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Abstract: This paper explores the use of superluminal ionization fronts to accelerate and amplify
electromagnetic radiation. These fronts are defined as optical boundaries between two regions of a
gas, the neutral region and the plasma region, characterized by two different values of the refractive
index. For that reason, the front velocity is not necessarily related to the motion of material particles,
such as neutral atoms, ions and electrons, which can stay at rest. The fronts can therefore become
superluminal without violating causality. In recent years, different experimental configurations, such
as the flying focus, showed that it is possible to create superluminal fronts in the laboratory. These
fronts can easily be described theoretically in a special reference frame, called the time frame, which is
used here. In this frame, superluminal fronts reduce to time refraction, a process that is symmetrical
to the well-known optical refraction. It is shown that propagation through such fronts can lead to
considerable frequency shifts and energy amplification of probe laser beams. This could eventually
be used to develop new sources of tunable radiation.
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1. Introduction

The interaction of light with ionization fronts is an old theoretical problem in plasma
physics [1,2] and led to the foundations of the concept of photon acceleration [3–5]. This
concept is intimately related to the effect of self-phase modulation that is studied in non-
linear optical media [6], as shown in [7]. One of the most spectacular manifestations of
self-phase modulation is the supercontinuum laser source (see [8]). Another extension
of the problem of propagation in ionization fronts is associated with the possible use of
superluminal fronts. This leads to the exploration of interesting space–time symmetries, as
discussed here.

The theory of superluminal fronts was first considered in terms of geometric optics,
showing that very large values of frequency shifts could be attained [9]. It should be noticed
that the velocity of an ionization front is not directly associated with any material motion
because it is defined as an optical boundary between two regions of a gas, the neutral
region and the ionized gas region, with two different refractive indices. As such, it can in
principle be achieved with particles at rest (neutral atoms, electrons and ions) in the same
way as a front fire can move in a forest with the trees staying at rest.

In the past, several experiments explored the use of relativistic ionization fronts
moving with velocities close to, but lower than, the speed of light c [10–13]. Until re-
cently, there was no clear indication that superluminal fronts, moving with velocities
above c, could be generated experimentally. However, in recent years, the practical imple-
mentation of superluminal boundaries became possible due to the proposed schemes of
flying focus [14–17] (see also [18]). They are mainly based on chromatic optics, but achro-
matic schemes can also in principle be conceived [19,20]. We could therefore use the flying
focus, or some other equivalent concept, to propose a new type of radiation experiments
based on superluminal fronts. It is the purpose of the present work to describe the basic
radiation processes induced by such fronts and show the underlying symmetry-breaking
processes that can take place in space and time boundaries.
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The content of this paper is the following. In Section 2, superluminal fronts are
described in the laboratory frame S and in the time frame S′. It is shown that this new
frame S′ moves with respect to the laboratory frame with a subluminal velocity V < c
and can therefore be characterized by a proper Lorentz transformation. The interest of
this new frame is that the superluminal front is reduced to a purely temporal process, to
which the model of time refraction can be directly applied [21,22]. Two front shapes are
defined, a simple front with a constant electron density and a modulated front with electron
density oscillations. Simple fronts can easily be created by short laser pulses because the
recombination times are much longer than the ionization times, and the electron density
stays nearly constant behind the pulse front [12]. The case of a modulated front is more
speculative, although some recent simulations show that laser wakefields sometimes seem
to behave as superluminal density waves, similar to the model examined here [23]. But
this is only valid under quite special conditions, and the use of this approach to create
superluminal density oscillations is questionable.

In Section 3, a simple front shape is considered, and the frequency shifts of a probe
laser beam interacting with the front are derived. It is shown that they strongly depend
on the direction of propagation of the probe beam with respect to the ionization front. In
Section 4, the field transformation formulas are used to derive expressions for the reflection
and transmission coefficients in both reference frames. They can be seen as temporal
Fresnel’s formulas. In Section 5, we consider the case of a modulated front and show
that resonant scattering conditions characterized by a temporal Bragg formula can also be
defined. If possible, the use of such modulated fronts with oscillating density perturbations
behind the front could lead to the formation of a time crystal. Finally, in Section 6, we state
some conclusions.

The present work is valid in the frame of classical radiation theory, but the quantum
optical description could equally be possible [24–26]. We adapt our previous results of
time refraction to the case of a time frame. Notice that time refraction is a general process,
symmetric to the well-know optical refraction, that exists in the classical as well as in the
quantum regime. Time refraction was recently extended to the case of a Dirac field [27,28],
where photons are replaced by electron–positron pairs.

2. Time Frame

Let us consider the plasma-density perturbations associated with an ionization front,
moving with superluminal velocity u > c, along some arbitrary x-direction. We first
describe the front in the laboratory frame S and then introduce the time frame S′, where
the front will appear as a purely temporal process, enabling a simpler discussion of the
wave propagation through the front.

The front can be generically described by the electron plasma frequency profile,
ωp(r, t). We use the square of this frequency because it is proportional to the electron
plasma density and it is a relativistic invariant. In the lab frame, a front moving with
velocity u along a given x-axis can be described by the following expression:

ω2
p(x, t) = ω2

p0[1 + ϵg(x, t)] f (x, t) , (1)

where f (x, t) describes the shape of the front itself as it is created by a laser pulse that moves
through the medium and g(x, t) describes the eventual density structure with amplitude ϵ
left behind the front. This structure can be a plasma-density oscillation moving with the
front, as considered later. But, for the moment, we consider a flat front with no structure
and assume the amplitude ϵ = 0. For simplicity, we also ignore the transverse dimension,
r⊥, which can easily be included if necessary. In our description, it is appropriate to use

f (x, t) =
1
2

{
1 + tanh[k f q(x, t)]

}
, q(x, t) = x − ut . (2)
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where the quantity k f defines the front width, and we assume a superluminal front velocity
u > c. It is particularly useful to consider a Lorentz transformation from the lab frame S
to a moving frame S′, where the new front velocity becomes infinite, u′ → ∞. In this case,
we are reduced to a purely temporal process where the plasma density instantly changes
everywhere. To define this frame, we consider the new space and time variables (x′, t′),
defined by the Lorentz transformations:

x = γ
(
x′ + Vt′

)
, t = γ

(
t′ +

β

c
x′
)

, (3)

where V is the velocity of the new frame S′ with respect to the lab, β = V/c and
γ = (1 − β2)−1/2. Using the formula for the addition of velocities, we have a new front
velocity u′ determined by

u′ =
u − V

1 − uβ/c
, (4)

which shows that u′ diverges for u = c/β ≡ c2/V. We conclude that this is a proper
Lorentz transformation defined by a subluminal velocity V = c2/u < c. Replacing this in
the expression of q(x, t), we obtain

q(x, t) = x − vt = γ

(
x′ − c2

u
t′
)
− uγ

(
t′ − x′

u

)
= γ(V − u)t′ . (5)

We conclude that the plasma frequency, given by Equations (1) and (2) with ϵ = 0, only
changes with time in the moving frame S′. We are therefore reduced to a purely temporal
problem. For that reason, we will call S′ the time frame. Noting that the plasma frequency
is a relativistic invariant, we can conclude from this discussion that, in the new frame, the
ionization front is given by

ω2
p(t

′) =
ω2

p0

2

[
1 + tanh(ν′f t′)

]
, (6)

with ν′f = k f γ(V − u). Please see Figure 1.
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Figure 1. Superluminal ionization fronts, (a) in the laboratory frame S and (b) in the time frame S′,
for a simple front (in red) and a modulated front (in blue).

3. Frequency Shifts

Let us now assume a photon beam (for instance, a laser probe) interacting with the
ionization front. Before interacting with the front, it will have an initial frequency ωi defined
in the lab frame. For propagation along the same x-axis, we can define the corresponding
wavevector as ki = kiex, with ki = sωi/c, where s = +1 corresponds to copropagation and
s = −1 to counterpropagation with respect to the front. Note that, in copropagation, the
interacting photons are overtaken by the front.
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In the time frame S′, this initial beam will be characterized by new values of frequency
ω′

i and wavevector k′
i = k′iex defined by

k′i = γ

(
ki −

β

c
ωi

)
, ω′

i = γ(ωi − Vki) . (7)

This can be rewritten as

k′i = γ(s − β)
ωi
c

, ω′
i = γωi(1 − sβ) . (8)

From here, we immediately conclude that

k′i = s
ω′

i
c

, ω
′2
i = ω2

i
1 − sβ

1 + sβ
. (9)

It means that, for copropagation (s = 1), we have k′i > 0, and ω′
i ≪ ωi is expected. In

contrast, for counterpropagation (s = −1), we have k′i < 0, and ω′
i ≫ ωi.

Let us consider the interaction of this incident beam with the front. In the time frame
S′, the photons suffer a transformation process when they cross the temporal boundary at
t′ = 0. This is the process of time refraction, which is already well-understood [5,24]. We
know that this process conserves momentum (in the time frame) and induces a frequency
shift. To simplify the discussion, we assume that the front width is negligible, 1/ν′f → 0,
but for a finite width, the final result would be the same. Assuming that the local dispersion
relation is satisfied, for t′ > 0, the wavevectors and frequencies of the transmitted and
reflected signal are given by

k′
r = −k′

i , k′
t = k′

i , ω′
r = ω′

t =
√

ω2
po + k′2

t c2 ̸= ω′
i . (10)

Similarly, we can write

ω′
t =

|k′t|c
n′ , n′ =

√√√√1 −
ω2

p0

ω
′2
t

, (11)

where n′ is the refractive index of the medium in the moving frame. Using Equation (9),
we can write the new frequencies in terms of the initial frequency ωi, defined in the lab
frame, as

ω
′2
t = ω2

i
1 − sβ

1 + sβ
+ ω2

p0 . (12)

As a final step, we need to establish the value of the transmitted frequency in the lab frame,
ωt. We use the Lorentz formula

ωt = γ(ω′
t − Vk′t) = γω′

t(1 + sβn′) . (13)

From here, we obtain

ω2
t = ω2

i
(1 + sβn′)2

(1 + sβ)2 + ω2
p0 . (14)

A similar description can be made for the reflected beam, the only difference being the
direction of propagation. The result is

ω2
r = ω2

i
(1 − sβn′)2

(1 − sβ)2 + ω2
p0 . (15)

It becomes clear that the reflected and transmitted beams have very distinct frequencies in
the lab frame. Similarly, the corresponding wavevectors kr and kt will be quite different, in
contrast with what happens in the time frame. This leads to the obvious conclusion that
the superluminal front introduces a space and time symmetry breaking simultaneously,
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thereby changing the frequencies and momenta of the reflected and transmitted photons.
This is illustrated in Figure 2 for an initial frequency slightly above cutoff, ωi =

√
2ωp0. It

should be noticed that large values of β can easily be accessed experimentally because they
correspond to weakly superluminal front velocities. This means that very large frequency
shifts should be expected.

To complete the description in the lab frame S, we only need to relate n′ with the
refractive index valid in this frame, n. This can be conducted by again using the Lorentz
relations. They allow us to write formulas similar to Equation (7) but with the refractive
index included as

k′t = γ(sn − β)
ωt

c
, ω′

t = γωt(1 − sβn) . (16)

Now, using the relation k′tc = sω′
tn

′, we easily obtain an expression for the refractive index
in the moving frame as

n′ =
(n − sβ)

(1 − sβn)
, n =

(n′ + sβ)

(1 + sβn′)
, (17)

Obviously, the refractive indices for the reflected and transmitted signals are different
because they have different frequencies and the medium is dispersive, n(ωr) ̸= n(ωt). This
contrasts with what happens in the time frame S′, where we have n′(ω′

r) = n′(ω′
t), because

the frequencies are equal, although distinct from the initial frequency ω′
i .
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4. Field Transformations

Let us now focus on the field transformations and establish the transmission and
reflection coefficients in the two reference frames, S and S′. We start with the electric field
Ei, associated with the incident photon beam in the laboratory frame S. Assuming plane
wave propagation along the x-axis, and neglecting the radial beam structure, we have

Ei(x, t) = Ei exp(ikix − iωit) , (18)

with ki = sωi/c. Assuming that this field is linearly polarized in the y direction, Ei = Eiey,
the wave magnetic field will be Bi = s(Ei/c)ez. In the moving frame S′, the field is
described by a similar expression:

E′
i(x, t) = E′

i exp(ik′ix
′ − iω′

i t
′) , (19)
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where k′i and ω′
i are determined by Equation (9). The field amplitudes will be determined

by the Lorentz formulas as

E′
i = γ(Ei + V × Bi) = γ(1 − sβ)Ei , (20)

and
B′

i = γ[Bi − (V × Ei)/c] = γ(1 − sV)Bi , (21)

In order to derive the fields resulting from the interaction with the ionization front, we use
the reflection and transmission coefficients valid for a time refraction event as E′

r = R′E′
i

and E′
t = T′E′

i such that [25]

T′ =
α′

2
(α′ + 1) , R′ =

α′

2
(α′ − 1) , (22)

where the parameter α′ describes the change in the refractive index associated with the
temporal transition from a vacuum with refractive index n′

0 = 1 to a plasma with refractive
index n′ as defined above. This is given by

α′ =
n′

0
n′ =

(1 − sβn)
(n − sβ)

. (23)

Noting that ω
′2
t = ω

′2
i + ω2

p0, we can also write

α′ =
1
n′ =

ω′
t√

ω
′2
t − ω2

p0

=
ω′

t
ω′

i
. (24)

In previous papers on time refraction, these expressions for T′ and R′ were sometimes
called temporal Fresnel’s formulae. We can see that T′ + R′ = α

′2, which is an indication
that the energy is not conserved. See Figure 3 for an illustration. This could be explained
at the elementary quantum level as the result of the emission of photon pairs from a
vacuum [24,25]. Let us now use the expression for the transmitted field in the lab frame
but now with the reversed sign of V in the transformation (21) and the inclusion of the
refractive index. This gives

Et = γ(1 + sβn′)E′
t = TEi , Er = γ(1 − sβn′)E′

r = REi . (25)

We then obtain the reflection and transmission coefficients in the lab frame as

T = γ2(1 + sβn′)(1 − sβ)T′ , R = γ2(1 − sβn′)(1 − sβ)R′ , (26)

and finally

T =
(1 + sβn′)
(1 + sβ)

1 + n′

2n′2 , R =
(1 − sβn′)
(1 + sβ)

1 − n′

2n′2 , (27)

where n′ can be described in terms of the refractive index in the laboratory frame n by
using Equation (17). In the absence of ionization, we would have n = n′ = 1, and these
expressions would reduce to T = 1, R = 0, as expected. But this result is not very illumi-
nating because T and R are implicit functions of the transmitted and reflected frequencies.
A more direct way to estimate the energy gain associated with this temporal process is
to note that no dissipation is involved (apart from eventual scattering losses). Therefore,
for each photon that crosses the time boundary, we have an energy gain that is exactly
given by the frequency ratio ωt/ωi and ωr/ωi, where these quantities are determined by
Equations (14) and (15).
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In order to derive the fields resulting from the interaction with the ionization front, we use

the reflection and transmittion coe�cients valid for a time-refraction event, as E 0
r = R0E 0

i

and E 0
t = T 0E 0

i, such that [23]

T 0 =
↵0

2
(↵0 + 1) , R0 =

↵0

2
(↵0 � 1) , (22)

where the parameter ↵0 describes the change in refractive index associated with the temporal

transition, from vacuum with refractive index n0
0 = 1 to a plasma with refractive index n0

as defined above. This is given by

↵0 =
n0

0

n0 =
(1 � s�n)

(n � s�)
. (23)

Noting that !
02
t = !

02
i + !2

p0, we can also write

↵0 =
1

n0 =
!0

tq
!

02
t � !2

p0

=
!0

t

!0
i

. (24)

In previous papers on time-refraction, these expressions for T 0 and R0 were sometimes called

the temporal Fresnel’s formulae. We can see that T 0+R0 = ↵0, an indication that the energy

is not conserved in the process. This can be explained at the elementary quantum level,
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Figure 3. Transmission and reflection coefficients: in the moving frame, T′ (in blue) and R′ (in red),
as a function of α′ = ω′

t/ω′
i . The quantity T′ + R′ is also represented (in black).

5. Modulated Fronts

Let us now consider the case of modulated fronts, where the amplitude of the oscilla-
tions in Equation (1) is nonzero, ϵ ̸= 0, and the oscillating structure moves with the same
superluminal speed as the front itself, u > c. For that purpose, we use a periodic function
of the form

g(x, t) = ∑
ℓ

gℓ cos(ℓkwq) , (28)

where q = x− ut as before; gℓ ≤ 1 are constant coefficients; and kw ≪ k f is the wavenumber
of the periodic structure, defining a scale that is much larger than the front width. In the
time frame S′, the plasma frequency structure is now transformed into

ω2
p(t

′) =
ω2

p0

2

[
1 + ϵ ∑

ℓ

gℓ cos(ℓω′
wt′)

][
1 + tanh(ν′f t′)

]
, (29)

with ν′f = k f γ(V − u), as before, and ω′
w = (kw/k f )ν

′
f . Let us assume an incident wave

with frequency ωi, characterized by ω′
i and k′

i in the moving frame S′, as defined by
Equation (9). Assuming that the local dispersion relation is satisfied, after the transition
time t′ = 0, we have two wave modes with wavevectors k′

r = −k′
i and k′

t = k′
i and

frequencies

ω′
r = ω′

t =
√

ω2
p(t′) + k′2

t c2 ̸= ω′
i . (30)

Here, the plasma frequency ωp(t′) is determined by Equation (29) and defines a time-
varying dispersion relation. Notice that the wavenumbers remain fixed in this frame, but
the frequencies are time-dependent. This means that we have to write the total field as

E′
i(x′, t′) = E′

t(t′) exp[(ik′tx
′ − iφ(t′)] + E′

r(t′) exp[(ik′rx′ + iφ(t′)] + c.c. , (31)

with φ(t′) =
∫ t′

ω′
r,t(t”)dt”, valid for ω′

r = ω′
t ̸= ω′

i . This expression is valid for all times.
From the field continuity relations, we can derive the following evolution equations for the
field amplitudes [29]:

dE′
t

dt′
= −1

2
d ln n′

dt′
{

3E′
t + E′

r exp[2iφ(t′)]
}

, (32)

and
dE′

r
dt′

= −1
2

d ln n′

dt′
{

3E′
r + E′

t exp[−2iφ(t′)]
}

, (33)
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where n′ ≡ n′(t′) =
√

1 − ω2
p(t′)/ω

′2 is the local refractive index. These expressions can
be derived by using a succession of infinitesimal time-refraction processes. They can be
used to describe propagation in arbitrary time-varying media and are formally identical to
the field equations for propagation in static but arbitrarily inhomogeneous media [30,31].
Now, introducing the notation

E′
r,t = A′

r,te
−3Γ(t′) , Γ(t′) =

1
2

∫ t′ d ln n′

dt”
dt” , (34)

we can reduce the above coupled equations for the amplitudes to the simple coupled form

dA′
t

dt′
= η(t′)A′

r ,
dA′

r
dt′

= η∗(t′)A′
r , (35)

with the new coefficient

η(t′) = −1
2

(
d ln n′

dt′

)
exp

[
2iφ(t′)

]
. (36)

The solution of these equations is very easy to find and takes the form

A′
t(t

′) = α(t′)A′
t(0)− β(t′)A′

r(0) , A′
r(t

′) = α(t′)A′
r(0)− β(t′)A′

t(0) , (37)

where

α(t′) = cosh
[
r(t′)

]
, β(t′) = sinh

[
r(t′)

]
, r(t′) =

∫ t′

η(t”)dt” . (38)

The temporal evolution described by the coefficients α(t′) and β(t′) can be seen as a
squeezing transformation, where the quantity r(t′) is the squeezing parameter. Let us
consider the initial conditions corresponding to the absence of a reflected field at the
transition time t′ = 0. Using A′

t(0) ̸= 0 and A′
r(0) = 0 in Equation (37), we can then derive

the time-reflection and time-transmission coefficients in the time frame S′ as

T(t′) =
E′

t(t
′)

E′
t(0)

= cosh
[
r(t′)

]
e−3Γ(t′) , R(t′) =

E′
r(t′)

E′
t(0)

= sinh
[
r(t′)

]
e−3Γ(t′) , (39)

These coefficients strongly depend on the amplitude of the moving structure, ϵ. Noting
that dn′/dt′ ∝ ϵ, we conclude that for very small modulation amplitudes, the following
approximate solutions are valid:

T(t′) ≃ 1 , R(t′) ≃ r(t′) = −1
2

∫ t′(d ln n′

dt”

)
exp[2iφ(t”)]dt” , (40)

On the other hand, we maximize the value of |R(t′)| when the quantity in the integrand of
Equation (40) is nearly constant. For a cosine perturbation of the refractive index, such that
in Equation (29) the constant coefficients are defined by the Kroeneker symbol, as gℓ = δℓ1,
this maximum reflection condition is approximately given by

νω′
wt′ − 2φ(t′) = 0 , (41)

where ν is an integer. Noting that φ(t′) ≃ (ω
′2
i +ω2

p0)
1/2t′, and using the explicit expression

for ω′
w, we can rewrite this condition as

νγkw(V − u) = 2(ω
′2
i + ω2

p0)
1/2 . (42)

This approximate condition defines what could be called a temporal Bragg law. It charac-
terizes the occurrence of resonant backscattering from a temporal periodic perturbation,
or in other words, resonant backscattering from a time crystal. In order to relate this
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to the value of the incident frequency, as seen in the lab frame, we can use the Lorentz
transformations (8) and write

νγkw(V − u) = 2
√

γ2ω2
i (1 − sβ)2 + ω2

p0 . (43)

Finally, we obtain

ω2
i =

1
4β2

(1 − β)2

(1 − sβ)2

[
ν2k2

wc2 + ω2
p0β2(1 + β)

]
. (44)

For incident frequencies ωi satisfying this relation, we should be able to observe the
formation of a Bragg maximum of the backscattered signal from a plasma time crystal. On
the other hand, for a very long time structure, we see from Equation (39) that the energy
of the time-reflected signal can grow exponentially due to the sine hyperbolic function
sinh[r(t′)]. Furthermore, due to the need for momentum conservation, the transmitted
signal will necessarily grow as well, thus showing the formation of a temporal-driven
instability. This is nothing but a classical analog of the dynamical Casimir effect. We should,
however, notice that the above temporal Bragg scattering and the associated instability can
only be observed with a modulated ionization front with a shape defined by Equation (29),
which is not easy to produce experimentally.

6. Conclusions

Wave propagation in the presence of superluminal ionization fronts was studied.
These fronts can be used to produce a considerable frequency shift and to amplify radiation.
Two kinds of ionization fronts, simple fronts and modulated fronts, were discussed. A
simple theoretical description was used, based on the time frame, where the fronts reduce
to a purely temporal process.

The results of this paper could eventually inspire the development of new radiation
sources, where phase coherence is conserved and frequency tuning could be achieved for
different values of the front velocity. This process is, in principle, one hundred percent
efficient, because all photons are equally phase-shifted. Energy amplification can also be
achieved, because part of the front energy can be converted into radiation.

The present work can be expanded in several different directions, including a sys-
tematic numerical study of the spectral energy density and an estimate of losses due to
scattering in the transverse beam direction. It could also be applied to the optics of meta-
materials, where the study of temporal processes is becoming particularly relevant [32–35].
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