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Abstract: Chirality and porosity are characteristic properties of nanostructured materials. Their
effects on the mechanical behaviour of structural elements, such as shells, plates and beams, cannot
be disregarded. In this paper, we study the thermoelastic deformation of a chiral porous circular beam
loaded with an axial force and torque. The beam is also under the action of a constant temperature
field. The analytical solution is obtained using the results established in a paper recently published
by the Author within the context of the strain gradient theory proposed by Papanicopolous . In the
constitutive equations, the chirality is introduced by a material constant parameter and the porosity
is described by means of a scalar function. Displacements, microdilatation function, and stress and
strain fields are expressed in explicit form and in terms of engineering constants. Explicit formulas of
the stiffness of chiral porous circular beams are presented and the effects of right and left chirality
are discussed.
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1. Introduction

In general, the term chiral, is used to describe an object that is non-superposable on its
mirror image. In continuum mechanics, a material whose properties are not invariant to
inversion is called chiral. Ordinary materials, as structural and building materials, do not
exhibit chirality and this property has been ignored in mechanics for a long time. In recent
years, the great scientific and technical achievements in the creation of nanomaterials and
nanotechnology have driven interest in the research of novel phenomena and properties of
materials whose internal structure has nanoscale dimensions. Chirality is a characteristic
property of nanomaterials and its effects on the behaviour of structural elements (shells,
plates, beams, etc.) are not negligible. For a brief historical sketch on nanomaterials and
nanotechnology, see Guz and Rushchitskii [1] and the references therein. For an overview
of chirality in mechanics, see Lakes [2].

Various mathematical theories have been considered to introduce chirality in the
mechanical behaviour of materials [3–6]. Among the microcontinuum theories of elasticity,
the Cosserat theory has attracted increasing interest for describing microstructural effects
due to chirality of the microstructure [7–9]. An extended micropolar theory was ideated
to study the chiral effects that arise from coupling between stretching deformations and
the microrotation [10–13]. In Cosserat models, chirality introduces three additional pa-
rameters for a total of nine material parameters. An alternative approach is provided by
the strain gradient theory, which has been shown to be effective in investigating problems
related to size effects and nanotechnology [14,15]. In [16], Papanicolopulos adapted the
Mindlin–Eshel strain gradient theory for centrosymmetric materials [17] for the case of
noncentrosymmetric solids. In contrast with the Cosserat model, in the strain gradient
theory the chiral behaviour is controlled by a single material parameter and the sign of
parameter allows for distinguishing between right and left chirality.
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Porosity is another important feature of materials with nanostructures. Nanotubes,
nanospheres, and other nanoparticles possess a high porosity because of their internal
cavities [18,19].

There are a number of theories that describe the mechanical properties of materials
with single and multiple porosity (see, e.g., [20–22] and the references therein). Microcon-
tinuum field theories provide suitable mathematical models to investigate the behaviour
of porous media [23,24]. For instance, if in the microstretch theory the rigid microrotation
of the material particles is absent, we obtain the theory of materials with voids proposed
by Cowin and Nunziato [25]. In both theories, the variation in void volume is described
by an independent kinematical variable named the microdilatation function. The Cowin–
Nunziato theory has been subject to intensive study and a great number of contributions
regarding the fundamentals and applications have been published [26–33].

This paper is concerned with the strain gradient theory of porous thermoelastic
materials. The theory is constructed adding the second-order partial derivative of the
displacement and the first order derivative of the microdilatation function in the classical
set of independent constitutive variables [34,35]. We applied this theory to study the
thermoelastic deformation of a chiral porous circular cylinder.

The problems of the elastic deformation of generalized models of beams have been
largely investigated [36–41]. For recent theoretical results on the theory of nanobeams,
see [42–45]. The method of solution is well known and consists of reducing the 3D problem
in the solution of two-dimensional problems. Usually, the solution depends on the cross
section and cannot be expressed in explicit form, so we have only a qualitative description
of the deformation. In the case of chiral beams, in contrast with the classical elasticity, an
axial force produces torsion and torque produces extension. These effects are not typical
of chirality and have been observed in some nonlinear phenomena, termed the poynting
effect [46–48]. Possible correlations between the poynting effect and chirality have not yet
been investigated.

In a recent article, De Cicco and Iesan [49] solved the general problem of the thermoe-
lastic deformation of chiral porous cylinders. In this paper, we used the results established
in [49] to obtain explicit formulas for the case of a cylinder with a circular cross-section and
loaded with an axial force, torque, and constant temperature field. As the general solution
presented in [49] was quite complex and could be difficult to use, the purpose of this study
was to express the relations for the displacement, microdilatation function, and stress and
strain fields in a convenient form, avoiding the use exceedingly complicated and tedious
calculations used by researchers in the field. We obtained a clear qualitative and quanti-
tative description of the deformation, which made it possible to distinguish the effects of
right and left chirality. Using suitable notations, we introduced engineering constants and
expressed the solution in terms of the Young-type modulus and Poisson-type ratio. The
results were of practical use and would be useful for testing mechanical properties, such as
the stiffness and strength of materials with nanostructures.

The paper is structured as follows. First, we present the basic equations of chiral porous
elastic solids and formulate the problem of thermoelastic deformation of the right circular
cylinder. Then, we establish the solution with the help of two-dimensional problems. The
solutions of special cases, such as chiral (non porous) cylinder and porous (non chiral)
cylinder, are derived. Using appropriate notations the displacements, microdilatation
function, and stress and strain fields are expressed in terms of engineering constants. The
results and the effects of right and left chirality are discussed.

2. Preliminaries

In this section, we formulate the equilibrium problem of a porous chiral cylinder
subjected to mechanical forces and a variation in temperature. The cylinder is supposed
to be homogeneous and isotropic. We denote the lateral boundary by Π, the terminal
cross-sections by Σα(α = 1, 2), a generic cross-section by Σ , the boundary of Σα by Γα, the
boundary of Σ by Γ, and the length of the cylinders by h. We chose a system of rectangular
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axes, such that x3 − axis is parallel to the generator of the cylinder and the x1Ox2 − plane
contains the basis Σ1 at x3 = 0. Let F = (F1, F2, F3) and M = (M1, M2, M3) be the prescribed
vector representing the resultant force and the resultant moment about O of the tractions
acting on Σ1. On Σ2, there are tractions applied so as to satisfy the equilibrium conditions
of the cylinder. We assume a thermal field T that is independent of the axial coordinate
x3. The cylinder is supposed to be free of lateral loading. Let ui be the components of the
displacement vector and φ is the microdilatation function. The equilibrium problem of
the cylinder consists of finding the functions ui and φ, satisfying the following systems
of equations:

geometric equations

eij =
1
2
(ui,j + uj,i), κijk = uk,ij (1)

where eij is the strain tensor and κijk is the strain gradient tensor.
constitutive equations

τij = λerrδij + 2µeij + dφδij + f (εikmκjkm + ε jkmκikm)− bTδij,

µijk =
1
2

α1(κrriδjk + 2κkrrδij + κrrjδik) + α2(κirrδjk + κjrrδik)

+ 2α3κrrkδij + β1δij φ,k + β2(δik φ,j + δjk φ,i)

+ 2α4κijk + α5(κkji + κkij) + f (εiksejs + ε jkseis), (2)

σi = β1κrri + 2β2κirr + a0 φ,i, g = derr + ξφ − βT,

where τij is the stress tensor; µijk is the dipolar stress tensor; σi is the equilibrated stress
vector; g is the intrinsic body force; T is the temperature; δij is the Kronecker delta; εijk is
the alternating symbol; λ, µ and b are the constitutive constants of the classical theory of
elasticity; αi(i = 1, 2, . . . , 5) and β j(j = 1, 2) are the constitutive constants associated with
the gradient terms; d, a0, ξ, and β are constitutive constants linked to porosity; and f is a
constant associated with the chiral behaviour.

equilibrium equations
τji,j − µkji,kj = 0, σj,j − g = 0. (3)

The following boundary conditions

Pi = 0, Ri = 0, Qi = 0, σαnα = 0 (4)

must be satisfied on the lateral surface Π. Here, (n1, n2, 0) are the direction cosines of the
exterior normal to Π and

Pi = τ3i + 2µα3i,α + µ33i,3, Ri = µ33i on Σ1, (5)

Qi = −2µα3inα, on Γ1.

Further, ∫
Σ1

Pαda +
∫

Γ1

Qαds = Fα, (6)∫
Σ1

P3da +
∫

Γ1

Q3ds = F3, (7)∫
Σ1

(xαP3 + Rα)da +
∫

Γ1

xαQ3ds = εβα3Mβ, (8)∫
Σ1

εαβ3xαPβda +
∫

Γ1

εαβ3xαQβds = M3 (9)

have to be satisfied on the end Σ1.
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3. Circular Cylinder

We consider a porous chiral circular cylinder of radius a subjected to the following
external data

F = (0, 0, F3), M = (0, 0, M3), T = T∗ (10)

where F3, M3, and T∗ are the prescribed constants. The solutions of the problem under
discussion have the form

uα = ε3βαa2xβx3 + a1u(1)
α + a2u(2)

α + wα,

u3 = a1x3 + a1u(1)
3 + a2u(2)

3 + w3, (11)

φ = a1 φ(1) + a2 φ(2) + ψ,

where u(ρ)
i , φ(ρ), w1, and ψ are unknown functions, which are independent of x3, and a1

and a2 are unknown constants. The functions u(ρ)
i and φ(ρ) are the solution of two isotermal

plane strain problems, denoted by A(ρ), and the functions wi and ψ are the solution of
a nonisothermal plane strain problem denoted by A(0). For brevity, the solutions of the
problems A(0) and A(ρ) are provided directly omitting the calculations. We obtain

u(1)
1 = c1x1, u(1)

2 = c1x2, u(1)
3 = 0, φ(1) = c2, (12)

u(2)
1 = h1x1, u(2)

2 = h1x2, u(2)
3 = 0, φ(2) = h2, (13)

w1 = s1x1, w2 = s1x2, w3 = 0, ψ = s2, (14)

where

c1 =
λξ − d2

D
, c2 =

2µd
D

, h1 = −2 f ξ/D, h2 = 4d f /D

s1 =
βd − bξ

D
T∗, s2 =

2[db − β(λ + µ)]

D
T∗ (15)

D = 2[d2 − ξ(λ + µ)].

The strain and stress tensors associated with (u(1)
i , φ(1)) are provided by

e(1)11 = e(1)22 = c1, e(1)12 = e(1)13 = e(1)23 = e(1)33 = 0, κ
(1)
ijk = 0,

τ
(1)
11 = τ

(1)
22 = 2(µ + λ)c1 + dc2, τ

(1)
12 = τ

(1)
13 = τ

(1)
23 = 0, (16)

µ
(1)
αβγ = µ

(1)
αβ3 = 0, σ

(1)
α = 0, g(1) = 2c1d + c2

From relations (13) we obtain

e(2)11 = e(2)22 = h, e(2)12 = e(2)13 = e(2)23 = e(2)33 = 0, κ
(2)
ijk = 0,

τ
(2)
11 = τ

(2)
22 = 2(µ + λ)h1 + dh2, τ

(2)
12 = τ

(2)
13 = τ

(2)
23 = 0, (17)

µ
(2)
αβγ = µ

(2)
αβ3 = 0, σ

(2)
α = 0, g(2) = 2h1d + h2.

The relations (14) provide

e(0)11 = e(0)22 = s1, e(0)12 = e(0)13 = e(0)23 = e(0)33 = 0, κ
(0)
ijk = 0,

τ
(0)
11 = τ

(0)
22 = 2(µ + λ)s1 + ds2 − bT∗, τ

(0)
12 = τ

(0)
13 = τ

(0)
23 = 0, (18)

µ
(0)
αβγ = µ

(0)
αβ3 = 0, σ

(0)
α = 0, g(0) = 2s1d + s2 − βT∗
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We have to determine the constants a1 and a2. In view of external data (10), the
boundary conditions (6)–(9) became∫

Σ1

Pαda +
∫

Γ1

Qαds = 0, (19)∫
Σ1

P3da +
∫

Γ1

Q3ds = F3, (20)∫
Σ1

(xαP3 + Rα)da +
∫

Γ1

xαQ3ds = 0, (21)∫
Σ1

εαβ3xαPβda +
∫

Γ1

εaβ3xαQβds = M3. (22)

The conditions (19) and (21) in view of Equations (5), (16)–(18) are identically satisfied.
Conditions (20) and (22) reduce to the following system

D11a1 + D12a2 = −(F3 + F∗
3 ),

D21a1 + D22a2 = −M3 (23)

where

D11 = 2πa2µ
3d2 − ξ(2µ + 3λ)

D
,

D12 = D21 = 4πa2 f
3d2 − ξ(2µ + 3λ)

D
, (24)

D22 = µ
πa4

2
+ 4(2α4 − α5 +

2ξ f 2

D
)πa2.

F∗
3 = −2µπa2s1.

System (26) uniquely determines the constants a1 and a2. We have

a1 = [−(F3 + F∗
3 )D22 − M3D12]/D∗ (25)

a2 = [(F3 + F∗
3 )D12 − M3D11]/D∗

where
D∗ = D11D22 − D2

12. (26)

The solution (11) can be rewritten in the form

u1 =
1

D∗ {−F3[D12x2x3 + (c1D22 − h1D12)x1] + M3[D11x2x3 + (c1D12 − h1D11)x1]

+ γ1T∗[D12x2x3 + (c1D22 − h1D12 +
D∗

2µπa2 )x1]},

u2 =
1

D∗ {−F3[−D12x1x3 + (c1D22 − h1D12)x2] + M3[−D11x1x3 + (c1D12 − h1D11)x2]

+ γ1T∗[−D12x1x3 + (c1D22 − h1D12 +
D∗

2µπa2 )x2]}, (27)

u3 =
1

D∗ (−F3D22 + M3D12 + γ1T∗D22)x3

φ =
1

D∗ {−F3(c2D22 − h2D12) + M3(c2D12 − h2D11) + T∗[γ1(c2D22 − h2D12) + γ2D∗]

where

γ1 = 2µπa2 βd − bξ

D
, γ2 =

2[db − β(λ + µ)]

D
. (28)

From the general solution (27), we derive the solutions of some special cases.
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• chiral circular cylinder (b = 0, β = 0)

It follows from (15) and (28)

c2 = 0, h2 = 0, γ2 = 0 (29)

so that φ = 0. From (27) and (29), we obtain

u1 = F3{−
2 f
µk1

x2x3 + [
λ

2µ(2µ + 3λ)A
+

2 f 2

µ2k1
]x1}+ M3(

1
k1

x2x3 −
f

µk1
x1)

+ T∗b{ 2 f A
(µ + λ)k1

x2x3 + [
1

2µ + 3λ
− 2 f 2 A

µ(µ + λ)k1
]x1}

u2 = F3{
2 f
µk1

x1x3 + [
λ

2µ(2µ + 3λ)A
+

2 f 2

µ2k1
]x2} − M3(

1
k1

x1x3 +
f

µk1
x2)

+ T∗b{− 2 f A
(µ + λ)k1

x1x3 + [
1

2µ + 3λ
− 2 f 2 A

µ(µ + λ)k1
]x2} (30)

u3 = {−F3[
µ + λ

µ(2µ + 3λ)A
+

4 f 2

µ2k1
] + M3

2 f
µk1

+ T∗b[
1

2µ + 3λ
+

4 f 2 A
µ(µ + λ)k1

]}x3

where A = πa2, I0 = πa4/2 and

k1 = µI0 + 4(2α4 − α5)A − 12 f 2 A
µ

. (31)

• porous circular cylinder ( f = 0)

When the material is achiral, f is equal to zero. Moreover, we put the constitutive
constants associated with the strain gradient equal to zero. These assumptions imply

D12 = 0, D22 = µI0, D∗ = D11D22 h1 = h2 = 0. (32)

Introducing Equations (32) into (27), we have the solution of an achiral circular cylinder
in the theory of materials with voids.

u1 = − F3c1

D11
x1 +

M3

D22
x2x3 + T∗ γ1

D11
x1

u2 = − F3c1

D11
x2 −

M3

D22
x1x3 + T∗ γ1

D11
x2

u3 = (−F3 + T∗γ1)
1

D11
x3 (33)

φ = − F3c2

D11
+ T∗(

γ1c2

D11
+ γ2)

where we used the relation
1

D11
=

c1

D11
+

1
2µπa2 (34)

4. Engineering Material Constants

In this section, solution (27), (30), and (33) are rewritten in terms of technical constants.

• porous achiral circular cylinder

We assume that the internal energy density is a positive definite form. This assumption
implies that

µ > 0, ξ > 0, a0 > 0, 2µ + 3λ > 0, ξ(2µ + 3λ) > 3d2 (35)
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We introduce the notations

E∗ =
µ(2µ + 3λ∗)

µ + λ∗ , ν∗ =
λ∗

2(µ + λ∗)
, (36)

where
λ∗ = λ − d2/ξ. (37)

Of course
λ∗ < λ, E∗ < E, 2µ + 3λ∗ > 0. (38)

The elastic constants E∗ and ν∗ are the counterpart of Young modulus and Poisson ratio
in the theory of elastic materials with voids. The inverse relations of (36) are provided by

2µ =
E∗

1 + ν∗
, λ∗ =

ν∗E∗

(1 + ν∗)(1 − 2ν∗)
, 2µ + 3λ∗ =

E∗

1 − 2ν∗
. (39)

With the help of (36) and (39), we obtain

c1 = −ν∗, c2 = −d
ξ
(1 − 2ν∗),

γ1 = b∗(1 − 2ν∗)A, γ2 =
2b0(1 + ν∗)(1 − 2ν∗)

ξE∗ , (40)

D11 = AE∗, D22 = I0
E∗

2(1 + ν∗)
, D = − ξE∗

(1 + ν∗)(1 − 2ν∗)
,

where
b∗ = b − βd

ξ
, b0 = β(λ + µ)− db = β(µ + λ∗)− b∗d. (41)

Taking into account (40) and (41), relations (33) became

u1 =
1

E∗ [
F3ν∗

A
x1 +

2M3(1 + ν∗)

I0
x2x3 + T∗b∗(1 − 2ν∗)x1],

u2 =
1

E∗ [
F3ν∗

A
x2 −

2M3(1 + ν∗)

I0
x1x3 + T∗b∗(1 − 2ν∗)x2], (42)

u3 =
1

E∗ [−
F3

A
+ T∗b∗(1 − 2ν∗)]x3,

φ =
1 − 2ν∗

E∗ξ
[
F3d
A

− (3b∗d − βE∗

1 − 2ν∗
)T∗].

From (1) and (42), the strain tensor is provided by

e11 = e22 =
1

E∗ [
F3ν∗

A
+ T∗b∗(1 − 2ν∗)],

e12 = 0, e33 =
1

E∗ [−
F3

A
+ T∗b∗(1 − 2ν∗)], (43)

e13 =
M3(1 + ν∗)

E∗ I0
x2, e23 = −M3(1 + ν∗)

E∗ I0
x1

From the constitutive Equations (2) and (43), we obtain

t11 = t22 = t12 = 0, t33 = − F3

A
,

t13 =
M3

I0
x2, t23 = −M3

I0
x1 (44)

σ1 = σ2 = σ3 = 0, g = 0
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It should be mentioned that if in the Equation (42), we replace E∗ with E, ν∗ with ν,
b∗ with b, and put φ = 0, we obtain the solution of the analogous problem in the classical
theory of elasticity.

• chiral circular cylinder

Together with (31) and (45), the relations (30) yield

u1 = F3[−
2

d1k1
x2x3 + (

ν

EA
+

2
d2

1k1
)x1] + M3(

1
k1

x2x3 −
1

d1k1
x1)

+ T∗bA[
2

d2k1
x2x3 + (

1 − 2ν

EA
− 2

d1d2k1
)x1]

u2 = F3[
2

d1k1
x1x3 + (

ν

EA
+

2
d2

1k1
)x2]− M3(

1
k1

x1x3 +
1

d1k1
x2) (45)

+ T∗bA[− 2
d2k1

x1x3 + (
1 − 2ν

EA
− 2

d1d2k1
)x2]

u3 = [−F3(
1

EA
+

4
d2

1k1
) + M3

2
d1k1

+ T∗b(
1 − 2ν

E
+

4A
d1d2k1

)]x3,

where
d1 =

E
2(1 + ν) f

, d2 =
E

2(1 + ν)(1 − 2ν) f
. (46)

The strain tensor is provided by

e11 = e22 = F3

(
ν

EA
+

2
d2

1k1

)
− M3

2
d1k1

+ T∗b
(

1 − 2ν

E
− 2A

d1d2k1

)
,

e33 = −F3

(
1

EA
+

4
d2

1k1

)
+ M3

2
d1k1

+ T∗b
(

1 − 2ν

E
+

4A
d1d2k1

)
, e12 = 0, (47)

e13 =

(
− F3

d1
+

M3

2
− T∗bA

d2

)
x2

k1
, e23 =

(
F3

d1
− M3

2
+

T∗bA
d2

)
x1

k1

The components of the stress tensor are

t11 = t22 =
2 f
k1

(
2F3

d1
− M3 −

2bT∗A
d2

),

t33 = −
(

F3

A
+ 2t11

)
t13 = { E

2(1 + ν)
M3 + 2 f [−F3 + T∗bA(1 − 2ν)]} x2

k1
t12 = 0, (48)

t23 = {− E
2(1 + ν)

M3 − 2 f [−F3 + T∗bA(1 − 2ν)]} x1

k1

• porous chiral circular cylinder

From (24), (26), and (40), we obtain

c1D22 − h1D12

D∗ = −(
ν∗

E∗A
+

2
d̂2

1k1
),

c1D12 − h1D11

D∗ = − 1
d̂1k1

,

c2D12 − h2D11

D∗ = 0,
c2D22 − h2D12

D∗ = − (1 − 2ν∗)d
ξE∗A

,

γ1

(
c1D22 − h1D12

D∗ +
1

2µA

)
= b∗

(
1 − 2ν∗

E∗ − 2A
d1d2k1

)
(49)

γ1

(
c2D22 − h2D12

D∗

)
+ γ2 = −3(1 − 2ν∗)b∗d

ξE∗ +
β

ξ
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where
d̂1 =

E∗

2(1 + ν∗) f
, d̂2 =

E∗

2(1 + ν∗)(1 − 2ν∗) f
. (50)

Substituting (49) into (27), we obtain

u1 = F3

[
− 2

d̂1k1
x2x3 + (

ν∗

E∗A
+

2
d̂2

1k1
)x1

]
+ M3

(
1
k1

x2x3 −
1

d̂1k1
x1

)
+ T∗b∗A

[
2

d̂2k1
x2x3 +

(
1 − 2ν∗

E∗A
− 2

d̂1d̂2k1

)
x1

]
u2 = F3

[
2

d̂1k1
x1x3 +

(
ν∗

E∗A
+

2
d̂2

1k1

)
x2

]
− M3

(
1
k1

x1x3 +
1

d̂1k1
x2

)
(51)

+ T∗b∗A
[
− 2

d̂2k1
x1x3 +

(
1 − 2ν∗

E∗A
− 2

d̂1d̂2k1

)
x2

]
u3 =

[
−F3

(
1

E∗A
+

4
d̂2

1k1

)
+

2M3

d̂1k1
+ T∗b∗A

(
1 − 2ν∗

E∗A
+

4
d̂1d̂2k1

)]
x3,

φ =
1 − 2ν∗

E∗ξ

[
F3d
A

+ T∗
(
−3b∗d +

βE∗

1 − 2ν∗

)]
.

The strain tensor is easily determined from (51)

e11 = e22 = F3

(
ν∗

E∗A
+

2
d̂2

1k1

)
− M3

d̂1k1
+ T∗b∗A

(
1 − 2ν∗

E∗A
− 2

d̂1d̂2k1

)
,

e33 = −F3

(
1

E∗A
+

4
d̂2

1k1

)
+

2M3

d̂1k1
+ T∗b∗A

(
1 − 2ν∗

E∗A
+

4
d̂1d̂2k1

)
, e12 = 0, (52)

e13 =
1
k1

(
− F3

d̂1
+

M3

2
+

T∗b∗A
d̂2

)
x2, e23 = − 1

k1

(
− F3

d̂1
+

M3

2
+

T∗b∗A
d̂2

)
x1.

The stress tensor is provided by

t11 = t22 =
2 f
k1

(
2
d̂1

− M3 −
2
d̂2

)
,

t33 = − F3

A
− 4 f

k1

(
2F3

d̂1
− M3 +

T∗b∗A
d̂2

)
t13 =

{
E∗

2(1 − ν∗)
M3 + 2 f

[
− F3

d̂1
+ T∗b∗A(1 − 2ν)

]}
x2

k1
(53)

t23 =

{
E∗

2(1 − ν∗)
M3 − 2 f

[
− F3

d̂1
+ T∗b∗A(1 − 2ν)

]}
x1

k1

t12 = 0 σi = 0, g = 0

5. Extensional and Torsional Rigidities

In [17], Mindlin and Eshel presented three forms for the potential energy-density in the
case of centrosymmetric and isotropic materials, and derived the relations connecting the three
forms. In the context of non-centrosymmetric strain gradient theory, Papanicolopulos [16]
modified the forms II and III by adding a term that introduced chirality in the material
behaviour. In this paper, we considered form I of the strain gradient theory. The energy-
density function is provided by

W =
1
2

λeijeij + µeij + α1κiikκkjj + α2κijjκikk + α3κiikκjjk + α4κijkκijk

+ α5κijkκkji + 2 f ϵijkκijkejl . (54)
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Necessary and sufficient conditions for positive definiteness of W are

µ > 0, 2µ + 3λ > 0, 2α4 − α5 > 0, α4 + α5 > 0,
5
3
(α1 + α2 + α3) + α4 + α5 > 0 2(−2α1 + α2 + 4α3) + 3(2α4 − α5) > 0, (55)

5
6
(−α1 + 2α2 − 4α3)

2 < [2(−2α1 + α2 + 4α3) + 3(2α4 − α5)][
5
3
(α1 + α2 + α3) + α4 + α5]

12 f 2 < µ(2α4 − α5).

The quantity k1 in Equation (31) is the torsional rigidity of the cylinder. It consists of
three terms; the first term is the usual torsional rigidity in classical elasticity, the second term
depends by the strain gradient theory, and the third negative term is due to the chirality
of the material. From the last disequality of (55), it immediately follows that k1 > 0. In
contrast with the classical theory of elasticity, each mechanical or thermal action produces
extension, torsion, and a deformation in the plane of the cross section of the cylinder. As
consequence, in the case under discussion, we have three torsional rigidities and three
extensional rigidities. Tables 1 and 2 show the rigidities corresponding to the forces F3 and
M3, and to the temperature T∗.

Table 1. Rigidities of the chiral circular cylinder.

Torsional Rigidity Extensional Rigidity

F3
1
2

d1k1

(
1

EA
+

4
d2

1k1

)−1

M3 k1
1
2

d1k1

T∗ d2k1
2bA

1
b

(
1 − 2ν

E
+

4A
d1d2k1

)−1

Table 2. Rigidities of chiral porous circular cylinder.

Torsional Rigidity Extensional Rigidity

F3
1
2

d̂1k1

(
1

E∗A
+

4
d̂2

1k1

)−1

M3 k1
1
2

d̂1k1

T∗ d̂2k1
2bA

1
b

(
1 − 2ν∗

E∗ +
4A

d̂1d̂2k1

)−1

The axial force F3 rotates the cross-section by an angle

θ(x3) =
4(1 + ν) f

Ek1
F3x3, (56)

in the case of a chiral cylinder, and by an angle

θ(x3) =
4(1 + ν∗) f

E∗k1
F3x3, (57)

in the case of a porous chiral cylinder. The sign of θ depends on the sign of the product F3 f .
If F3 f > 0, the angle θ is positive (counterclockwise), otherwise if F3 f < 0, θ is negative
(clockwise), Figure 1a,b.
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(a)

(b)
Figure 1. (a) Torsion of a chiral circular beam under compression; (b) Torsion of a chiral circular beam
under a traction force.

As a dual effect, the cylinder lengthens or shortens when twisted. If M3 f > 0, the
cylinder undergoes an elongation and a contraction of the cross-section. Vice versa, if
M3 f < 0, the torsion induces a shortening of the cylinder and a dilatation of the cross
section, Figure 2a,b.

The effects of chirality vanish when f = 0. In the case of a combined action of the axial
force F3 and the torque M3, the angle of torsion θ is provided by

θ(x3) =

(
2F3

d1
− M3

)
x3

k1
. (58)

Immediately, we see that if M3 is related to F3, by the following relation

M3 =
4(1 + ν)

E
f F3

(
M3 =

4(1 + ν∗)

E∗ f F3

)
, (59)

the angle θ is equal to 0 and the torsional effect produced by F3 vanishes. Moreover, we
denote by ∆l the variation in length of the axis of the cylinder. If relation (59) holds, from
(45), we obtain

∆l = − F3l
EA

(
∆l = − F3l

E∗A

)
, (60)

and the extensional effect produced by M3 disappears.
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(a)

(b)
Figure 2. (a) Extension of a chiral circular beam under clockwise torque (on Σ2; (b) extension of a
chiral circular beam under counterclockwise torque (on Σ2).

6. Conclusions

The results presented in this paper can be summarized as follows:

• We present the basic equations of the strain gradient theory of chiral porous thermoe-
lastic solids and formulate the equilibrium problem of a homogeneous and isotropic
circular cylinder subjected to a prescribed axial force and a torque acting on its bases.
The cylinder is also under tha action of a constant temperature field.

• The analytical solution is determined through the help of two-dimensional problems.
The solutions of a chiral (non porous) cylinder and a porous (non chiral) cylinder are
derived as special cases.

• With the introduction of suitable notations, we define engineering constants, such
as Young-type modulus and Poisson-type ratio, for chiral porous materials. Explicit
formulas for the displacements, microdilatation function, stresses, and strain are
written in terms of such engineering constants.

• The chirality is introduced in the constitutive equations by a material constant f . The
sign of f may be positive or negative. We show that the cylinder is twisted by the axial
force F3 and the rotation will be counterclockwise if F3 f > 0 or clockwise if F3 f < 0.
In addition, the torque M3 produces extension. The cylinder lengthens or shortens
depending on M3 f > 0 or M3 f < 0, respectively. Furthermore the cylinder is twisted
by the variation in temperature T∗ and the sign of the product f T∗ discriminates
between the two directions of the rotation.

• In contrast with the classical theory of elasticity, the rigidity in the torsion of a chiral
beam is measured by three moduli. Similarly, we use three moduli for the extensional
rigidity. These moduli are computed and are presented in Table 1 and 2.

• On the basis of the results presented in the paper, a possible next step will be to
investigate the elastic deformation of a chiral porous circular beam under the action of
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a bending moment and a shear force. Bending and shear stiffness can be derived from
the solutions of these problems.

• We show that the bending does not occur in a chiral circular cylinder under uniaxial
force, although it is predicted by the solution for cylinders with an arbitrary cross-
section. It might be interesting to solve the problem of a cylinder with a non circular
section to study the coupling of deformation modes using extension-bending.

• Other important mechanical properties of chiral materials such as the ultimate tensile
strength, elongation at rupture, fatigue properties, and so on need to be determined in
various research areas, depending on the theoretical and experimental approaches used.
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21. Ieşan, D. A theory of thermoelastic materials with voids. Acta Mech. 1986, 60, 67–89. [CrossRef]
22. De Cicco, S. Non-simple elastic materials with double porosity structure. Arch. Mech. 2022, 74, 127–142.
23. Eringen, A.C. Microcontinuum Field Theories. Foundations and Solids; Springer: Berlin/Heidelberg, Germany; New York, NY,

USA, 1998.
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