmetric evolution of the spreading radius at both ends of
the droplet over time caused by surface motion.

2. Methodology

We conducted experimental studies on SHPSs with horizontal movement speeds of
Vt = 0–2.2 m/s (corresponding to Wet = 0–116.08) using water droplets with impact veloc-
ities of Vn = 0.48–1.70 m/s (corresponding to Wen = 5.69–71.26), where Wet = ρVt

2D0/γ
and Wen = ρVn

2D0/γ are defined as the normal and tangential Weber number, respec-
tively. Water density was ρ ≈ 1000 kg/m3, surface tension coefficient γ ≈ 0.073 N/m,
and D0 = 1.8 ± 0.1 mm was the initial diameter of the water droplets. Figure 1a shows the
schematic diagram of the experimental apparatus, where the copper plate was polished,
ultrasonically cleaned, and coated with an organic reagent three times. After drying at
room temperature for 30 min, a solution mainly composed of nano-silica particles and
silicone resin was sprayed, and the static contact angle of water droplets on the surface was
about 160◦ (Figure 1a). The surface was fixed to a rotating motor to obtain the horizontal
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speed, and the water droplets were pushed by the injection pump (LSP01-3A) and dropped
onto the SHPS under the action of gravity after separating from the needle tip. The impact
velocity of the droplets was adjusted by varying the distance between the needle tip and
the surface. The position of the high-speed camera (GX-8E, NAC), the point of droplet
impact, and the center point of the circular superhydrophobic surface are all located on the
same straight line, as shown in Figure 1b (top view). For this experiment, the centrifugal
force of the droplet on the disk can be neglected [33]; therefore, the motion of the surface
during droplet impact can be considered as rectilinear. The environmental temperature
was about 25 ◦C, and the humidity was around 30%.
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Figure 1. (a) Schematic of the experimental setup. (b) View from above showing the position of the
camera, droplet impact point, and center of the circular SHPS.

3. Results and Discussion

Figure 2 shows the spreading and receding stages of water droplets on a SHPS at
Wen = 29.80, with Wet = 0 and Wet = 44.06 (multimedia view). After the droplet hits the
surface, a liquid film forms as it gradually spreads out towards the maximum spreading
radius Dmax. The droplet then retracts from both ends towards the center, with its height
gradually increasing due to the conversion of surface energy into kinetic energy. The
retraction process is dominated by inertia force and surface tension, and it is also influenced
by the motion of the surface. Once sufficient kinetic energy has accumulated, the droplet
will start to bounce off the surface.
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When the surface is stationary, the receding rates of the droplet from both ends are the
same (Figure 2a, t = 3.83 ms), resulting in a symmetric bouncing phenomenon. When the
surface is in motion, the receding rate on the upstream side is faster than on the downstream
side. (Here, downstream refers to the side in the direction of surface movement and the
upstream side refers to the opposite direction, as shown in Figure 2b. We will discuss the
upstream and downstream in the subsequent sections.) This is due to the influence of
surface velocity, causing more kinetic energy to accumulate on the upstream side resulting
in a higher height than the downstream side, leading to an “L”-shaped droplet (Figure 2b,
t = 5.01~5.83 ms). As the surface velocity increases, the spreading length of the droplet
is stretched longer under the influence of the surface forces, making the “L”-shape more
pronounced. Subsequently, the droplet begins to bounce off the surface. Compared to the
stationary surface, the contact time is reduced from 8.17 ms to 7.17 ms when the surface is
in motion. When the surface is stationary, both ends of the droplet simultaneously leave the
surface, while in motion, the downstream side of the droplet will detach from the surface
before the upstream side (Figure 2b, t = 4.17 ms). This reduces the portion of the droplet in
contact with the surface, leading to a reduction in the contact time [34].

In addition, we conducted statistical analysis of experiments involving different Wet
and Wen for the contact time. Figure 3a shows the normalized contact time τ/τ0 as a

function of Wet under different Wen conditions, where τ0 ≈
√(

ρD3
0

σ

)
is the inertial-

capillary time [35]. As seen, the contact time gradually decreases as Wet increases. The
difference between the contact times at Wet = 0 and Wet = 116 is about 30%. These findings
are consistent with previous conclusions on moving SHPSs [25,29]. The time from droplet
impact surface to maximum spreading is defined as τspread, and the time from maximum
spreading to detaching from the surface is defined as τretract. It can be observed that under
different Wet, the τspread remains relatively constant, and the variations in τretract and
contact time are similar, as shown in Figure 3b.
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Figure 3. (a) Normalized contact time τ/τ0 under different Wen groups varies as the change of Wet,
where τ0 is the inertial-capillary time. (b) Spreading time τspread and retraction time τretract vary as
the change of Wet.

3.1. Momentum Transfer of Droplet on the Moving Surface

The bouncing and spreading of droplets are essentially the exchange of kinetic energy
and surface energy. When a droplet hits a stationary surface, it bounces vertically along
the impact direction, while during surface motion the rebound direction of the droplet tilts
towards the direction of surface motion. Research has shown that there are two theories
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explaining the cause of this phenomenon. The first theory, based on the aerodynamic
Leidenfrost effect, suggests it is due to the thin layer of air formed between the droplet
and the surface [29], while the second theory proposes it is the result of liquid-surface
contact forming a viscous boundary layer [31]. We are inclined towards the latter theory.
Furthermore, this study is based on the no-slip boundary condition and derives the scaling
relationship for the horizontal speed of droplet.

Accordingly, we calculated the center of mass from the shape of droplet in the side
view, taking the moment of contact t = 0 ms as the starting point and the moment of
rebound as the end point (Figure 4a). By measuring the displacement of the center of mass
and the contact time, the averaged horizontal velocity Va of droplet can be obtained.
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Figure 4. (a) The blue dot represents the centroid of the droplet, from which the droplet velocity
Va is calculated based on the distance moved in the horizontal direction. (b) Side view of the
droplet at different time instances. (c) Top view of the droplet at different time instances, where
Dmax-s and Dmax-m denote the maximum spreading lengths of the droplet on stationary and moving
surfaces, respectively.
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Initially, Va = 0, but due to the shear effect of the surface the momentum increases
during the impact process. Considering the total viscous force and combining Newton’s
second law in the horizontal direction mdVa/dt = F(t), the average velocity in the horizontal
direction can be obtained [31]:

Va =
3µVt

2ρD3
0

1
δ0

∫ t

0
D2(t)dt (1)

where µ is the viscosity of the liquid, δ0 is the thickness of the boundary layer, t is the
contact time of the droplet on the moving surface, and D2(t) represents the contact area
of the droplet. In previous studies, D2(t) is considered to be the square of the maximum
spreading length on a stationary surface Dmax−s. However, the droplet is not circular on
a moving surface. It will be stretched along the direction of surface movement, and the
maximum spreading of the droplet in that direction is defined as Dmax−m, as shown in
Figure 4c. The maximum spreading length in the direction perpendicular to the horizontal
is less influenced by surface motion, so it can be approximated as the spreading length
Dmax−s on a stationary surface [36]. Based on this, we can deduce:

Va ∼ 3µVt

2ρD3
0

1
δ0

Dmax−mDmax−st (2)

With the maximal spreading ratio of the drop βmax = Dmax/D0, the dimensionless
integral mean value of boundary layer thickness δ = δ0/D0, the dimensionless contact time
τ = Vnt/D0, we can derive that:

Va ∼ 3µVt

2ρD0Vn

1
δ

βmax−mβmax−sτ (3)

On the moving surface, the maximum spreading ratio βmax-m~Wen
1/4Ca1/6 [29], where

the capillary number Ca = µVt/γ. (Despite this equation being based on the aerodynamic
Leidenfrost effect, our experimental results have shown good agreement with it; see the
comparative results in Supplementary Material Figure S1). On the stationary surface, the
maximum spreading ratio βmax-s~Wen

1/4(1 − cosθ)−1/2 [37].
Another aspect that distinguishes our work from previous research is that they con-

sidered the contact time τ in Equation (3) as the contact time on a stationary surface τs,
while we consider τ as the contact time on a moving surface τm. In Figure 3a, we can
clearly observe a significant difference in contact time between τs and τm. Based on volume
conservation, the relationship between these two is given by [25]:

τm

τs
=

√
Dmax−s

Dmax−m
(4)

The validation of Equation (3) can be observed in Supplementary Material Figure S2.
The contact time on the stationary surface τs~Wen

1/2(1 − cosθ)−1/2. By combining
Equations (3) and (4) with the above scaling relationships, we can deduce:

Va ∼ 3
2δ

(1 − cos θ)−
5
4 Re−1Wen Ca

1
12 Vt (5)

where the dimensionless Reynolds number is defined as Re = ρVnD0/µ. Equation (5) is
derived using the contact time τm and maximum spreading ratio βmax-m on a moving
surface. If we were to derive it using the contact time τs and maximum spreading ratio
βmax-s on a stationary surface [31], we could derive:

Va ∼ 3
2δ

(1 − cos θ)−
3
2 Re−1WenVt (6)
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When comparing Equations (5) and (6), the difference is the additional influence of
the capillary number Ca in Equation (5). This inclusion of Ca enhances the influence of
surface motion on the droplet velocity, making it a more accurate representation. The
boundary layer thickness can be regarded as a constant value. Therefore, Equation (5) can
be expressed as:

Va ∼ (1 − cos θ)−
5
4 Re−1WenCa

1
12 Vt (7)

In Figure 5, we can observe a good consistency between the experimental data and
Equation (7).
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As previously mentioned, the conversion of momentum during droplet impact in-
volves the consumption of energy. This implies that the averaged horizontal velocity of
the droplet Va should be lower than the surface velocity Vt. We found that the velocity of
the droplet is only about 1% of the surface movement velocity. As a result, we defined the
averaged restitution coefficient εt = Va/Vt. Previous research has demonstrated a negative
correlation between Wen and εt because higher Wen impacts can cause more significant
droplet deformation, leading to more energy dissipation during rebound and a decrease
in εt [38–42]. However, our study on the moving surface revealed an opposite result; we
found that εt increases with the increase in Wen, as shown in Figure 6a, and there is no
significant change with the increase in Wet, as shown in Figure 6b. The black line in the
box represents the median line, and the point in the middle is the mean value. The upper
and lower boundaries of the box represent the upper interquartile and lower interquartile,
respectively, while the whiskers represent the extreme values. The reasons for this different
trend are as follows. Firstly, previous studies focused on instantaneous velocity, while
this study specifically examines the average velocity throughout the entire impact process.
Secondly, a significant factor is that as the droplet impacts a moving surface, with an
increase in Wen, the spreading length increases by approximately 20%. This results in the
viscous boundary layer length between the droplet and the surface also increasing, leading
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to an increase in the force exerted on the droplet in the horizontal direction. Ultimately, this
is manifested as an increase in the coefficient of restitution.
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Figure 6. (a) The boxplot of tangential recovery coefficient εt with respect to Wen whose range
corresponding to each Wet is 5.2–116.1. (b) The boxplot of tangential recovery coefficient εt with
respect to Wet whose range corresponding to each Wen is 5.7–60.9.

3.2. Morphology of Droplet on Moving Surface

We conducted an analysis of changes in droplet behavior from a momentum per-
spective. In addition, the most significant difference between the stationary and moving
surfaces is not only the contact time, but also the asymmetric spreading and receding of the
droplet on the upstream and downstream sides.

Therefore, we divided the droplet into two portions Dup and Ddown based on the
impact center point. Initially, the positions of the center points Ds = 0 is represented by the
red dot (Figure 7a). It varies at different moments; it moves with the horizontal velocity
Va of the droplet, as indicated by the green point in Figure 7a. The distance from the
point along the moving direction to the edge of the droplet is referred to as Dup, and the
distance from the point along the opposite direction of motion to the edge of the droplet is
referred to as Ddown. When Wet = 0, the spreading length of the droplet on the upstream and
downstream sides is symmetrically distributed along Ds = 0. However, as Wet increases, the
spreading length of the droplet on the upstream side gradually increases, and its spreading
time becomes longer, as shown in Figure 8a,b The negative values in Figure 8a indicate that
the droplet is located to the right of the boundary point. In addition, the time of initiating
receding on the upstream side is later than that on the downstream side; the spreading time
of the downstream side is around 2 ms. For different Wet values, there is almost no effect
on the length of spreading. By contrast, the length during the receding phase gradually
reduces with the increase in Wet. In Figure 8c,d, with a fixed Wet = 44.06 and different
Wen, the spreading length on both the upstream and downstream sides increases with
Wen, with the increment being more significant on the downstream side. Dup during both
the retraction and spreading phases is increasing with Wen, but the increment during the
retraction phase is relatively small.
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Figure 7. (a) Schematic diagram distinguishing the upstream and downstream spreading of the
droplet. The red dot represents the initial center of impact of the droplet, while the green dot indicates
the position after moving with velocity Va. The green dot serves as the reference for defining the
boundary between the upstream and downstream regions, where Ds = 0. (b) Side view of the droplet
at different time instances. (c) Schematic representation of the velocity superposition of Vs and Vt.

Thus, we postulate that when the droplet reaches its maximum spreading length
the length of the upstream and downstream portions should be a function of the impact
velocity Vn and surface velocity Vt. Assuming that the averaged spreading velocity is
Vs and the surface velocity is Vt, the averaged velocity of the upstream can be treated
as Vup = Vs − Vt; similarly, the averaged velocity of the downstream is Vdown = Vs + Vt,
as shown in Figure 7c. Taking into account that the droplet will also move a certain
distance caused by the moving substrate, the maximal spread length ratio of the upstream
to downstream can be expressed as:

Dup

Ddown
∼

(Vs − Vt)τspread − Vaτspread

(Vs + Vt)τspread + Vaτspread
(8)

If the droplet’s upstream and downstream are distinguished based on the calculated
moving distance of the green dot, then the term Vaτs representing the sliding distance of
the droplet in Equation (7) can be eliminated, and the formula can be simplified as:

Dup

Ddown
∼ Vs − Vt

Vs + Vt

(9)
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Figure 8. (a) Variation of upstream and downstream spread lengths of the droplet with time for
different values of Wet at Wen = 49.8, with the center of the droplet at Ds = 0 at the beginning of
impact used to distinguish between the upstream and downstream regions. (b) Actual deformation
of the droplet corresponding to (a). (c) Variation of upstream and downstream spread lengths of the
droplet with time for different values of Wen at Wet = 44.06. (d) Actual deformation of the droplet
corresponding to (c).

Obviously, Vt~αWet
1/2, and for Vs, it is a function of the maximum spreading length

and spreading time, Vs~Dmax/τspread. As can be observed in Figure 3b, the spreading
time τspread is independent of surface velocity and impact velocity, which is consistent
with previous research findings [3,29]. Therefore, we can treat τspread as a constant, while
Dmax~D0Wen

1/4; based on these, we can derive the expression for Vs~βWen
1/4. Substituting

these values into Equation (8) we have:

Dup

Ddown
∼ αWe1/4

n − βWe1/2
t

αWe1/4
n + βWe1/2

t

(10)
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where coefficients α and β are related constants. Equation (10) can be written as Equation (11):

Dup

Ddown
∼ 1 − 2We1/2

t

kWe1/4
n − We1/2

t

(11)

where coefficient k = α/β. In Figure 9, we can observe a good consistency between the
experimental data and Equation (11). This scaling relationship has practical applications
such as using water to cool rotating machinery. Understanding the spreading range of
droplet holds significance for such applications [43].
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4. Conclusions

In this study, experiments have shown that the contact time between water droplets
and surfaces is inversely proportional to surface velocity. Our main conclusions are as fol-
lows. 1. We have refined the scaling relationship for the horizontal velocity Va of the droplet,
substituting the contact time and spreading length of the stationary surface in the scaling
relationship with those on a moving surface. These modifications enhance the accuracy of
the results. These corrections make the scaling relationship more accurate. 2. Furthermore,
an investigation into the variation relationship between the droplet’s tangential restitution
coefficient εt and Weber numbers Wen and Wet was conducted. Additionally, we were
surprised to discover that the velocity of the droplets was only about 1% of the SHPSs speed.
We will focus on exploring ways to improve the exchange rate of droplet momentum in
future work. 3. Based on the asymmetry of droplet spreading, a coupling scale relationship
between the maximum spreading length ratio of water droplets upstream and downstream
was revealed by superimposing the spreading velocity and the surface velocity. This has
provided us with new insights into the energy transfer mechanisms of small droplets.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sym16010029/s1, Figure S1: The validation of the maximum
spreading ratio βmax-m on a moving surface; Figure S2: The validation of the contact time τm on a
moving surface.
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