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Abstract: In this article, the problem of achieving the minimum backbone connectivity cost while
simultaneously maximizing user coverage for 5G millimeter-wave (mmWave)-based networks is
considered. Let G = (N, E) be an input graph instance with a set of nodes N (base stations) and a
set of edges E. It is assumed that G represents a wireless backbone network. Let M represent a set
of users to be covered by G. Note that mmWave technology has been considered in the literature
as an important candidate solution for 5G networks due to its low latency. However, there remain
some problems to be addressed before using this technology. A serious one is that millimeter waves
cannot cover large transmission distances. In this article, the proposed methodology consists of
formulating mixed-integer programming models to deal with the problem from a management
point of view. Our models allow the determination of which of the nodes of G should be active
and connected while simultaneously maximizing the total number of covered users. The models
are solved with the CPLEX solver using its branch and cut and automatic Benders decomposition
algorithms. For this purpose, symmetric complete and sparse graphs are considered. Using the
symmetry concept, it is considered that the distances between base stations and users and between
base stations themselves are symmetrical. Finally, an efficient local search meta-heuristic is proposed
that allows for finding near-optimal solutions. Our numerical experiments indicate that the problem
is hard to solve optimally. Thus, instances with up to 40 nodes and 500 users have been solved
to optimality so far. In particular, it is observed that one of the models presents slightly better
performance in terms of CPU time. Finally, the heuristic approach allows us to obtain tight solutions
with less computational effort when dealing with even larger instances of the problem.

Keywords: network planning; optimal connectivity and user coverage; 5G millimeter-wave-based
networks; mixed-integer programming models; branch and cut method and Benders decomposition;
local search meta-heuristic

1. Introduction

Using 5G technology for wireless communication can make it easier to send a lot of
data quickly. It has the potential to overcome problems like limited bandwidth, access
issues, and delays. This means that future technologies, like “5G and Beyond”, could let
us send data at speeds of hundreds of Megabits per second with very short delays, less
than 1 millisecond. As a consequence, it will make it possible to connect simultaneously
billions of devices and it can also lead to the creation of entirely new and innovative
applications that we haven’t seen before [1]. Examples of where these new applications
could be used cover a wide range of areas. This includes things like mobile health, self-
driving cars, manufacturing and entertainment, education, smart grids, big data analysis,
smart cities and homes, aerospace, ocean exploration, emergency response, and mobile
platforms, among others [1]. As can be verified from the literature, a base station (BS)
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can transmit data with up to a radius of approximately 200ms while using 5G mmWave
technology [2]. So far, the experimental evidence suggests that deploying base stations (BSs)
with a radius of at least 200 m can solve the coverage issue in outdoor areas by utilizing
direct line-of-sight communication. However, it is important to note that opting for smaller
radius values would mean needing a significantly larger number of base stations to ensure
complete coverage for users [2,3]. In particular, note that any pair of BSs can be connected
by using cables to form the backbone network structure. Consequently, it is necessary
to adapt current infrastructures [4]. This will be essential for the deployment of future
5G-based networks to manage the increasing demand for data usage and broader coverage,
as recommended in [2,5].

In this article, the problem of achieving the minimum backbone connectivity cost while
simultaneously maximizing user coverage using 5G mmWave technology is considered. For
this purpose, let us consider G = (N, E) to be an input graph instance with a set of nodes
(BSs) N = {1, . . . , n} and a set of edges (or connection links) E = {{i, j} i, j ∈ N, (i < j)}.
Thus, it is assumed that G represents a wired or wireless backbone network. Also, let
M = {1, . . . , m} represent a set of users to be covered by G. Note that mmWave technology
has been considered in the literature as an important candidate solution for 5G networks
due to its low latency. Nevertheless, there remain some practical problems to overcome
before using this technology for real network applications. A serious one is that millimeter
waves cannot cover large radial transmission distances. Consequently, in this article, the
main contributions are to propose mixed-integer programming models to deal with this
problem. In particular, our models allow the determination of which of the nodes of
G should be active and connected at the lowest connectivity cost while simultaneously
maximizing the total number of covered users. More precisely, two flow-based models,
a Miller–Tucker–Zemlin-based one and an exponential one, are proposed [6]. In general,
these models mainly differ in the way a set of constraints forms a spanning tree backbone. In
our research article, we consider scenarios where network nodes remain stationary, which
is a common characteristic of sensor networks, for instance, or in catastrophic scenarios
where it might be required to set up a wireless network communication rapidly, such as in
earthquakes or pandemic situations. If a particular user is not covered, they will disconnect
from the backbone network, as occurs, for example, on rural highways. This underpins our
assertion that the novel models we introduce have direct applicability to wireless networks.
This assumption aligns well with the prevalent conditions in sensor network deployments.
However, we recognize the more intricate scenario involving mobile BSs and users, capable
of traversing various application domains. Note that even in dynamic scenarios, our
proposed models retain their utility, offering an alternative avenue to derive optimal
network configurations. This optimization task is facilitated by considering optimization
tools such as the CPLEX solver, an industry-leading solution in the realm of operations
research [7]. Its efficacy is underscored by its inclusion of exact approaches like branch
and cut (B&C) and Benders algorithms, aspects well-documented in the literature [7,8].
Within the context of wireless sensor networks (WSNs), a myriad of applications has been
explored in the existing body of work. It is also observed that additional metrics such as
users’ and BS’s mobility, quality of service requisites, and security provisions will certainly
lead to future modeling approaches. Nevertheless, our models and algorithms address the
pivotal issue of distance—both between BSs and users and among BSs themselves. This
treatment is rooted in the understanding that many metrics are contingent on distance,
often exhibiting degradation as distances increase. Note that even when both BSs and
users are in motion, our models and algorithms remain efficient, consistently yielding
near-optimal solutions remarkably, as demonstrated through our numerical experiments.
This adaptability positions them not only as practical tools but also as a benchmark for the
development of novel and more efficient algorithmic approaches. While they may not be
amenable to exact solutions within a one-hour CPU time limit in certain cases, the extensive
use of rigorous upper and lower bounds ensures that the solutions attained are indeed
near-optimal. Our contribution, therefore, lies not just in the solutions themselves but in
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the robust methodology employed to ascertain their quality. In summary, the contributions
outlined in our novel models exhibit a remarkable degree of generality, making them
adaptable to a range of contexts, contingent upon the specific application domain. This
flexibility underscores their value as a versatile toolset for addressing diverse wireless
network scenarios. Finally, in a situation where the BSs and users move, there are always
alternative ways of finding feasible solutions faster. For this purpose, our second algorithm
uses an iteration parameter MaxIter which allows it to run for a predefined number of
iterations. The latter can be handled efficiently to find good solutions, as is seen from
the velocities reported in the last two figures, where the algorithm reaches near-objective
values very fast. Since all our models are solved with the CPLEX solver using its branch
and cut and its automatic Bender decomposition algorithmic options, a set of complete
and sparse connected input graphs to form the backbone network is considered. So, the
assumption is that the positions of all users and base stations BSs are randomly distributed
within a square area. Additionally, the assumption is made that in an outdoor setting, all
users and base stations BSs can communicate using a direct line-of-sight channel. For this
purpose, the maximum CPU time limit allowed for the CPLEX solver is arbitrarily set to be
at most one hour when solving each of the instances, and also the CPLEX Mipgap option is
set to be zero and less than one percent [7]. Finally, an efficient local search meta-heuristic
algorithm is proposed that allows for finding tight solutions in significantly low CPU time
when compared to the proposed models either for small- or large-sized instances of the
problem. As far as we know, our proposed models and solution approaches are new to
the literature and therefore enrich the existing literature to deal with the problem from a
management point of view. Note that our proposed models allow us to incorporate a new
aspect to the problem which is considering the distance between users and base stations
BSs, and the optimal connectivity between all BSs. Finally, we mention that our proposed
models could cover all users when the maximum user coverage metric becomes more
relevant than considering the connectivity cost of the backbone network. Total coverage
could also be ensured by using a larger amount of candidate sites for the BSs to be activated
in the network.

Consequently, a direct comparison with other methods is not straightforward as the
modeling and algorithmic approaches are completely new. From the literature, only one
article was found to be as close as possible to the connectivity problem, where a flow-based
formulation is proposed. In this article, that flow model is adapted to our new more
intricate problem. Unfortunately, its performance in terms of obtaining optimal solutions
when compared to our new proposed models is poor. Moreover, all our proposed models
allow us to determine the optimal number of BSs and which of them should be active
to form the backbone network structure. This consideration also takes into account the
characteristics of 5G mmWave technology. It is worth noting that the literature has not
yet explored the aspect of wireless networks with random deployments, such as sensor
networks. Note that the rationale behind employing the CPLEX solver primarily rests on
its exceptional, unique, and potent algorithmic capabilities, as evidenced by its success in
tackling challenging optimization problems in the literature [7]. Finally, we mention that
this work corresponds to a larger version of the article presented at the IEEE conference [9].

The organization of the article is as follows. In Section 2, first, some recent studies
from the literature that are closer to the optimal network planning problem considered
in this article are reviewed. Then, in Section 3, the optimization problem at hand is
briefly explained, and each proposed mathematical formulation is presented in detail.
Subsequently, in Section 4, the algorithmic approaches used to solve the optimization
problem are presented and explained. More precisely, an exact algorithm that consists of
adding sub-tour elimination constraints to our exponential model until the optimal solution
is obtained without cycles is presented. Then, how the Bender decomposition algorithm
finds the optimal solutions and the automatic Benders CPLEX version as well are briefly
explained [7]. Finally, in this section, we introduce and clarify the proposed meta-heuristic.
Moving forward to Section 5, we carry out extensive numerical experiments, presenting and
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discussing the results obtained from the proposed models and algorithms. The comparison
is based on factors such as CPU time and the optimal or best solutions achieved. Lastly, in
Section 6, we conclude the article while discussing insights for potential future research.

2. Related Work

The BS placement problem using 5G mmWaves for outdoor areas has not been investi-
gated so far with sufficient depth in the literature. Some recently published works using
mmWaves technology which are closely related to this network planning problem can be
described as follows. In [10], the authors utilize mmWave radar technology to unobtru-
sively detect human falls. To this end, they collect data from healthy young volunteers with
the radar mounted on the side wall or overhead of an experimental room. They consider a
set of features that are manually extracted from the data and apply multilayer perceptron,
random forest, k-nearest neighbor, and support vector machine classifiers on the features.
Subsequently, they devise a convolutional neural network and conclude from their numer-
ical results that the development of a hidden monitoring system for fall detection using
mmWave radar is feasible. Finally, the authors mention that the optimal placement of the
radars is unknown, and consequently, they locate them intuitively. Similarly, in [11], the au-
thors propose a novel 3D geometry-based framework for deploying mmWave base stations
in urban environments and also provide a solution for the optimum deployment of passive
metallic reflectors to extend the radial coverage to non-line-of-sight areas. Specifically, they
formulate their network planning problem as two independent optimization problems
to maximize the coverage area, and minimize the deployment cost, while ensuring a de-
sired quality-of-service level. Finally, they test the efficacy of their approach by using a
generic map. The study conducted by the authors concludes that their network planning
approach, utilizing mmWave technology, effectively reduces the need for passive metallic
reflectors in non-line-of-sight areas, consequently lowering deployment costs. In [12], the
authors investigate the practicality of relaying and caching in mmWave-based networks,
assuming the coexistence of base stations and relay nodes (RNs). Their findings suggest
that increasing the number of RNs and expanding the cache size in mmWave networks
presents a more cost-effective solution compared to simply increasing BS density for similar
backhaul off-loading performance. Another work [13], explores advanced computational
geometry concepts for placing numerous mmWave wall-mounted BSs in large urban areas.
The authors assert that their study is the first to use mmWave cells on buildings, and their
approach enables accurate modeling for small-cell mmWave-based networks, providing
gigabit capacities for densely populated urban areas.

In addition to the mentioned works, recent publications on network planning issues
for future communication networks include references [6,14]. In the specific case of [14], the
authors tackle the broader challenge of maximizing user coverage while adhering to facility
location and radial distance constraints in the context of 5G/6G wireless communication
networks. They propose mixed-integer linear programming models, drawing inspiration
from the classical p-median problem in optimization literature. Notably, the authors intro-
duce non-overlapping radial distance constraints for various pairs of base stations (BSs).
Their experiments involve solving instances with up to 100 antennas and 1000 users. The
study concludes that incorporating a larger number of radius values enhances the flexibility
and accuracy of solutions, albeit at a higher computational cost. In a similar vein, in [6]
the author proposes generic and novel mixed-integer linear programming models for the
p-median problem while imposing ring, tree, and star backbone topology constraints on the
facility locations. The author also mentions that the proposed models find applications in
wired and wireless network design, computer networks, transportation, water supply, and
electrical networks, to name a few. The author further proposes a variable neighborhood
search meta-heuristic for each network backbone structure. Finally, the author concludes,
based on substantial numerical experiments, that the ring models are harder to solve with
CPLEX than the tree and star ones. Ultimately, the proposed meta-heuristics in [6] proved
to be highly efficient as they allowed better feasible solutions to be obtained compared
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to CPLEX, and with significantly less computational effort. Other related works can be
consulted in references [2,15,16] and in references therein. As can be observed from these
previous works, none of them takes into account the radial transmission distance limitation
of 5G mmWave technology so far. Consequently, the proposed mathematical models in this
article change in structure significantly to deal with the network planning problem from a
management point of view.

To conclude this section, it is mentioned that we observe only a few works in the
literature that are directly related to the network planning problem using 5G mmWave
technology. Consequently, our work will contribute to providing a new dimension of
the problem, i.e., taking into account optimal connectivity. Since the objective function of
our proposed models contains conflicting objectives, i.e., maximizing user coverage and
minimizing backbone connectivity cost simultaneously, a weighting parameter α ∈ [0; 1] is
introduced to balance the degree of importance of each objective. Finally, it is mentioned
that the direct implication for the mmWave networks is to at least find very good solutions,
including optimal configurations.

3. Optimization Problem and Mathematical Formulations

In this section, first, the optimization network planning problem we are dealing with
is introduced. For this purpose, an example of an input graph network and the optimal
solution obtained is presented. Subsequently, each proposed model is presented and
explained in detail.

3.1. Optimization Problem

As mentioned in Section 1, a network deployment that is composed of users and BSs
that are randomly located inside a square area of 1 km2 is considered. It is also assumed
that each user can connect to at least one BS located within a predefined radial transmission
symmetric distance. For this purpose, it is assumed that the distances between base stations
and users and between base stations themselves are symmetric. Thus, the main goal is to
cover the maximum number of users in the network with at least one of the BS (nodes)
while simultaneously minimizing the total connectivity cost of the BSs. In particular, the
main focus is put on the context of 5G mmWave since it is assumed that the distances
between users and BSs are particularly small. Note that the latter implies using a larger
number of BSs to cover the entire network.

In Figures 1 and 2, the input backbone network together with the optimal solutions,
one for a sparse graph and another one for a complete graph, are presented. Note that the
input graphs are given as digraphs as they will be required to solve the proposed models,
whereas the optimal backbone solutions are drawn employing undirected graphs. The
digraph version of each undirected input graph is, thus, denoted hereafter by H = (N, A),
where A represents a set of directed arcs, i.e., the set E = {{i, j} i, j ∈ N, (i < j)} is
transformed into the set A = {(i, j) i, j ∈ N, (i ̸= j)}. Note that the arcs obtained in the
optimal solutions can be simply dropped and replaced by edges instead. As can be seen in
Figure 1, the input backbone network is connected. It is also seen that eight nodes of the
optimal solution obtained are active and connected while forming a tree backbone topology.
Only two BSs are not included in the solution. This means that the maximum number of
covered users, which is 30 out of 50 for the example of Figure 1, can connect with at least
one of the active nodes. Similarly, from Figure 2, it is observed that two BSs are not part of
the optimal solution, and thus, not required to cover users. In this example, the number of
covered users is 27 out of 50.
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Input network Optimal backbone Optimal solution

Figure 1. Input network, the optimal backbone solution of a sparse graph, and the users connected to
the active BSs. The solution is obtained using α = 0.5 for m = 50 users. The network is composed of
n = 10 nodes using radial transmission distances of 300 ms between BSs. The radial transmission
distance between users and BSs is 200 ms. BSs are colored blue and users are colored green.

Input network Optimal backbone Optimal solution

Figure 2. Input network, the optimal backbone solution of a complete graph. The solution is obtained
using α = 0.5 for m = 50 users. The network is composed of n = 10 nodes. The radial transmission
distance between users and BSs is 200 ms. BSs are colored blue and users are colored green.

3.2. Mathematical Formulations

To formulate a first mixed-integer linear flow-based model, let M = {1, . . . , m} and
N = {1, . . . , n} denote the corresponding sets of users and BSs, respectively. The binary
variable xj for each user j ∈ M equals one when user j is covered by some of the active
BSs, otherwise xj = 0. Subsequently, the binary variable yi should be equal to one if BS
i ∈ N is active, otherwise yi = 0. Consequently, the first linear flow-based model for the
5G mm-Wave-based network, which is denoted hereafter by M1, consists of maximizing
the total number of covered users while simultaneously minimizing the total backbone
connectivity cost of the active BSs. The model can be written as follows:

M1 : max
{x,y,z, f }

α ∑
j∈M

xj − (1 − α) ∑
(i,j)∈A

Dijzij

 (1)

st : ∑
i∈N

Cijyi ≥ xj, ∀j ∈ M (2)

∑
(i,j)∈A

zij = ∑
i∈N

yi − 1 (3)
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∑
j|(r,j)∈Ar

zrj = 1 (4)

∑
j|(r,j)∈Ar

frj = ∑
i∈N

yi (5)

∑
i|(i,j)∈A∪Ar

fij − ∑
i|(j,i)∈A

f ji = yj, ∀j ∈ N (6)

fij ≤ nzij, ∀(i, j) ∈ A ∪ Ar (7)

zij + zji ≤ 1, ∀(i, j) ∈ A (8)

fij ≤ nyi, ∀(i, j) ∈ A (9)

fij ≤ nyj, ∀(i, j) ∈ A (10)

x ∈ {0; 1}m, y ∈ {0; 1}n, z ∈ {0; 1}|A∪Ar |,

f ∈ [0; ∞)|A∪Ar | (11)

In model M1, the variable zij for all (i, j) ∈ A equals one if the connection link between
nodes i and j ∈ N are part of the backbone, otherwise it equals zero. Similarly, the non-
negative variable fij for all (i, j) ∈ A ∪ Ar can take positive values if and only if variable
zij = 1, otherwise fij should be equal to zero. For this purpose, it is considered an expanded
digraph of G = (N, E), as H = (N ∪ r, A ∪ Ar), where the set of nodes in H considers an
additional dummy node r and a set of arcs Ar composed of the arcs in A plus additional
arcs with zero costs going from r to every node j ∈ N. Next, in the objective function (1),
the parameter α ∈ [0; 1] represents a weighting parameter that balances the degree of
importance of each term. Each entry in the input matrix C = (Cij), for all i ∈ N, j ∈ M is
a 0–1 value indicating whether user j is covered or not by BS i. In particular, note that it
is possible to compute each of these entries by imposing a predefined radial transmission
distance. If the distance of BS i ∈ N reaches user j ∈ M, then Cij = 1; otherwise, Cij = 0.
On the other side, each entry in the input matrix D = (Dij) denotes the existing distance
between BSs i and j ∈ N.

Observation 1. Note that when α = 1 in the objective function (1), the model M1 reduces only
to maximizing the total sum of covered users without taking into account the connectivity costs
between BSs. On the other hand, when α = 0 the output solution of the problem reduces to a trivial
minimum-cost spanning tree. Furthermore, note that the solution-spanning tree to be obtained will
be composed of one isolated node with an objective function value equal to zero.

Thus, the underlying idea of using parameter α ∈ [0; 1] is to find the maximum possible
number of covered users while simultaneously connecting a spanning tree backbone of
minimum cost which is formed with the active BSs. Note that distances are used for each
entry in the input matrix D = (Dij) for all i and j ∈ N in (1). As a commonly recognized
fact, the signal quality experiences a notable improvement with the transmission distance
in a wireless communication channel. In simpler terms, when the emitter and receivers are
in closer proximity, the power consumption tends to be lower, as highlighted in the study
by [6].

Constraints (2) allow a particular user j ∈ M to be covered if and only if at least one of
the BSs is active and the user is located inside its sensing radius. Next, constraint (3) ensures
that the backbone spanning tree obtained contains several edges equal to the number of
nodes minus one. Constraint (4) ensures that only one arc goes from r to a unique node
j ∈ N. Subsequently, constraints (5) ensure that an amount of ∑i∈N yi units of flow enter
into the unique arc (r, j) of variable zij, (i, j) ∈ A ∪ Ar. Similarly, constraints (6) ensure
that one unit of flow equals the incoming total flow minus the outgoing total flow for
each active BS. Constraints (7) indicate that at most n units of flow should traverse the arc
(i, j) ∈ A ∪ Ar if and only if variable zij = 1, i.e., if the nodes i and j ∈ N are connected.
Next, constraints (8) ensure that either arc (i, j) or arc (j, i) is part of the output solution
of the input digraph. Constraints (9) and (10) are valid inequalities forcing the fact that
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variable fij cannot be positive if neither i nor j is an active BS. Finally, constraints (11) are
domain constraints for the decision variables.

Another equivalent flow-based formulation adapted from [2] can be written
as follows:

M2 : max
{x,y,s, f ,z,θ}

α ∑
j∈M

xj − (1 − α) ∑
(i,j)∈A

Dijzij


st : ∑

i∈N
Cijyi ≥ xj, ∀j ∈ M

∑
i∈N

si = 1 (12)

∑
j∈N

( f ji − fij) + yi = ∑
j∈N

θij, ∀i ∈ N (13)

θij ≤ yj, ∀i, j ∈ N (14)

θij ≤ si, ∀i, j ∈ N (15)

θij ≤ yj + si − 1, ∀i, j ∈ N (16)

fij ≤ nyi, ∀(i, j) ∈ A

fij ≤ nyj, ∀(i, j) ∈ A

fij ≤ nzij, ∀(i, j) ∈ A

zij + zji ≤ 1, ∀(i, j) ∈ A

x ∈ {0; 1}m, y ∈ {0; 1}n, s ∈ {0; 1}n,

z ∈ {0; 1}|A|, θ ∈ [0; 1]n
2
, f ∈ [0; ∞)|A| (17)

In model M2, the variable si for all i ∈ N is used to represent the source node from which
∑j∈N yj − 1 units of flow must traverse the network formed with the active BSs. Otherwise,
it equals zero. On the other hand, when si = 0, then the incoming minus outgoing
flow of node i ∈ N must be equal to −1. Note that this fact is simultaneously implied by
constraints (12) and (13). Constraints (14)–(16) are standard linearization constraints [17].
More precisely, the binary quadratic products θij = siyj, for all i, j ∈ N are linearized
with the constraints (14)–(16). Finally, the domain constraints of the decision variables
are referenced in (17). The remaining constraints are similar to the ones presented in
model M1.

A Miller–Tucker–Zemlin-based constrained formulation can also be written as follows [18]:

M3 : max
{x,y,u,z}

α ∑
j∈M

xj − (1 − α) ∑
(i,j)∈A

Dijzij


st : ∑

i∈N
Cijyi ≥ xj, ∀j ∈ M

∑
(i,j)∈A

zij = ∑
i∈N

yi − 1

ui ≤ ∑
j∈N

yj, ∀i ∈ N (18)

ui ≥ yi, ∀i ∈ N (19)

∑
i|(i,j)∈A

zij ≤ yj, ∀j ∈ N (20)

uj − ui − (n − 1)zij − (n − 3)zji ≥ 2 − n, ∀(i, j) ∈ A (21)

zij + zji ≤ yi, ∀(i, j) ∈ A (22)

zij + zji ≤ yj, ∀(i, j) ∈ A (23)

x ∈ {0; 1}m, y ∈ {0; 1}n, z ∈ {0; 1}|A| (24)
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where constraints (18)–(21), which are polynomials in number, avoid cycles in the output
solution of the problem. Note that, in particular, constraint (20) ensures that each node of
the backbone tree has at most one incoming arc. Next, constraints (22) and (23) are valid
inequalities forcing the fact that either arc (i, j) or (j, i) ∈ A is equal to one since the input
graph is a digraph. And for this purpose, both nodes i and j ∈ N must be active, which is
reflected by variables yi and yj, respectively.

The last formulation proposed has an exponential number of constraints in (25). More
precisely, for each subset S ⊆ N,a constraint is imposed that avoids forming a cycle with
the nodes belonging to S. The model reads

M4 : max
{x,y,z}

α ∑
j∈M

xj − (1 − α) ∑
(i,j)∈A

Dijzij


st : ∑

i∈N
Cijyi ≥ xj, ∀j ∈ M

∑
(i,j)∈A(S)

zij ≤ |S| − 1, ∀S ⊆ N (25)

zij + zji ≤ yi, ∀(i, j) ∈ A

zij + zji ≤ yj, ∀(i, j) ∈ A

∑
(i,j)∈A

zij = ∑
i∈N

yi − 1

∑
i|(i,j)∈A

zij ≤ yj, ∀j ∈ N

x ∈ {0; 1}m, y ∈ {0; 1}n, z ∈ {0; 1}|A| (26)

The rest of the constraints are the same as in the above models, thus not labeled. Finally,
the domain constraints of the decision variables are written in (26).

We mention that another relevant metric that could be considered as part of future
research in the proposed models is the interference between small cells, as pointed out
in [5]. It is also possible to consider maximizing the capacity and minimizing power
consumption, leading to harder nonconvex nonlinear formulations. Ultimately, note that
these metrics can be added as constraints in the optimization models as well.

4. Algorithmic Approaches

In this subsection, the two algorithms are presented and explained. One is exact and
consists of adding cycles iteratively to model M4 until no cycle is obtained in an incumbent
solution [19]. The second one is an approximate local search heuristic that is highly efficient
as it allows obtaining near-optimal solutions in very short CPU times. Finally, the reader is
referred to some relevant references involving the well-known exact methods of branch
and cut and Benders decomposition of the CPLEX solver [7].

4.1. Exact Algorithm for Solving Model M4

The iterative procedure to avoid having cycles in model M4 consists of ignoring,
at the beginning of the algorithm, the exponential number of constraints (25). In other
words, first, model M4 is solved without constraints (25). If an output solution containing
cycles is obtained, we find one of the cycles arbitrarily, as there can be many of them, and
re-optimize while adding the particular constraint avoiding that particular cycle. Then,
Algorithm 1 continues with that iterative process. Note that at a certain iteration one may
obtain a solution without cycles: that solution would be the optimal one. The procedure
is depicted in Algorithm 1. The method is simple and quite general. Note that any cycle,
if it exists, can be detected by a depth-first search procedure [20]. Also, note that the
number of constraints in (25) is at most O(2n). Consequently, Algorithm 1 converges to the
optimal solution of the problem in at most O(2n) outer iterations (see the proof of theorem 2
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in [19]). In step 0, Algorithm 1 initializes the iteration variable ν = 0 and it is assumed
that there is at least one cycle to enter the loop. Next, it initializes the set of constraints of
type (25) of M4. Note that initially this set is empty. Subsequently, in step 1, Algorithm 1
enters the while loop that is broken only if there are no further cycles in the incumbent
solution. The inner loop is self-explained, and in particular the method SearchCycle()
allows for finding a cycle using the depth-first search algorithm [20].

Algorithm 1: Exact iterative algorithm for solving M4.
Data: A problem instance of M4
Result: An optimal solution (x∗, y∗, z∗) for M4 with objective function value f ∗

Step 0: Set ν = 0 and Cycles = 1;
Let C represent the set of cycle elimination constraints in (25) of M4; C = ∅;
Step 1: while (Number of cycles is positive) do

Let M4ν be the problem obtained from M4 by removing the constraints (25) at
iteration ν. Solve model M4ν using all cycle elimination constraints in C and
let (xν, yν, zν) be the optimal solution of value f ν obtained at iteration ν;
C = C ∪ SearchCycle(yν, zν);
Add the corresponding constraints to avoid the accumulated cycles in C;
Number of current cycles = card(C);
Set ν = ν + 1;

f ∗ = f ν;
return (x∗, y∗, z∗, f ∗);

4.2. Approximate-Based Local Search Heuristic

Now, the approximate-based local search heuristic, Algorithm 2, is presented and
explained. This algorithm allows for obtaining near-optimal solutions in a short CPU
time for the optimization problem. The algorithm receives an instance of the problem and
returns a near-optimal solution. In particular, in step 0, Algorithm 2 initializes the set M,
finds the optimal spanning tree T of G, and computes its objective function value. In the
beginning, it performs this using all nodes of the backbone. Then, it counts the number of
covered users. The latter is achieved by using matrix C = C(i, j) for all i ∈ N and for all
j ∈ M. Subsequently, it calculates the cardinality of the remaining users, i.e., the number of
users who are not covered by T. This allows for computing the objective function value
and saving it as the best found so far. Finally, the best current solution found is saved.
Next, in step 1 it enters into a while loop which is run for a maximum predefined number
of iterations MaxIter. The process is repeated and inside the loop consists of initializing
the set of users M while including all users. Next, it randomly partitions the set of users
into two subsets U1 and U2, where M = U1 ∪ U2. Next, the algorithm increments by one
unit the number of iterations Iter. Then, it performs the following three times. It randomly
generates a number v ∈ (0; 1) and asks if v <= 0.5 and U1 is not empty. If this is the case,
it randomly chooses a user from U1, removes it from U1, and adds it to U2. On the other
hand, if v > 0.5 and U2 is not empty, it randomly picks a user from U2, removes it from U2,
and adds it to U1. Subsequently, it performs several tasks only if U1 is not empty. More
precisely, first, it constructs a sub-graph Gs(U1, E(U1)) of G, where the set E(U1) represents
all incident edges to the nodes of U1. Then, it asks if the sub-graph Gs is connected. If this
is the case, it finds the optimal spanning tree Ts of Gs and computes its objective function
value. Next, it counts the set of covered users. The latter is performed for each n ∈ Ts and
j ∈ M using matrix C = C(n, j). Subsequently, it computes the cardinality of the remaining
users in M and calculates the objective function value according to the new backbone tree
Ts. If the new solution obtained with Ts is better than the best found so far, then it is saved
as the best incumbent solution obtained. Finally, when the process ends, the algorithm
returns the best solution found.
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Algorithm 2: Approximate-based local search heuristic for solving the optimiza-
tion problem.

Data: A problem instance of the optimization problem.
Result: A near-optimal solution for the problem.
Step 0;
M = {1, . . . , m};
Find the optimal spanning tree T of G and compute its objective function value;
foreach (n ∈ T) do

foreach (j ∈ M) do
if (C(n, j) = 1) then

Remove user j from set M because it is covered;

Compute the cardinality of the remaining users in M;
Compute the objective function value and save it as the best value found so far;
Save the incumbent solution;
Step 1;
while (Iter <= MaxIter) do

M = {1, . . . , m};
Partition the set of users into subsets U1 and U2 randomly where M = U1 ∪U2;
Iter=Iter+1;
foreach (i ∈ [1, 2, 3]) do

Generate a random number v ∈ (0; 1);
if (v <= 0.5 and U1 is not empty) then

Pick randomly a user from U1, remove it from U1 and add it to U2;

if (v > 0.5 and U2 is not empty) then
Pick randomly a user from U2, remove it from U2 and add it to U1;

if (U1 is not empty) then
Construct a sub-graph Gs(U1, E(U1)) of G;
if (Gs is connected) then

Find the optimal spanning tree Ts of Gs and compute its objective
function value;

foreach (n ∈ Ts) do
foreach (j ∈ M) do

if (C(n, j) = 1) then
Remove user j from set M because it is covered;

Compute the cardinality of the remaining users in M;
Compute the objective function value accordingly and save it as a new
objective function value;

if (The new solution is better than the best found so far) then
Replace the new one as best found so far;
Save the incumbent solution;

return Best solution obtained;

5. Results and Discussion

In this section, substantial numerical experiments are conducted to compare the
performances of the proposed models M1, M2, M3, M4, and the proposed algorithms.
To this end, a Python code is implemented using the CPLEX solver [7]. In particular,
the models M1, M2, and M3 are solved with both the branch and cut and the Benders
decomposition options of the solver. Note that model M4 has no continuous variables
and, consequently, Benders approach cannot be applied [8]. In particular, for solving the
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models M1, M2, and M3, the CPLEX solver is used with default options. The maximum
CPU time is limited to at most one hour. Consequently, if a particular reported objective
value is obtained in 3600 s or more, it means that the solver is reporting the best solution
obtained in one hour. Otherwise, it corresponds to an optimal solution to the problem.
Note that the optimization problems of this type are NP-hard due to their discrete na-
ture. Thus, both algorithms used by the CPLEX solver have exponential complexity [7].
The numerical experiments were performed on an Intel(R) 64-bit core (TM) i5-8400 CPU
2.81 GHz with 16 G of RAM under Windows 10. Randomly sparse and complete input
graphs were generated. In the latter, it was assumed that all active BSs can be connected
using cables, for instance. Whilst for the sparse graphs it was assumed that the radial
transmission range between BSs was 300 ms. The dimensions of the graphs in terms of the
number of nodes and the number of users were N = {40; 60; 100} and M = {250; 500; 1000},
respectively. Finally, it was assumed that each user could connect to an active BS if and
only if the user was located inside a radial transmission range of at most 200 ms. Each
of the coordinates for the nodes and users was generated within a square area of 1 km2

according to a uniform distribution function. Thus, each entry of the input distance matrix
D was computed using these coordinates.

In Tables 1 and 2, numerical results are reported for the models M1 and M2, respec-
tively. In particular, Table 1 reports numerical results for the sparse graphs. Whereas Table 2
reports numerical results for the complete ones. In both tables, the legends are the same. In
columns 1 and 2, the instance number and the density of the graph are presented. The latter
is computed by dividing the number of edges by the total number of edges of a complete
graph having the same number of nodes. Column 3 reports the weighing parameter α.
Next, columns 4–6 and 7–9 report the best objective value obtained, the number of branch
and bound nodes, and the CPU time in seconds for model M1 when solved with the branch
and cut and Benders algorithms, respectively. Similarly, columns 10–12 and 13–15 report
the same information for M2.

Table 1. Numerical results obtained with M1 and M2 for sparse connected graphs.

# Density α
M1 (B&C) M1 (Benders) M2 (B&C) M2 (Benders)

Best B&Bn CPU (s) Best B&Bn CPU (s) Best B&Bn CPU (s) Best B&Bn CPU (s)

Using n = 40, m = 250, a radius of 200 m for users, and a radius of 300 m for BSs

1
23.58

0.25 59.45 58,843 95.37 59.45 155,657 50.14 59.45 919,353 3600.09 59.45 72,499 32.81
2 0.5 121.96 36,497 63.01 121.96 80,225 23.32 121.96 623,892 3600.07 121.96 85,507 22.06
3 0.75 184.48 15,516 22.13 184.48 7384 3.25 184.48 633,256 3600.23 184.48 123,394 104.57
4 1 247.0 0 0.12 247.0 960 0.37 247.0 0 0.34 247.0 0 0.26

Using n = 40, m = 500, a radius of 200 m for users, and a radius of 300 m for BSs

5
20.12

0.25 121.64 27,375 35.82 121.64 150,203 79.89 121.64 1,103,803 3600.06 121.64 66,042 31.03
6 0.5 246.43 7815 12.07 246.43 16,256 7.56 246.43 909,962 3600.07 246.43 136,101 78.51
7 0.75 371.21 3165 4.18 371.21 13,676 7.18 371.21 1,290,487 3600.06 371.21 15,607 12.1
8 1 496.0 0 0.09 496.0 1083 0.46 496.0 0 1.25 496.0 0 0.32

Using n = 60, m = 250, a radius of 200 m for users, and a radius of 300 m for BSs

9
21.41

0.25 59.63 256,195 3600.06 59.47 374,124 3602.37 59.56 97,953 3600.2 59.52 452,293 3601.43
10 0.5 122.42 113,347 3600.07 122.37 439,433 3600.92 122.39 44,628 3601.76 121.93 113,698 3604.0
11 0.75 185.21 228,717 3600.42 185.14 197,159 3600.54 185.17 38,209 3606.07 185.01 88,191 3601.43
12 1 248.0 0 3.1 248.0 3292 78.78 248.0 0 1.71 248.0 0 1.71

Using n = 60, m = 500, a radius of 200 m for users, and a radius of 300 m for BSs

13
21.58

0.25 116.32 345,380 3600.04 116.27 374,371 3600.11 116.32 75,110 3604.03 115.81 173,944 3628.18
14 0.5 235.55 196,124 3600.21 235.56 869,084 3602.04 235.55 46,342 3609.23 235.5 111,989 3604.75
15 0.75 354.77 496,438 3600.43 354.77 545,824 3604.79 354.76 50,419 3602.45 354.06 19,110 3601.76
16 1 474.0 0 4.29 474.0 2547 55.48 474.0 0 1.43 474.0 0 1.78
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Table 2. Numerical results obtained with M1 and M2 for complete connected graphs.

# Density α
M1 (B&C) M1 (Benders) M2 (B&C) M2 (Benders)

Best B&Bn CPU (s) Best B&Bn CPU (s) Best B&Bn CPU (s) Best B&Bn CPU (s)

Using n = 40, m = 250, and a radius of 200 m for users

1
100

0.25 59.5 15,162 80.75 59.5 37,828 22.11 59.5 200,778 3606.42 59.5 100,908 684.62
2 0.5 122.0 12,088 82.32 122.0 21,707 14.67 121.98 178,175 3600.64 122.0 251,362 2044.93
3 0.75 184.5 23,701 142.43 184.5 7472 12.25 184.5 330,250 3600.21 184.5 25,619 53.4
4 1 247.0 0 0.32 247.0 0 0.07 247.0 0 0.23 247.0 0 0.31

Using n = 40, m = 500, and a radius of 200 m for users

5
100

0.25 121.06 18,239 79.29 121.06 3025 4.53 121.06 232,444 3603.07 121.06 103,016 1118.95
6 0.5 245.37 4504 33.35 245.37 3070 2.93 245.37 244,223 3600.89 245.37 45,515 432.28
7 0.75 369.68 8508 29.0 369.67 1117 2.14 369.68 494,094 3603.0 369.68 6468 93.06
8 1 494.0 0 0.21 494.0 0 0.07 494.0 0 2.71 494.0 0 0.35

Using n = 60, m = 250, and a radius of 200 m for users

9
100

0.25 59.63 73,332 3600.07 59.21 642,611 3600.1 59.54 49,067 3609.0 57.57 3288 3601.4
10 0.5 122.4 108,214 3600.15 121.76 1,061,065 3601.32 122.29 13,440 3602.01 120.31 2444 3601.96
11 0.75 185.2 97,016 3603.7 185.03 209,460 3600.76 185.18 14,894 3604.04 184.53 1413 3603.48
12 1 248.0 0 4.59 248.0 0 0.28 248.0 0 1.03 248.0 0 1.23

Using n = 60, m = 500, and a radius of 200 m for users

13
100

0.25 116.32 85,382 3601.98 116.25 338,278 3600.78 116.33 18,521 3602.01 0.0 0 3600.4
14 0.5 235.55 60,537 3600.95 235.53 469,564 3601.87 235.52 23,259 3608.82 0.0 0 3600.17
15 0.75 354.77 75,385 3601.1 354.77 348,252 3602.75 354.77 74,468 3609.1 0.0 0 3600.48
16 1 474.0 0 8.53 474.0 0 2.7 474.0 0 7.7 474.0 0 1.2

In Table 1, from the sparse graph results, it is mainly observed that, in general, M1
outperforms M2. First, one can note that the best solutions obtained with M1 are the
optimal ones for all the instances when using n = 40 nodes, either using B&C or Benders
algorithms. On the other hand, it is observed that M2 does not optimally solve the instances
with the B&C algorithm. However, it can solve all the instances optimally using Benders
algorithm. These observations can be confirmed by looking at the columns of the CPU
times and the number of branching nodes. Subsequently, one can see that none of the
graphs composed of n = 60 nodes can be solved optimally in one hour of CPU time. The
latter shows that the graph instances become significantly harder to solve when n grows.
Finally, it is observed that for the value of α = 1, the problem is solved easily with any
of the models and methods. In particular, for the complete graph instances reported in
Table 2, it is possible to observe similar trends. More precisely, one can see that M1 can solve
all the instances optimally for n = 40 with both methods. It is also observed that none of the
instances can be solved optimally in one hour of CPU time for n = 60 nodes. Furthermore,
it is observed that M2 obtains the optimal solutions for all the instances for n = 40 with
Benders approach. The latter cannot be achieved with the pure B&C method. Lastly, it
is seen that all the graph instances are solved optimally and very rapidly for the value of
α = 1, which is the optimization problem without taking into account the connectivity cost
of the backbone. Ultimately, from both Tables 1 and 2, one can observe that the increase
in users, going from 500 to 1000, does not have a significant impact on the performance
when solving the problem. In Tables 3 and 4, numerical results are reported for models M3
and M4. In particular, Tables 3 and 4 report numerical results for the sparse and complete
graphs, respectively. In both tables, the legends are the same. More precisely, in columns
1–3, the instance number, the density of the graph, and the value of the parameter α are
presented. Next, columns 4–6 and 7–9 report the best objective function value obtained,
the number of branch and bound nodes, and the CPU time in seconds for model M3 when
using the B&C and Benders algorithmic approaches, respectively. Finally, columns 10–13
report the best objective function value obtained with Algorithm 1, the CPU time in seconds
required to obtain that solution, the number of iterations of Algorithm 1, and the gap which
is obtained by subtracting the best objective value obtained with M4 with the best objective
value obtained with the remaining models and dividing this quotient by the latter value.
The gap is finally multiplied by 100 to present percentages. Note that the objective values
obtained with models M1, M2, and M3 are lower bounds as they are feasible or in the best
case optimal solutions, while the values obtained with M4 are in the best case the optimal
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solutions or upper bounds since they are solved iteratively without including all sub-tour
elimination constraints within each iteration of Algorithm 1.

Table 3. Numerical results obtained with M3 and M4 for sparse connected graphs.

# Density α
M3 (B&C) M3 (Benders) M4

Best B&Bn CPU (s) Best B&Bn CPU (s) Best CPU (s) Iter. Gap

Using n = 40, m = 250, a radius of 200 m for users, and a radius of 300 m for BSs

1
23.58

0.25 59.45 7,053,083 3601.21 59.45 4,436,010 3607.17 59.5 3622.52 312 0.09
2 0.5 121.96 3,277,430 3600.54 121.96 3,876,720 3600.32 122.0 3609.39 354 0.03
3 0.75 184.48 2,246,298 3600.43 184.48 2,568,663 3600.39 184.49 3604.51 456 0.0
4 1 247.0 12 2.0 247.0 22 2.06 247.0 0.65 32 0.0

Using n = 40, m = 500, a radius of 200 m for users, and a radius of 300 m for BSs

5
20.12

0.25 121.64 2,310,219 3600.7 121.63 5,923,055 3601.34 121.77 3688.81 249 0.1
6 0.5 246.43 5,124,841 3601.42 246.42 4,388,909 3602.64 246.5 3675.53 283 0.02
7 0.75 371.21 3,810,306 3600.42 371.2 3,881,511 3600.46 371.24 3656.92 376 0.0
8 1 496.0 0 1.89 496.0 168 4.4 496.0 0.51 21 0.0

Using n = 60, m = 250, a radius of 200 m for users, and a radius of 300 m for BSs

9
21.41

0.25 59.61 2,739,800 3679.92 59.5 1,469,457 3647.25 59.96 3740.32 73 5.92
10 0.5 122.41 1,374,975 3621.26 122.33 2,021,288 3608.48 122.64 3712.91 76 0.18
11 0.75 185.2 2,851,145 3702.12 185.18 1,550,639 3669.54 185.32 3654.23 75 0.06
12 1 248.0 0 8.56 248.0 157 7.76 248.0 1.28 32 0.0

Using n = 60, m = 500, a radius of 200 m for users, and a radius of 300 m for BSs

13
21.58

0.25 116.34 2,518,469 3681.64 116.28 6,596,125 3605.45 116.62 3669.2 102 0.24
14 0.5 235.55 3,802,330 3607.9 235.52 3,095,730 3614.51 235.74 3763.58 107 0.08
15 0.75 354.77 3,260,836 3604.92 354.74 4,077,034 3601.5 354.87 3627.48 129 0.02
16 1 474.0 0 1.21 474.0 153 2.76 474.0 0.37 5 0.0

Table 4. Numerical results obtained with M3 and M4 for complete graphs.

# Density α
M3 (B&C) M3 (Benders) M4

Best B&Bn CPU (s) Best B&Bn CPU (s) Best CPU (s) Iter. Gap

Using n = 40, m = 250, and a radius of 200 m for users

1
100

0.25 59.5 3,387,873 2498.84 59.5 6,118,703 3600.17 59.51 3632.32 254 0.02
2 0.5 122.0 1,913,208 3600.31 122.0 3,007,131 3600.39 122.0 3620.28 270 0.0
3 0.75 184.5 1,681,066 3600.42 184.49 2,235,475 3600.54 184.5 3281.32 320 0.0
4 1 247.0 0 1.4 247.0 0 0.32 247.0 0.2 2 0.0

Using n = 40, m = 500, and a radius of 200 m for users

5
100

0.25 121.05 4,596,583 3601.4 121.05 3,106,327 3603.67 121.18 3625.98 225 0.1
6 0.5 245.37 1,743,075 3600.42 245.36 1,871,585 3600.56 245.44 3618.88 259 0.03
7 0.75 369.68 1,013,676 3600.56 369.68 4,572,259 3604.63 369.7 3616.54 374 0.0
8 1 494.0 0 0.5 494.0 0 0.17 494.0 0.39 2 0.0

Using n = 60, m = 250, and a radius of 200 m for users

9
100

0.25 59.61 567,316 3602.4 59.59 506,317 3601.01 59.97 3621.19 56 0.61
10 0.5 122.42 308,986 3600.93 122.36 544,433 3605.35 122.64 3646.03 58 0.18
11 0.75 185.2 151,127 3601.96 185.17 269,632 3602.04 185.32 3610.28 69 0.06
12 1 248.0 0 0.4 248.0 0 0.21 248.0 0.85 2 0.0

Using n = 60, m = 500, and a radius of 200 m for users

13
100

0.25 116.33 463,961 3605.71 116.25 329,260 3602.73 116.63 3661.73 90 0.26
14 0.5 235.55 183,034 3601.18 235.52 531,116 3603.63 235.75 3627.84 93 0.08
15 0.75 354.77 134,854 3601.84 354.73 275,613 3602.2 354.87 3620.45 114 0.02
16 1 474.0 0 0.6 474.0 0 0.28 474.0 0.5 2 0.0

From Table 3, for the sparse graphs, one can see that M3 cannot solve any of the
instances with a certificate of optimality with any of the algorithms since the CPU time
values are larger than one hour. Again, the exception occurs for the graphs using α = 1,
which are easily solved with any of the methods. For M4, it is not possible to ensure that
the objective values correspond to the optimal solutions because they are not obtained in
less than one hour. However, in the case of model M4, recall that the objective values are
upper bounds. Consequently, one can ensure that the graph instances having zero gaps
report the optimal solutions. This is because these upper bounds are equal to the lower
bounds obtained with one or more of the remaining models. This also ensures that the
lower bounds obtained with the other models correspond to optimal solutions. For the
complete graph instances in Table 4, one observes similar trends. One can see that only one
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graph instance is solved optimally in less than one hour. However, it is again mentioned
that for model M4 the graph instances having zero gaps report the optimal solutions. The
argument is the same as for the sparse graphs presented in Table 3, i.e., the upper bounds
are equal to the lower bounds.

To conclude, from the numerical results presented in Tables 1–4 one can mainly observe
that model M1 has a slightly better performance than the rest of the models when using the
pure B&C approach of the CPLEX solver, at least for the reported instances.

To give more insights concerning the behavior of model M1, in Figures 3 and 4
the impact of varying parameter α ∈ [0; 1] for a sparse and a complete input graph,
respectively, is plotted. For both figures, the number of covered users and active BSs is
plotted while also varying the transmission radius between BSs and users from 200 ms to
300 ms. Each instance is composed of n = 40 BSs and m = 300 users. We mention that each
point in these curves corresponds to an optimal solution to the problem.

From Figures 3 and 4, one can see that the higher the transmission radius between BSs
and users is, the higher the number of covered users. Additionally, the lower the number
of BSs required to connect the backbone network. In particular, in Figure 4, the number of
active BSs is less than in Figure 3 since the backbone is fully connected. Finally, it is observed
that the objective values increase with parameter α. In Tables 5 and 6, the numerical results
obtained with Algorithm 2 for the sparse and complete graph instances, respectively,
solved in the previous tables are reported. In particular, in Tables 5 and 6, the same column
information is reported. More precisely, in columns 1–3, the instance number, the density
of the graph, and the value of parameter α are reported. Next, in columns 4–10, the best
objective value obtained in the previous tables, the best objective found with Algorithm 1,
the CPU time in seconds required by the algorithm, its number of iterations, the number
of attended or covered users in the network instance, and the number of BSs required to
connect the backbone in the output solution of the problem are reported. Finally, the gaps
in percentage that we compute by

[
the value of column 4-the value of column 5

the value of column 4

]
∗ 100

are reported. From these tables, one can observe that the solutions obtained by the proposed
local search heuristic are near-optimal, with a worst gap obtained of 0.88% in the case
of the sparse graphs and a worst gap of 3.03% for the complete graphs. It is further
noted that the worst CPU time is lower than one minute for all the tested instances.
One can also see that the larger the value of parameter α, the larger the number of BSs
required to construct the backbone. Finally, it is observed that most of the users are
covered for all tested instances. To further investigate the behavior of Algorithm 2, in
Tables 7 and 8 numerical results obtained with M1 versus Algorithm 2 for a large sparse
connected and a fully connected graph instance, respectively, are compared. In these
tables, the legend is the same. In columns 1–3, the instance number, the density of the
graph, and the value of the parameter α are reported. Next, in columns 4–6, the best
objective function value of model M1, the number of branch and bound nodes, and its
CPU time in seconds are presented. Subsequently, the best objective value obtained with
Algorithm 2, its CPU time in seconds, the number of iterations of the algorithm, the number
of covered users, the number of active BSs, and the gaps in percentage that we compute by[

the value of column 4-the value of column 7
the value of column 4

]
∗ 100 are shown. From Tables 7 and 8, it is

observed that M1 requires more than one hour to obtain the optimal solution except for
the instances using α = 1. In this case, the problem becomes much more simple to solve
optimally. Next, one can observe that the Algorithm 2 has an even better performance with
a worst gap percentage of 0.21%. Finally, one can also see that most of the users are covered
without using a large number of active BSs forming the backbone.
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Figure 3. Impact of varying parameter α ∈ [0; 1] for a sparse input graph with transmission radius
between BSs of 300 m, and transmission radii between BSs and users of 200 m and 300 m. The
instance is composed of n = 40 BSs and 300 users.
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Figure 4. Impact of varying parameter α ∈ [0; 1] for a complete input graph using transmission radii
between BSs and users of 200 m and 300 m. The instance is composed of n = 40 BSs and 300 users.
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Table 5. Numerical results obtained with Algorithm 2 for sparse connected graphs.

# Density α
Algorithm 2

Best Best Alg. CPU (s) Alg. # Iter. # of Users # of BSs Gap (%)

Using n = 40, m = 250, a radius of 200 m for users, and a radius of 300 m for BSs

1

23.58

0.25 59.45 59.19 3.89 3258 247 23 0.42
2 0.5 121.96 121.79 4.03 3494 247 24 0.13
3 0.75 184.48 184.37 8.55 7059 247 24 0.05
4 1 247.0 246.0 8.29 2700 246 39 0.4

Using n = 40, m = 500, a radius of 200 m for users, and a radius of 300 m for BSs

5

20.12

0.25 121.64 120.56 8.54 5271 493 28 0.88
6 0.5 246.43 245.24 12.13 7172 494 29 0.47
7 0.75 371.21 368.89 16.09 11,781 493 27 0.62
8 1 496.0 492.0 9.35 2672 492 40 0.8

Using n = 60, m = 250, a radius of 200 m for users, and a radius of 300 m for BSs

9

21.41

0.25 59.63 59.38 5.51 5411 248 24 0.4
10 0.5 122.42 122.21 8.21 6970 248 26 0.16
11 0.75 185.21 185.13 10.26 8294 248 24 0.04
12 1 248.0 248.0 15.32 2501 248 60 0.0

Using n = 60, m = 500, a radius of 200 m for users, and a radius of 300 m for BSs

13

21.58

0.25 116.32 115.91 25.16 12,553 473 24 0.35
14 0.5 235.55 235.44 23.24 11,981 474 24 0.04
15 0.75 354.77 353.22 20.04 7988 472 23 0.43
16 1 474.0 471.0 18.57 2519 471 58 0.63

Table 6. Numerical results obtained with Algorithm 2 for complete graphs.

# Density α
Algorithm 2

Best Best Alg. CPU (s) Alg. # Iter. # of Users # of BSs Gap (%)

Using n = 40, m = 250, and a radius of 200 m for users

1

100

0.25 59.5 59.2 27.05 10,151 247 24 0.49
2 0.5 122.0 121.79 23.73 8555 247 26 0.16
3 0.75 184.5 183.64 20.24 7353 246 26 0.46
4 1 247.0 246.0 19.89 4246 246 37 0.4

Using n = 40, m = 500, and a radius of 200 m for users

5

100

0.25 121.06 118.22 26.24 6389 484 28 2.33
6 0.5 245.37 241.15 53.37 12,623 486 28 1.71
7 0.75 369.68 363.59 41.86 9742 486 27 1.64
8 1 494.0 479.0 31.12 5317 479 39 3.03

Using n = 60, m = 250, and a radius of 200 m for users

9

100

0.25 59.63 59.34 19.64 6439 248 26 0.48
10 0.5 122.4 122.22 22.21 8635 248 25 0.14
11 0.75 185.2 185.09 14.28 4935 248 26 0.05
12 1 248.0 248.0 26.08 2501 248 60 0.0

Using n = 60, m = 500, and a radius of 200 m for users

13

100

0.25 116.32 115.92 32.09 8958 473 25 0.34
14 0.5 235.55 234.92 22.89 5601 473 27 0.26
15 0.75 354.77 353.99 36.44 9848 473 25 0.21
16 1 474.0 471.0 32.09 2692 471 60 0.63
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Table 7. Numerical results obtained with M1 vs. Algorithm 2 for a large sparse connected graph instance.

# Density α
M1 Algorithm 2

Best B&Bn CPU (s) Best Alg. CPU (s) Alg. # Iter. # of Users # of BSs Gap (%)

Using n = 100, m = 1000, a radius of 200 ms between users and BSs, and a radius of 300 ms between BSs

1

22.82

0.25 247.62 133,580 3603.95 247.12 65.84 11,070 1000 37 0.19
2 0.5 498.45 140,350 3603.35 498.09 55.57 9978 1000 36 0.07
3 0.75 749.2 129,126 3600.81 749.03 38.1 7327 1000 38 0.02
4 1 1000.0 0 1.28 999.0 48.47 2504 999 97 0.1

Table 8. Numerical results obtained with M1 vs. Algorithm 2 for a complete graph instance.

# Den. α
M1 Algorithm 2

Best B&Bn CPU (s) Best Alg. CPU (s) Alg. # Iter. # of Users # of BSs Gap (%)

Using n = 100, m = 1000, a radius of 200 ms between users and BSs, and a radius of 300 ms between BSs

1

100

0.25 247.58 13,697 3600.23 247.05 52.84 6338 1000 36 0.21
2 0.5 498.38 8297 3600.26 498.15 77.99 10,610 1000 32 0.04
3 0.75 749.21 9792 3600.18 749.06 92.74 11,863 1000 35 0.01
4 1 1000.0 0 3.82 999.0 81.89 2507 999 97 0.1

To provide further insights concerning the behavior of Algorithm 2, in Figures 5 and 6
feasible solutions in terms of objective values for a sparsely and fully connected input
network obtained with M1 while varying α in the interval [0.25;0.9] are presented. In both
figures, each network is composed of n = 100 nodes for the backbone and m = 500 users.
In particular, in Figure 5 a radial transmission distance of 300 ms for the BSs is used
and 200 ms for the distances between BSs and users. In Figure 6, the distances between
BSs and users are set to 200 ms as well. Finally, we mention that both figures report
objective values and velocities obtained with M1 and Algorithm 2 when finding feasible
solutions. The numerical results obtained in Figures 5 and 6 show that CPLEX finds very
poor solutions at the beginning. More precisely, CPLEX takes at least 10 s to reach good
quality solutions, whereas Algorithm 2 can find very good objective values in fractions of a
second. After this time, it is observed that CPLEX and Algorithm 2 are both competitive
in the sense that they reach similar solutions. Another observation is that one can ensure
that the objective values are near-optimal ones. This can be ensured because the Mipgaps
obtained with CPLEX are lower than 1% [7]. Finally, it is observed that varying the
parameter α does not seem to have a significant effect on the performance of either M1 or the
Algorithm 2. However, note that the higher the value of the parameter α, the larger the
number of users that can be covered.
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Figure 5. Feasible solutions obtained with M1 and Algorithm 2 for a sparse connected input network
while varying α in the interval [0.25; 0.9].
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Figure 6. Feasible solutions obtained with M1 and Algorithm 2 for a fully connected input network
while varying α in the interval [0.25; 0.9].

6. Conclusions

This article considers the problem of how to connect nodes in a network while covering
as many users as possible at a minimum connectivity cost simultaneously for 5G networks.
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It is well known that 5G technology is fast, but it is a bit tricky because it does not cover long
distances well when using millimeter-wave technology. Consequently, we proposed new
mathematical formulations to solve this problem from a management point of view. These
models help us decide which nodes in the network should be connected to cover most of
the users. Our models are solved with the branch and cut and Benders decomposition
algorithms of the CPLEX solver to find the optimal solutions. We also proposed an exact
iterative approach to solve the exponential model and proposed an approximation meta-
heuristic algorithm to find good solutions faster. In our tests, we found that solving the
problem perfectly is hard. We could only do it for cases with up to 40 nodes and 500 users.
One of our models worked better in terms of time. On the other hand, our meta-heuristic
showed that we could obtain tight solutions with less effort for both small and large graph
instances using symmetric radial transmission distances. Finally, we mention that since
our proposed exponential model is solved iteratively with our exact approach, we could
obtain tight upper bounds. On the other hand, since the rest of the models obtain in the
best case the optimal or feasible lower bounds, we provided a tight interval while ensuring
that the optimal solutions lie inside that interval. Ultimately, since there are no models
proposed in the literature covering both aspects at the same time, there are no benchmark
instances to compare with yet in the literature. Thus, we believe that these models will
enrich the literature to develop further modeling aspects of the problem and will allow for
benchmark comparisons.

In future research, new avenues to be considered for the network planning problem
are suggested as follows. First, we mention that the proposed models can include nonlinear
formulas such as capacity and interference which can potentially lead to more difficult
formulations to deal with. Furthermore, if the arising nonlinearities are nonconvex, there
would be no certification of optimality. Thus, this constitutes a challenging task to perform
in future research. Finally, another research direction is to consider exploring urban areas,
even though this would require realistic data from particular cities while also consider-
ing non-line-of-sight aspects when using symmetric and asymmetric radial transmission
distance costs as well as new mathematical models and algorithms to solve this relevant
network planning problem from a management point of view.
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