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Abstract: In this work, the geometric nature of solutions to two second-order differential equations,
zy′′(z) + a(z)y′(z) + b(z)y(z) = 0 and z2y′′(z) + a(z)y′(z) + b(z)y(z) = d(z), is studied. Here, a(z),
b(z), and d(z) are analytic functions defined on the unit disc. Using differential subordination, we
established that the normalized solution F(z) (with F(0) = 1) of above differential equations maps the
unit disc to the domain bounded by the leminscate curve

√
1 + z. We construct several examples by

the judicious choice of a(z), b(z), and d(z). The examples include Bessel functions, Struve functions,
the Bessel–Sturve kernel, confluent hypergeometric functions, and many other special functions. We
also established a connection with the nephroid domain. Directly using subordination, we construct
functions that are subordinated by a nephroid function. Two open problems are also suggested in
the conclusion.

Keywords: nephroid domain; leminscate domain; special functions; bessel functions; struve functions;
confluent hypergeometric functions

1. Introduction

Recently, research into the theory of geometric functions related to the nephroid and
leminscate domains has gained prominence [1–6]. Here, the leminscate domain refers to
the image of D = {z : |z| < 1} by the function Pl(z) =

√
1 + z, while the image of D by

the function φNe(z) = 1 + z − z3/3 is known as nephroid domain. Two other interesting
domains are the image of D by φe(z) = ez, and φA(z) = 1 + Az. In this article, we mainly
consider Pl and φNe . The images of D through the four above functions can be seen in
Figure 1 below:

Figure 1. Image of |z| = 1 by φNe (D), PL(D), φA=1(D), and φe(D).
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Now, we recall a few basic concepts of the geometric function theory. The class of
functions f defined on the open unit disk D = {z : |z| < 1}, and normalized by the
conditions f (0) = 0 = f ′(0) − 1, is denoted by A. We say f ∈ A1 if f (0) = 1 is the
normalized condition. Generally, f ∈ A possess power series

f (z) = z +
∞

∑
n=2

anzn,

while f ∈ A1 have the power series

f (z) = 1 +
∞

∑
n=1

bnzn.

Subordination [7] is one of the important concepts of geometric function theory that
is useful in studying the geometric properties of analytic functions. If f1 and f2 are two
analytic mappings in D, then f1 is said to be subordinate to f2, denoted by f1 ≺ f2, or
f1(z) ≺ f2(z), z ∈ D, when there an analytic self-map η of D satisfying η(0) = 0 and
|η(z)| < 1 exists such that f1(z) = f2(η(z)), z ∈ D. In particular, if f2(0) = f1(0) with
univalent f2, then f1(D) ⊂ f2(D).

Indicate the important sub-classes of A that comprise univalent starlike and convex
functions by S∗ and C, respectively. For 0 ≤ t ≤ 1, and w ∈ f (D), if the line tw lies
completely in f (D), then f ∈ S∗; on the other hand, if f (D) is a convex domain, then
f ∈ C. The Cárath}eodory class P includes analytic functions p that satisfy p(0) = 1 and
Re p(z) > 0 in D. These sub-classes are related to each other. In analytical terms, f ∈ S∗ if
z f ′(z)/ f (z) ∈ P , and f ∈ C if 1 + z f ′′(z)/ f ′(z) ∈ P .

If 1 + (z f ′′(z)/ f ′(z)) is within the region bounded by the right half of the lemniscate
of Bernoulli, denoted by {w : |w2 − 1| = 1}, then the function f ∈ A is known as the
lemniscate convex. This is equivalent to subordination 1 + (z f ′′(z)/ f ′(z)) ≺

√
1 + z. In

an analogous way, if z f ′(z)/ f (z) ≺
√

1 + z, then the function f is lemniscate starlike.
Moreover, if f ′(z) ≺

√
1 + z, then the function f ∈ A is lemniscate Carathéodory. It is

evident that the lemniscate Carathéodory function is univalent since it is a Carathéodory
function. More details about geometric properties associated with leminiscate can be seen
in [5,8,9].

For the purpose of studying different classes of analytical functions, the principle
of differential subordination [10,11] is helpful. Lemma 1, which is derived by applying
the principle of differential subordination, is useful in sequence when studying geometric
properties associated with the lemniscate.

Lemma 1 ([5]). Let p ∈ H[1, n] with p(z) ̸≡ 1 and n ≥ 1. Let Ω ⊂ C, and Ψ : C3 ×D → C
satisfy

Ψ(r, s, t; z) ̸∈ Ω (1)

whenever z ∈ D, and for m ≥ n ≥ 1, −π/4 ≤ θ ≤ π/4,

r =
√

2 cos(2θ)eiθ , s =
me3iθ

2
√

2 cos(2θ)
and Re

(
(t + s)e−3iθ

)
≥ 3m2

8
√

2 cos(2θ)
. (2)

If Ψ(p(z), zp′(z), z2 p′′(z); z) ∈ Ω for z ∈ D, then p(z) ≺
√

1 + z in D.

In this article, we study the geometric nature of the solution of two differential equations

zy′′(z) + a(z)y′(z) + b(z)y(z) = d(z) (3)

z2y′′(z) + a(z)y′(z) + b(z)y(z) = d(z); (4)
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where a(z), b(z), and d(z) are analytic functions defined on the unit disc. We find the
solution of the following two problems.

Problem 1. Find the condition(s) on a(z), b(z), and d(z), such that the solution f of the differential
Equations (3) and (4), which are normalized by f(0) = 1, is subordinated by

√
1 + z.

A few studies [1–4,12] in the literature have examined Problem 1, taking account of
special a(z), b(z), and d(z). Nonetheless, in this investigation we first present and evaluate
a broad interpretation of the findings in Section 2, and then we present examples in
Section 3. Below, we provides some background information:

1. Confluent hypergeometric function (CHF): This is a solution of the differential
Equation (3) when a(z) = β − z, b(z) = −α, and d(z) = 0. There are several articles
in the literature that studied CHF in the context of geometric function theory [10,13].
We note here that to the best of our knowledge, there is no CHF result related to
Problem 1. We established some connection between CHF and Problem 1 in the
Example 1 where we also provide a detailed literature review on CHF and its connec-
tion with geometric function theory.

2. Generalized Bessel function (GBF): By taking a(z) = κB, b(z) = c/4, and d(z) = 0,
in the differential Equation (4), we will obtain the GBF. Here, 2κB = 2p + b + 1 ̸=
0,−2,−4,−6, . . . and b ∈ C. More details about GBF and its significance in the
geometric functions theory are given in Example 5. A closed form of results related to
Problem 1 involving GBF is given in [12].

3. Generalized Struve functions (GSF): This function is a solution of the differential
Equation (4) when a(z) = (2κs + 1)/4, b(z) = (cz+ 2κs − 2)/4, and d(z) = (κs − 1)/2.
Moreover, details about these notations, and the connection between GSF and Problem
1, are presented in Example 6.

4. Generalized Bessel–Sturve functions: For the construction details about this function,
we refer the interested reader to [4]. A Connection of Problem 1 with this function is
also studied in [4]. In Example 7, we show that the result of [4] is a special case of our
main result presented in Section 2.

5. Other functions: In addition, we can consider other functions that are the solution
of differential Equations (3) and (4), like the associated Laguerre polynomial (ALP)
(Example 2), the regular Coulomb wave function (Example 8), generalized hypergeo-
metric functions (Example 3), and modified Bessel functions (Example 4).

In the context of other similar geometric properties such as leminiscate starlike and
convexity, we refer interested readers to [1,5,8,9,12,14] and the reference therein.

Using the solution of Problem 1, we aim to obtain the answer to the following problem.

Problem 2. Using the solution of Problem 1, construct functions g such that g(z) ≺ φNe(z).

We answer Problem 2 through various examples in Section 4.1. For this purpose, we
consider the following result from [6].

Lemma 2 ([6]). Let p : D → C be analytic such that p(0) = 1. Then, the following subordinations
imply p(z) ≺ ϕNϵ(z):

(i) 1 + δzp′(z) ≺
√

1 + z for δ ≥ δ1 := 3(1 − log(2)) ≈ 0.920558,

(ii) 1 + δ
zp′(z)
p(z) ≺

√
1 + z for δ ≥ δ2 := 2(

√
2+log(2)−1−log(1+

√
2))

log(5/3) ≈ 0.884792.

We also construct function f , which is subordinated by
√

1 + z by the direct definition
of subordination and then build a connection with ϕNϵ . Those results are presented in
Section 4.2.

In the conclusion Section 5, we raised an open problem based on the examples con-
structed in Section 4.
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2. Subordinated by Lemniscate
√

1 + z

Theorem 1. Suppose that a(z), b(z), and d(z) are analyt
ic in D, such that the differential equation

zy′′(z) + a(z)y′(z) + b(z)y(z) = d(z) (5)

has a solution F normalized by F(0) = 1. Suppose that

4 Re(a(z)− 1) > 16|b(z)|+ 8
√

2|d(z)| − 3, (6)

then F(z) ≺
√

1 + z

Proof. Suppose that the second-order differential equation as given in (5) has a solution
y(z) = F(z) such that F(0) = 1. To imply Lemma 1, let us denote p(z) = F(z). From (5),
it follows that

zp′′(z) + a(z)p′(z) + b(z)p(z)− d(z) = 0, (7)

which can be rewritten as

z2 p′′(z) + a(z)zp′(z) + b(z)zp(z)− zd(z) = 0. (8)

Define Ψ : C3 ×D −→ C as

Ψ(p(z), zp′(z), z2 p′′(z); z) := z2 p′′(z) + a(z)zp′(z) + b(z)zp(z)− zd(z). (9)

Consider Ω = {0}. Then, from (8) it follows that Ψ(p(z), zp′(z), z2 p′′(z); z) ∈ Ω.
From (9), define

Ψ(t, s, r; z) = t + a(z)s + b(z)zr − zd(z), (10)

By taking t = z2 p′′(z), s = zp′(z), and r = p(z), rewrite (10) as below

Ψ(t, s, r; z) = (t + s) + (a(z)− 1)s + zb(z)r − zd(z),

and then apply Lemma 1.
For m ≥ 1 and θ ∈ [−π/4, π/4], it follows that

|Ψ(t, s, r; z)| =
∣∣∣∣(t + s) + (a(z)− 1)

me3iθ

2
√

2 cos(2θ)
+ zb(z)

√
2 cos(2θ)eiθ − zd(z)

∣∣∣∣
≥

∣∣∣∣(t + s) + (a(z)− 1)
me3iθ

2
√

2 cos(2θ)

∣∣∣∣− ∣∣∣∣zb(z)
√

2 cos(2θ)eiθ
∣∣∣∣− |zd(z)|

=

∣∣∣∣(t + s)e−3iθ + (a(z)− 1)
m

2
√

2 cos(2θ)

∣∣∣∣−√
2 cos(2θ)|z||b(z)| − |z||d(z)|

≥ Re(t + s)e−3iθ + Re(a(z)− 1)
m

2
√

2 cos(2θ)
−

√
2 cos(2θ)|b(z)| − |d(z)|

≥ 3m2

8
√

2 cos(2θ)
+ Re(a(z)− 1)

m
2
√

2cos(2θ)
−

√
2 cos(2θ)|b(z)| − |d(z)|

=
1

8
√

2 cos(2θ)
(3m2 + 4m Re(a(z)− 1)− 16 cos(2θ)|b(z)| − 8

√
2 cos(2θ)|d(z)|)

=
χ(m)

8
√

2 cos(2θ)
.
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Here,

χ(m) = 3m2 + 4m Re(a(z)− 1)− 16 cos(2θ)|b(z)| − 8
√

2 cos(2θ)|d(z)|. (11)

Our aim here is to show χ(m) > 0 for m ≥ 1 and −π/4 ≤ θ ≤ π/4. Since, for −π/4 ≤
θ ≤ π/4, cos(2θ) ∈ [0, 1], it follows from (11) that

χ(m) ≥ 3m2 + 4m Re(a(z)− 1)− 16|b(z)| − 8
√

2cos(2θ)|d(z)|. (12)

Further, for m ≥ 1, it is always holds that m2 ≥ 2m − 1. Along with this, let us assume that
4 Re(a(z)− 1) > −6. Then, from (12) we have

χ(m) ≥ m(6 + 4 Re(a(z)− 1))− 16|b(z)| − 8|d(z)| − 3

≥ (6 + 4 Re(a(z)− 1))− 16|b(z)| − 8|d(z)| − 3 > 0

provided
4 Re(a(z)− 1) > 16|b(z)|+ 8|d(z)| − 3.

Finally, χ(m) > 0 if

4 Re(a(z)− 1) > max{−6, 16|b(z)|+ 8|d(z)| − 3} = 16|b(z)|+ 8|d(z)| − 3.

In continuation, we have |Ψ(t, s, r; z)| > 0 and hence Ψ(t, s, r; z) /∈ Ω. From Lemma 1, it
follows that p(z) = F(z) ≺

√
1 + z.

Theorem 2. Let a(z), b(z), and d(z) be analytic in D, such that the differential equation

z2y′′(z) + a(z)zy′(z) + b(z)y(z) = d(z) (13)

has a solution F(z) satisfying F(0) = 1. Suppose that

4 Re(a(z)− 1) > 16|b(z)|+ 8
√

2|d(z)| − 3, (14)

then F(z) ≺
√

1 + z.

Proof. Suppose that y(z) = F(z) is a solution of (13) with condition F(0) = 1. Let p(z) =
F(z). From the differential Equation (13), it follows that

z2 p′′(z) + a(z)zp′(z) + b(z)p(z) = d(z). (15)

Now, consider Ω = {0} and define

Ψ(p(z), zp′(z), z2 p′′(z); z) := z2 p′′(z) + a(z)zp′(z) + b(z)p(z)− d(z). (16)

Then, (15) leads to Ψ(p(z), zp′(z), z2 p′′(z); z) ∈ Ω. From (16), define

Ψ(t, s, r; z) := t + a(z)s + b(z)r − d(z). (17)

From Lemma, 1 rewrite (17) as bellow:

Ψ(t, s, r; z) = (t + s) + (a(z)− 1)s + b(z)r − d(z)

= (t + s) + (a(z)− 1)
me3iθ

2
√

2cos(2θ)
+ b(z)

√
2cos(2θ)eiθ − d(z)
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|Ψ(t, s, r; z)| =
∣∣∣∣(t + s) + (a(z)− 1)

me3iθ

2
√

2cos(2θ)
+ b(z)

√
2cos(2θ)eiθ − d(z)

∣∣∣∣
≥

∣∣∣∣(t + s) + (a(z)− 1)
me3iθ

2
√

2cos(2θ)

∣∣∣∣− ∣∣∣∣b(z)√2cos(2θ)eiθ
∣∣∣∣− |d(z)|

≥
∣∣∣∣(t + s)e−3iθ + (a(z)− 1)

m
2
√

2cos(2θ)

∣∣∣∣−√
2cos(2θ)|b(z)| − |d(z)|

≥ Re(t + s)e−3iθ + Re(a(z)− 1)
m

2
√

2cos(2θ)
−

√
2cos(2θ)|b(z)| − |d(z)|

|Ψ(t, s, r; z)| ≥ 3m2

8
√

2cos(2θ)
+ Re(a(z)− 1)

m
2
√

2cos(2θ)
−

√
2cos(2θ)|b(z)| − |d(z)|

=
1

8
√

2cos(2θ)

(
3m2 + 4 Re(a(z)− 1)m − 16cos(2θ)|b(z)| − 8

√
2cos(2θ)|d(z)|

)
=

χ(m)

8
√

2cos(2θ)
,

where χ(m) is the same as defined in (11). From this, the rest of the proof is similar to the
proof of Theorem 1 and hence we omit the details.

Remark 1. Here, it is important to observe that the identical condition makes Theorems 1 and 2
valid. However, a careful selection of a(z), b(z), and d(z) yields different sets of solutions for the
differential Equations (3) and (4). In Section 3, we provide multiple examples to support this claim.

3. Examples Involving Special Functions

In this section, we are going to construct examples based on the theorems that are
stated and proved in the previous section. The examples consist of several well-know
special functions such as the Bessel, Struve, confluent hypergeometric, and generalized
Bessel functions. The Laguerre polynomial and regular Coulomb wave functions are also
covered. We refer to [15–17] for additional information regarding special functions.

Example 1 (Involving confluent hypergeometric functions). Let us consider the differential
equation

zy′′(z) + (β − z)y′(z)− αy(z) = 0. (18)

The differential Equation (18) is a well known confluent hypergeometric differential equation,
and the solution of this equation is known as confluent hypergeometric functions (CHF) [15,
17]. We denote the solution of (18) by ϕ(α, β, z). It is also denoted as 1F1ϕ(α, β, z) and has the
series representation

ϕ(α, β, z) = 1F1(α, β, z) =
∞

∑
n=0

(α)nzn

(β)nn!
. (19)

Here β ̸= −1,−2, . . .
In [10], Miller and Mocanu proved that Re ϕ(α, β, z) > 0 in D for real α and β satisfying

either a > 0 and β ≥ α, or α ≤ 0 and β ≥ 1+
√

1 + α2. Sufficient conditions for Re ϕ(α, β, z) > δ,
0 ≤ δ ≤ 1/2 are obtained by Ponnusamy and Vuorinen ([13] Theorem 1.9, p. 77). They also
determined conditions that ensure (β/α)(ϕ(α, β, z)− 1) is close-to-convex of the positive order with
respect to the identity function. Additionally, they derived the conditions for the close-to-convexity
of zϕ(α, β, z) with respect to the starlike function z/(1 − z), as well as the close-to-convexity of
zϕ(α, β, z) with respect to the starlike function z/(1− z2). Constraints on a and c so that ϕ(α, β, z)
is convex of the positive order are also found in ([13] Theorem 5.1, p. 88).
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Now, we are going to implement Theorem 1 in the solution f1(z) = ϕ(α, β, z) of differential
Equation (18). Note that a(z) = β − z, b(z) = −α and d(z) = 0.

We consider the case where α ∈ C and

Re{β − 1} > 4|α|+ 1
4

.

Now,

4 Re(a(z)− 1)− 16|b(z)|+ 3 = 4 Re(β − z − 1)− 16|α|+ 3

= 4 Re(β − 1)− 4 Re(z)− 16|α|+ 3

> 4 Re(β − 1)− 4 − 16|α|+ 3

= 4 Re(β − 1)− 16|α| − 1 > 0.

Thus, condition (6) holds and we have the following result from Theorem 1:

Theorem 3. For α, β ∈ C, the confluent hypergeometric function ϕ(α, β, z) ≺
√

1 + z for

Re{β − 1} > 4|α|+ 1
4

.

Example 2 (Involving the Laguerre polynomial). The associated Laguerre polynomial (ALP)
denoted by Lα

n(z) is the solution of the differential equation

zy′′(z) + (α + 1 − z)y′(z) + ny(z) = 0, α ∈ R. (20)

The function Lα
n(z) can be represented by the series

Lα
n(z) =

n

∑
i=0

(−1)i
(

n + α
n − i

)
zi

i!
=

(1 + α)n

n! 1F1(−n; 1 + α; z), (21)

where 1F1 represents the confluent hypergeometric function, and (a)n denotes the familiar Pochham-
mer symbol defined as

(a)0 = 1, (a)n = a(a + 1) . . . (a + n − 1), n ∈ N.

We refer to [15] for further information on this function.
Consider the normalized function

Fα,n(z) =
n!

(α + 1)n
Lα

n(z) = 1F1(−n; 1 + α; z), z ∈ D. (22)

The function Fα,n satisfies the normalization condition Fα,n(0) = 1. Thus, from Theorem 3, it
follows that

Fα,n(z) ≺
√

1 + z (23)

provided 4 Re(α) > 16n + 1. It is to be noted here that this result is the main result of the article
([2] Theorem 1). The result ([2] Theorem 1) obtained by considering the differential equation

z2y′′(z) + (α + 1 − z)zy′(z) + nzy(z) = 0, α ∈ R, (24)

which follows from (20) by multiplying z on both sides. Thus, the result can also be obtained from
Theorem 2.

Before introducing the next example, we first recall generalized hypergeometric func-
tions denoted by

mFn(a1, a2, . . . , am; b1, b2, . . . , bn; z)
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with series representation

mFn(a1, a2, . . . , am; b1, b2, . . . , bn; z) =
∞

∑
r=0

(a1)r(a2)r . . . (am)r

(b1)r(b2)r . . . (bn)r

zn

n!
(25)

where bi, 1 ≤ i ≤ n are positive. The series (25) converges if

(i) Any of aj, 1 ≤ j ≤ m are non-positive.
(ii) m < n + 1, the series converges for any finite value of z and hence entirely.

Let m = 0 and n = 1; then, the generalized hypergeometric function 0F1( ; a; z) is
known as confluent hypergeometric finite functions, and this function is closely related to
the Bessel function as follows:

Γ(v + 1)Jv(z) =
( z

2

)v
0F1

(
; v + 1;− z2

4

)
Γ(v + 1)Iv(z) =

( z
2

)v
0F1

(
; v + 1;

z2

4

)
.

Next, we provide an example involving the generalized hypergeometric function.

Example 3 (Involving generalized hypergeometric functions). Consider the function

f3(z) = e
z
2 0F1

(
; 3;−3z

2

)
.

Clearly, f3(0) = 1. By taking the differentiation on both sides, we have

f ′3(z) = −3
2

e
z
2 0F′

1

(
; 3;−3z

2

)
+

1
2

e
z
2 0F1

(
; 3;−3z

2

)
The relation

d
dz

(0F1( ; a; z)) = 0F1( ; a + 1; z)
a

,

implies

f ′3(z) = −1
2

e
z
2 0F1

(
; 4;−3z

2

)
+

1
2

e
z
2 0F1

(
; 3;−3z

2

)
=

1
2

e
z
2

(
0F1

(
; 3;−3z

2

)
− 0F1

(
; 4;−3z

2

))
similarly,

f ′′3 (z) =
1
16

e
z
2

(
40F1

(
; 3;−3z

2

)
− 80F1

(
; 4;−3z

2

)
+ 30F1

(
; 5;−3z

2

))
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z f ′′3 (z) + (3 − z) f ′3 +
z
4

f3(z)

= e
z
2

(
z
4 0F1

(
; 3;−3z

2

)
− z

2 0F1

(
; 4;−3z

2

)
+

3z
16 0F1

(
; 5;−3z

2

)
+(3 − z)

(
1
2 0F1

(
; 3;−3z

2

)
− 1

2 0F1

(
; 4;−3z

2

))
+

z
4 0F1

(
; 3;−3z

2

))
= e

z
2

((
z
4
+

3
2
− z

2
+

z
4

)
0F1

(
; 3;−3z

2

)
+

(
− z

2 3
2

+
z
2

)
0F1

(
; 4;−3z

2

)
+

3z
16 0F1

(
; 5;−3z

2

))
=

3
2

e
z
2

(
0F1

(
; 3;−3z

2

)
+ 0F1

(
; 4;−3z

2

)
+

z
8 0F1

(
; 5;−3z

2

))
Again, the recurrence relation

0F1(; a; z) = 0F1( ; a + 1; z) +
z

a(a + 1) 0F1( ; a + 2; z)

implies

0F1

(
; 3;−3z

2

)
= 0F1

(
; 4;−3z

2

)
− z

8 0F1

(
; 5;−3z

2

)
,

and this leads to the fact that f3 is a solution of the differential equation

z f ′′3 (z) + (3 − z) f ′3(z) +
z
4

f3(z) = 0.

Now, to implement Theorem 1, let us consider

a(z) = 3 − z, b(z) =
z
4

, and d(z) = 0.

Since z ∈ D, we have −1 < Re(z) < 1 and |z| < 1. Trivially, Re(a(z)− 1) > 0. Finally, a
calculation yields

4 Re(3 − z − 1)− 16
∣∣∣ z
4

∣∣∣+ 3 = 11 − 4 Re(z)− 4|z|

> 11 − 4 Re(z)− 4 = 11 − 8 = 3 > 0.

This means that a(z), b(z), and d(z) satisfy the requirement of Theorem 1; hence, we conclude that
f3(z) ≺

√
1 + z.

Example 4 (Involving classical modified Bessel functions). Consider the function

f4(z) =
1
6

e−
z
8
(
(6 + z)I0

( z
8

)
+ (2 + z)I1

( z
8

))
. (26)

Here, Iv is a well-known modified Bessel function that is the solution of the differential equation

z2y′′(z) + zy′(z)− (z2 + v2)y(z) = 0

and have the series representation

Iv(z) =
zv

2v

∞

∑
n=0

z2n

4nn!Γ(v + v + 1)

=
zv

2v

(
1

Γ(v + 1)
+

z2

4Γ(v + 2)
+ . . .

)
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clearly,
I0(0) = 1, I1(0) = 0

Thus,

f (0) =
1
6

e0(6I0(0) + 2I1(0) = 1.

Our objective here is to find the corresponding differential equation of f4. Various well-known
recurrence relations of modified Bessel functions help us to establish the differential equation. We
recall the following recurrence relations of Iν:

I′v(z) = Iv+1(z) +
v
z

Iv(z) (27)

2I′v(z) = Iv−1(z) + Iv+1(z). (28)

A calculation from (27) and (28) yields

Iν+1(z) = Iv−1(z)−
2v
z

Iv(z). (29)

For ν = 0, the recurrence relation (27) gives

I′0
( z

8

)
=

1
8

I1

( z
8

)
Further, the recurrence relations (28) and (29) leads to

I′1
( z

8

)
=

1
16

(
I0

( z
8

)
+ I2

( z
8

))
=

1
16

(
2I0

( z
8

)
− 16

z
I1

( z
8

))
.

Using above relation and several adjustment, one can obtain

f ′4(z) =
1

12
e−

z
8

(
I0

( z
8

)
+

(
1 − 4

z

)
I1

( z
8

))
, (30)

and

f ′′4 (z) =
1

24z2 e−
z
8
(
−zI0

( z
8

)
− (z − 16)I1

( z
8

))
. (31)

Now, a combination of (26), (30), and (31) leads to

z f ′′4 (z) +
(

2 +
z
4

)
f ′4(z)−

1
8

f4(z)

=
1

24z
e−

z
8
(
−zI0

( z
8

)
− (z − 16)I1

( z
8

))
+

(
2 +

z
4

)( 1
12

e−
z
8

(
I0

( z
8

)
+

(
1 − 4

z

)
I1

( z
8

)))
− 1

8

(
1
6

e−
z
8
(
(6 + z)I0

( z
8

)
+ (2 + z)I1

( z
8

)))
= e−

z
8

(
− 1

24
I0

( z
8

)
− 1

24

(
1 − 16

z

)
I1

( z
8

)
+

(
1
6
+

z
48

)
I0

( z
8

)
+

1
12

(
2 − z

4

)(
1 − 4

z

)
I1

( z
8

)
− 1

48
(6 + z)I0

( z
8

)
− 1

48
(2 + z)I1

( z
8

))
= 0.
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Thus, f4(z) is the solution of the differential equation

zy′′(z) +
(

2 +
z
4

)
y′(z)− 1

8
y(z) = 0.

Taking

a(z) = 2 +
z
4

, b(z) = −1
8

, d(z) = 0,

it follows that

4 Re(a(z)− 1)− 16|b(z)|+ 3 = 4 Re(2 +
z
4
− 1)− 16

∣∣∣∣−1
8

∣∣∣∣+ 3 = Re(z) + 5 > 0.

Finally, from Theorem 1, one can conclude that f4(z) ≺
√

1 + z.

Example 5 (Involving generalized Bessel functions). In the literature on geometric functions
theory, one of the most important functions is the generalized and normalized Bessel functions of
the form

Up(z) =
∞

∑
n=0

(−1)ncn

4n(κB)n

zn

n!
, 2κB = 2p + b + 1 ̸= 0,−2,−4,−6, . . . ; (32)

which satisfies the second-order differential equation

4z2U′′(z) + 4κBzU′(z) + czU(z) = 0. (33)

The function Up yields the Spherical Bessel function for b = 2, c = 1 and reduces to the
normalized classical Bessel (modified) Bessel functions of order p when b = c = 1 (b = −c = 1).

There is an extensive amount of research on the inclusion of Up in different subclasses of
univalent functions theory [12,18–22] and some references therein. In [12], the lemniscate convexity
and additional properties of Up are examined in detail. The lemniscate starlikeness of zUp is discussed
in [1].

From the differential Equation (33), it follows that a(z) = κB, b(z) = c/4, and d(z) = 0.
The condition (14) is equivalent to

4 Re(κB − 1)− 16
∣∣ cz

4

∣∣+ 3 > 0 =⇒ 4 Re(κB − 1)− 4|c|+ 3 > 0

=⇒ Re(κB) > |c|+ 1
4 .

Thus, we have the following result.

Theorem 4. If Re(κB) > |c|+ 1/4, then Up(z) ≺
√

1 + z.

Baricz [18] proved that the following recurrence relation is satisfied by Up as follows:

Lemma 3 ([18]). If b, p, c ∈ C and κ ̸= 0,−1,−2, . . ., then the function Up(z) satisfies the relation
4κBU

′
p(z) = −cUp+1 for all z ∈ C.

Now, Theorem 4 and Lemma 3 together imply that for c ̸= 0 and Re(κB) > |c| − 3/4,

−4κB
c

U′p(z) ≺
√

1 + z. (34)

The subordination in (34) is established in [12] with the condition Re(κB) > max{0, |c| − 3/4}.
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Example 6 (Involving Generalized Struve functions). For p, z ∈ C, consider the function

Hp(z) =
∞

∑
n=0

(−1)n

Γ
(
n + 3

2
)
Γ
(

p + n + 3
2
)( z

2

)2n+p+1
.

The function Hp is well known as the Struve function of order p, and it is a particular solution
of the non-homogeneous differential equation

z2w′′(z) + zw′(z) + (z2 − p2)w(z) =
4(z/2)p+1

√
πΓ(p + 1/2)

. (35)

A slightly modified differential equation

z2w′′(z) + zw′(z)− (z2 + p2)w(z) =
4(z/2)p+1

√
πΓ(p + 1/2)

(36)

has a particular solution of the form

Lp(z) = −i exp−ipπ/2 Hp(iz)

= ∑
n≥0

1
Γ(n + 3/2)Γ(p + n + 3/2)

( z
2

)2n+p+1
.

The function Lp is known as a modified Struve function of order p. The notion of generalized Struve
functions is given in [23]. The starlikeness and convexity properties of generalized Struve functions
also studied in [24].

Now, let us consider the second-order non-homogeneous linear differential equation.

z2w′′(z) + bzw′(z) + (cz2 − p2 + (1 − b)p)w(z) =
4(z/2)p+1

√
πΓ(p + b/2)

(37)

where b, c, p ∈ C. If we choose b = 1 and c = 1, then we obtain (35), and if we choose b = 1 and
c = −1, then we obtain (36). So, this generalizes (35) and (36). Hence, the study based on (37)
helps us to study the Struve and modified Struve functions together. Now, the particular solution of
the differential Equation (37) is known as a generalized Struve function of order p and denoted by
wp,b,c(z). The generalized struve function wp,b,c(z) is represented by the following series:

wp,b,c(z) = ∑
n≥0

(−1)ncn

Γ(n + 3/2)Γ(p + n + (b + 2)/2)

( z
2

)2n+p+1
, ∀z ∈ C

While this series converges everywhere, the function wp,b,c(z) typically is not univalent within D.
Now, let us examine the function Sp,b,c(z) defined by the transformation

Sp,b,c(z) = 2p√πΓ
(

p +
b + 2

2

)
z(−p−1)/2wp,b,c(

√
z)

By using the Pochhammer symbol, which is defined in relation to Euler’s gamma functions, by
(λ)n = Γ(λ + n)/Γ(λ) = λ(λ + 1) . . . (λ + n − 1), we obtain for the function Sp,b,c(z) in the
following form:

Sp,b,c(z) =
∞

∑
n=0

(−c/4)n

(3/2)n(κs)n
zn, (38)

where κs = p + (b + 2)/2 ̸= 0,−1,−2 . . . .This function is analytic on C and satisfies the
second-order non-homogeneous differential equation

4z2u′′(z) + (2κs + 1)zu′(z) + (cz + 2κs − 2)u(z) = 2κs − 2. (39)
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From differential Equation (39), it follows that a(z) = (2κs + 1)/4, b(z) = (cz+ 2κs − 2)/4
and d(z) = (κs − 1)/2. Now, to satisfy the condition (14), we have to show

4 Re
(

1
4
(2κs + 1)− 1

)
− 16

∣∣∣∣1
4
(cz + 2κs − 2)

∣∣∣∣− 8
√

2
∣∣∣∣1
2
(κs − 1)

∣∣∣∣− 3 > 0. (40)

Since |z| < 1, a simplification of right hand side of (40) gives

4 Re
(

1
4
(2κs + 1)− 1

)
− 16

∣∣∣∣1
4
(cz + 2κs − 2)

∣∣∣∣− 8
√

2
∣∣∣∣1
2
(κs − 1)

∣∣∣∣− 3

> Re(2κs − 3)− 4|c| − 4(2 +
√

2)|κs − 1|+ 3.

Thus, the inequality (40) holds if Re(2κs − 3)− 4(2 +
√

2)|κs − 1| > 4|c| − 3, and by this we
have the conclusion Sp,b,c(z) ≺

√
1 + z.

Example 7 (Involving the generalized Bessel–Sturve function). The concept of the generalized
Bessel–Sturve function is introduced in [4], building upon the concepts of the generalized Struve
function Sν,b,c from [23] and the generalized Bessel function Jν,b,c from article [18]. By denoting
the generalized Bessel–Sturve functions as BSν,b,c(z), it is shown in [4] that for ν > −1/2, the
generalized Bessel–Sturve functions exhibit a power series of the form:

BSν,b,c(z) =
∞

∑
n=0

(c)n/2Γ
(

n+1
2

)
√

πn!Γ( n
2 + κ)

zn where κBS = ν + (b + 1)/2. (41)

Further, it is established in ([4] Proposition 2) that BSν,b,c is a solution of the differential equation

z2F′′(z) + (2κ − 1)zF′(z)− cz2F(z) = Nz, (42)

where c ∈ C and N = 2
√

cΓ(κBS)/
√

πΓ
(

κBS − 1
2

)
.

Now, to apply Theorem 2, set

a(z) = 2κBS − 1, b(z) = cz2, and d(z) = zN.

The condition (14) is equivalent to

4 Re(2κBS − 2)− 16|cz2| − 8
√

2|zN|+ 3 > 0. (43)

Since |z| < 1, it follows that

4 Re(2κBS − 2)− 16|cz2| − 8
√

2|zN|+ 3 > 8 Re(κBS − 1)− 16|c| − 8
√

2|N|+ 3.

Substituting the expression for N, it follows that

4 Re(2κBS − 2)− 16|cz2| − 8
√

2|zN|+ 3 > 8 Re(κBS − 1)− 16|c| − 8
√

2|N|+ 3

= 8 Re(κBS − 1)− 16|c| − 8
√

2

∣∣∣∣∣ 2
√

cΓ(κBS)√
πΓ(κBS − 1

2 )

∣∣∣∣∣+ 3.

Finally, the condition (43) holds if

√
π

∣∣∣∣Γ(κBS −
1
2
)

∣∣∣∣(8 Re(κBS − 1)− 16|c|+ 3
)
≥ 16

√
2|Γ(κBS)|

√
|c|. (44)

The inequality (44) help us to conclude that BSν,b,c(z) ≺
√

1 + z. A similar result is also obtained
in [4].
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Example 8 (Involving the regular Coulomb wave function). The regular Coulomb wave
function (RCWF), defined across the complex plane, is an entire function linked to the classical
Bessel function. The Coulomb differential equation is a secound-order differential equation of the
form

d2w
dz2 +

(
1 − 2η

z
− L(L + 1)

z2

)
w = 0, z, η, L ∈ C (45)

claiming two distinct solutions: the regular and irregular Coulomb wave functions. The regular
Coulomb wave function (RCWF) is expressed in terms of the Kummer confluent hypergeometric
function 1F1 as follows:

FL,η(z) := zL+1e−izCL(η)1F1(L + 1 + iη, 2L + 2; 2iz) = CL(η)
∞

∑
n=0

aL,nzn+L+1. (46)

In this case, z, η, L ∈ C and

CL(η) =
2Le

πη
2 |Γ(L + 1 + iη)|

Γ(2L + 2)
,

aL,0 = 1, aL,1 =
η

L + 1
, aL,n =

2ηaL,n−1 − aL,n−2

n(n + 2L + 1)
, n ∈ {2, 3, ....}.

For our requirement, we consider the following normal form:

fL(z) = C−1
L (η)z−L−1FL,η(z) = 1 +

η

L + 1
z + ..... (47)

By a calculation, it can be shown from (45) that fL satisfies the differential equation

z2y′′(z) + 2(L + 1)zy′(z) + (z2 − 2ηz)y(z) = 0, z, η, L ∈ C

a(z) = 2(L + 1), b(z) = z2 − ηz, d(z) = 0.

For condition (14), the conclusion of this results follows if

4 Re(2L + 2 − 1) > 16|z2 − 2ηz| − 3 =⇒ 4 Re(2L + 1)− 16|z2 − 2ηz|+ 3 > 0.

Now, due to the fact that |z1 + z2| ≤ |z1|+ |z2| and |z1| < 1, we have

4 Re(2L + 1)− 16|z2 − 2ηz|+ 3 ≥ 4 Re(2L + 1)− 16|z2| − 32|η||z|+ 3

= 4 Re(2L + 1)− 13 − 32|η| > 0,

provided Re(2L + 1) > 13
4 + 8|η|, and due to this inequality it is always true that Re(a(z)− 1) =

Re(2L + 1) > 0. Now, from Theorem 2, it follows that fL(z) ≺
√

1 + z. We remark here that this
result is obtained in ([3] Theorem 1).

4. Connections with Nephroid Domain

In this section, we investigate the functions that map the unit disk to a domain confined
by the nephroid curve. We are going to generate appropriate cases in two ways: first, by em-
ploying some of the examples established in Section 3, and second, by taking into consideration
the idea of subordination. Suppose that f ∈ A such that f (0) = 1 and f (z) ≺

√
1+ z. Define

g(z) := 1 +
1
δ

∫ z

0

f (t)− 1
t

dt, (48)
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and assume that the integration on the right-hand side is convergent. From (48), it follows
by the fundamental theorem of calculus that

g′(z) =
f (z)− 1

δz
=⇒ 1 + δzg′(z) = f (z) ≺

√
1 + z. (49)

From Lemma 2 (i), it follows that g(z) ≺ φNe(z), for δ ≥ δ1.
Denote h(z) := eg(z)−1. A logarithmic differentiation of h yields

h′(z)
h(z)

=
f (z)− 1

βz
=⇒ 1 + β

zh′(z)
h(z)

= f (z) ≺
√

1 + z.

Again by Lemma 2 (ii), it follows that h(z) ≺ φNe(z) for β ≥ β2.

Lemma 4. If f (z) ≺
√

1 + z, then the following two subordinations are true:

g(z) = 1 +
1
δ

∫ z

0

f (t)− 1
t

dt ≺ φNe(z) and h(z) = eg(z)−1 ≺ φNe(z).

Now, we can construct the functions g in two ways. In the first method, we can consider
constructed functions f in various examples in Section 3 and calculate the integration (48),
while in the second method, we will directly construct a function f ≺

√
1 + z using the

definition of subordination. Before constructing more examples in this direction, we state
the following theorem, which directly follows from the relationship between (49) and
Theorems 1 and 2. We omit the proof.

Theorem 5. Consider the analytic functions a(z), b(z), and d(z) defined on D such that the
conditions of Theorems 1 and 2 holds. Then, for δ ≥ δ1, g(z) ≺ φNe(z) where g is the solution of
any of the following two differential equations:

z2y′′′(z) + (2 + a(z))zy′′(z) + (a(z) + zb(z))y′(z) =
d(z)− b(z)

δ

z3y′′′(z) + (2 + a(z))z2y′′(z) + (a(z) + b(z))zy′(z) =
d(z)− b(z)

δ
.

4.1. Examples Based on Section 3

To construct examples in connection with φNe(z), we first revisit Section 3 where the
connections with

√
1 + z are presented.

Example 9. In Example 5, we prove that for Re(κ) > |c|+ 1/4, the generalized Bessel function
Up(z) <

√
1 + z. Now, from the series (32) of Up, it follows that

up(t)− 1
t

=
∞

∑
n=1

(−1)ncn

4n(κ)nn!
tn−1.

Define

gp(δ, z) = 1 +
1
δ

∫ z

0

up(t)− 1
t

dt. (50)

Then, we have g(δ, p, z) ≺ φNe(z) for δ > δ1 provided integration (50) exists. Our next aim is to
find the closed form of g(δ, p, z).
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gp(δ, z) = 1 +
1
δ

∞

∑
n=1

(−1)ncn

4n(κ)nn!

∫ z

0
tn−1dt

= 1 +
1
δ

∞

∑
n=1

(−1)ncn

4n(κ)nn!
zn

n

= 1 − cz
4κδ

∞

∑
n=0

(−1)ncnzn

4n(κ + 1)n(n + 1)!(n + 1)

= 1 − cz
4κδ

∞

∑
n=0

(−1)ncnzn(1)n

4n(κ + 1)n(2)n(2)n

= 1 − cz
4κδ 1F3

(
1, 1; 2, 2, κ + 1;− cz

4

)
This concludes the following subordination:

1. 1 − cz
4κδ 1F3

(
1, 1; 2, 2, κ + 1;− cz

4
)
≺ φNe(z) for δ > δ1,

2. exp
(
− cz

4κδ 1F3
(
1, 1; 2, 2, κ + 1;− cz

4
))

≺ φNe(z) for δ > δ2.

Example 10. In Example 4, we prove that

f (z) =
1
6

e−z/8
(
(6 + z)I0

( z
8

)
+ (2 + z)I1

( z
8

))
≺

√
1 + z

Then,

g(δ, z) = 1 +
1
δ

∫ z

0

f (t)− 1
t

dt

= 1 +
1
δ

∫ z

0

1
6 e−t/8((6 + t)I0

( t
8
)
+ (2 + t)I1

( t
8
))

− 1
t

dt

= 1 +
e−z/8

3δ

(
(3 + z)I0

( z
8

)
− (1 − z)I1

( z
8

))
− 1

8δ

(
8 + z 3F3

(
1, 1,

3
2

; 2, 2, 2;− z
4

))
.

4.2. Examples Using Definition of Subordination

The next few examples are constructed directly using the definition of subordination.

Example 11. For δ > 0 and |a| ≤ 1, consider the function

G1(δ, a, z) := 1 +
2
δ

(√
1 + az − ln (1 +

√
1 + az)− 1 + ln (2)

)
(51)

To establish the subordination, consider the function w(z) = az with |a| ≤ 1. Then, clearly
W(0) = 1, and for z ∈ D, |w(z)| = |a||z| < |a| ≤ 1. By the definition of subordination, the
relation

√
1 + az =

√
1 + w(z) implies

√
1 + az ≺

√
1 + z.

For δ > 0 and |a| ≤ 1, define

G1(δ, a, z) := 1 +
1
δ

∫ z

0

f (t)− 1
t

dt, (52)

with f (t) =
√

1 + at.
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The solution of the integration in (52) can be easily established using computational software,
but here we solve the problem to achieve the completeness of the result. First, we consider the
following indefinite integration:

I =
∫ f (t)− 1

t
dt =

∫ √
1 + at − 1

t
dt

=
∫ (√

1 + at − 1
)(√

1 + at + 1
)

t
(√

1 + at + 1
) dt

=
∫ a√

1 + at + 1
dt. (53)

Next, substitute r =
√

1 + at. Then,

dr =
a

2
√

1 + at
dt ⇒ a dt = 2r dr.

The integration I reduces to

I = 2
∫ r

r + 1
dr = 2

∫ (
1 − 1

r + 1

)
dr

= 2r − 2 ln |r + 1|+ c1

= 2
√

1 + at − 2 ln (1 +
√

1 + at) + c1.

Finally, the integration (52) has the closed form

G1(δ, a, z) = 1 +
1
δ

∫ z

0

√
1 + at − 1

t
dt

= 1 +
1
δ

(
2
√

1 + at − 2 ln (1 +
√

1 + at)
)z

0

= 1 +
2
δ

(√
1 + az − ln (1 +

√
1 + az)− 1 + ln (2)

)
.

From Lemma 4, it follows that

G1(δ, a, z) = 1 +
2
δ

(√
1 + az − ln (1 +

√
1 + az)− 1 + ln (2)

)
≺ φNe(z),

for δ > δ1.

Example 12. In this example, we show that for δ > δ1 the function

G2(δ, z) := 1 +
1
3δ

(√
1 − z(5 + z)− 6 ln(1 +

√
1 − z) + ln(64)− 5

)
≺ φNe(z). (54)

Let us consider the function

w(z) = −3z2

4
− z3

4
= − z2

4
(3 + z).

Clearly, w(0) = 0 and for |z| < 1

|w(z)| = |z|2
4

|3 + z| < 1.
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Further, we have

1 + w(z) = 1 − 3
4

z2 − z3

4

= (1 − z)
(

1 + z + z2

4

)
= (1 − z)

(
1 + z

2
)2.

Using the definition of differential subordination, we conclude that
√

1 − z
(
1 + z

2
)
≺

√
1 + z. (55)

Now, if we define

G2(δ, z) = 1 +
1
δ

∫ z

0

√
1 − t

(
1 + t

2
)
− 1

t
dt, (56)

then by Lemma 4, we can conclude that g2(δ, z) ≺ φNe(z) for δ > δ1. It remains to find a closed
form of g2(δ, z) that is subject to the existence of the integration in (56).

To check this, first we consider the indefinite integration

I1 =
∫ √

1 − t
(
1 + t

2
)
− 1

t
dt,

which can be further separated into two parts as follows:

I1 =
∫ √

1 − t − 1
t

dt +
1
2

∫ √
1 − tdt.

Taking a = −1 in (53), we have the solution of the first integration in I1 as

∫ √
1 − t − 1

t
dt = 2

√
1 − t − 2 ln (1 +

√
1 − t) + c1.

By a routine calculation, the second integration in I1 leads to∫ √
1 − t dt = −2

3
(1 − t)3/2 + c2.

This finally leads to the closed form of g2 as follows:

G2(δ, z) = 1 +
1
δ

∫ z

0

√
1 − t

(
1 + t

2
)
− 1

t
dt

= 1 +
1
δ

(
2
√

1 − t − 2 ln(1 +
√

1 − t)− 1
3
(1 − t)

3
2

)z

0

= 1 +
1
δ

(
2
√

1 − z − 2 ln(1 +
√

1 − z)− 1
3
(1 − z)

3
2 + ln(4)− 5

3

)
= 1 +

1
3δ

(√
1 − z(5 + z)− 6 ln(1 +

√
1 − z) + ln(64)− 5

)
.

This completes the verification.

Example 13. In this example, we show that for δ > δ1, the function

G3(δ, z) := 1 +
1
δ

(
−47

30
+

1
60

√
1 − z(94 + 17z + 9z2)− 2 ln(1 +

√
1 − z) + ln(4)

)
≺ φNe(z). (57)
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To establish this, we consider the following two functions:

f (z) =
√

1 − z
(

1 +
z
2
+

3z2

8

)
w(z) = − z3

64
(9z2 + 15z + 40).

Clearly, w(0) = 0 and

|w(z)| =
∣∣∣∣−z3(9z2 + 15z + 40)

64

∣∣∣∣
=

|z|3(9|z|2 + 15|z|+ 40)
64

<
(9 + 15 + 40)

64
= 1.

Further, a computation yields

(1 − z)
(

1 +
z
2
+

3z2

8

)2

= 1 + w(z).

This gives us required subordination

√
1 − z

(
1 +

z
2
+

3z2

8

)
≺

√
1 + z. (58)

Similarly to the earlier examples, let us define

G3(δ, z) = 1 +
1
δ

∫ z

0

√
1 − t

(
1 + t

2 + 3t2

8

)
− 1

t
dt (59)

Since √
1 − t(1 + t

2 + 3
8 t2)− 1

t
=

√
1 − t − 1

t
+

1
2

√
1 − t +

3
8

t
√

1 − t,

the integration in (59) can be evaluated as follows:

G3(δ, z) = 1 +
1
δ

∫ z

0

√
1 − t

(
1 + t

2 + 3t2

8

)
− 1

t
dt

=
∫ z

0

√
1 − t − 1

t
dt +

1
2

∫ z

0

√
1 − t +

3
8

∫ z

0
t
√

1 − tdt

=

[
2
√

1 − t − 2 ln(1 +
√

1 − t)− 1
3
(1 − t)

3
2 − 1

20
(1 − t)

3
2 (2 + 3t)

]z

0

=
1

60

√
1 − z(94 + 17z + 9z2)− 2 ln(1 +

√
1 − z) + ln(4)− 47

30
.

The conclusion follows from Lemma 4.

5. Conclusions

In this article, we state and prove two results that gave conditions on the analytic
coefficient of the second-order differential equation by which the solution of the differential
equation maps the unit disk to a domain subordinate to the leminscate

√
1 + z and the

nephroid curve φNe(z). In consequence, several examples involving special functions such
as Bessel, Struve, Bessel–Sturve, the confluent, and generalized hypergeometric functions
are presented. Based on the construction pattern of Gi, i = 1, 2, 3 in Section 4.2, we have the
following open problem:
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Problem 3. For a fixed n ∈ N ∪ {0}, construct a sequence {ak}n
k=1 and define the polynomial

P0(z) = 1, and Pn(z) = 1 + ∑n
k=1 akzk for n ≥ 1. Find the exact range of a, such that

√
1 + az Pn(z) ≺

√
1 + z. (60)

Further, for δ > δ1, the function

Gi(δ, a, z) = 1 +
1
δ

∫ z

0

√
1 + a t Pi−1(t)− 1

t
dt ≺ φNe(z), i = 1, 2, . . . ,

provided the integration converge.

We note that

(i) Example 11: n = 0, |a| < 1 and P0 = 1,
(ii) Example 12: n = 1, a = −1 and P1(z) = 1 + z

2

(iii) Example 13: n = 2, a = −1 and P2(z) = 1 + z
2 + 3z2

8 .

Thus, Examples 11–13 partially answer Problem 3. Now, from the pattern of the above
three examples and Problem 3, we can observe the following specific problem:

Problem 4. For a fixed n ∈ N∪ {0}, define the polynomial

P0(z) = 1

Pn(z) = 1 +
n

∑
k=1

2k−1
22k−1 zk for n ≥ 1.

Then, some a ∈ R \ {0} exist such that
√

1 + az Pn(z) ≺
√

1 + z. (61)
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