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Abstract: Recent inference results of the sound velocity in the cores of neutron stars are summarized.
Implications for the equation of state and the phase structure of highly compressed baryonic matter
are discussed. In view of the strong constraints imposed by the heaviest known pulsars, the equation
of state must be very stiff in order to ensure the stability of these extreme objects. This required
stiffness limits the possible appearance of phase transitions in neutron star cores. For example, a
Bayes factor analysis quantifies strong evidence for squared sound velocities c2 > 0.1 in the cores of
2.1 solar-mass and lighter neutron stars. Only weak first-order phase transitions with a small phase
coexistence density range Ap/p < 0.2 (at the 68% level) in a Maxwell construction still turn out to be
possible within neutron stars. The central baryon densities in even the heaviest neutron stars do not
exceed five times the density of normal nuclear matter. In view of these data-based constraints, much
discussed issues such as the quest for a phase transition towards restored chiral symmetry and the
active degrees of freedom in cold and dense baryonic matter, are reexamined.
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1. Introduction

Within recent decades, the observational data base for neutron stars has expanded
substantially. The detailed analysis of this data has sharpened the empirical constraints on
the equation of state (EoS) of matter deep inside the cores of these extreme objects [1]. In
particular, the existence of heavy neutron stars with masses around and above two solar
masses implies that the EoS, i.e., pressure P(¢) as a function of energy density ¢, must
be sufficiently stiff in order to support such massive compact stars against gravitational
collapse. Some previously discussed simple forms of exotic matter could, therefore, be
excluded when their corresponding EoSs turned out to be too soft.

The quest for a possible phase transition in cold and dense baryonic matter—from
hadronic to quark degrees of freedom—has been a topic of prime interest for a long
time [2,3]. In this context, a summary will be given of the present state of knowledge
about the neutron star EoS as inferred directly from the existing observational data. Of
particular interest is the speed of sound in the cores of neutron stars. Its behavior as
a function of energy density is a sensitive indicator for phase transitions or continuous
changes (crossovers) of degrees of freedom in a star’s composition.

Primary sources of information for the inference of the EoS are neutron star masses
deduced from Shapiro delay measurements [4-9], combined determinations of masses and
radii inferred from X-ray data detected with the NICER telescope [10-14], and gravitational
wave signals from binary neutron star mergers observed by the LIGO and Virgo Collab-
orations [15-17]. These data have served as basic input for a large variety of Bayesian
and other inference analyses [18-33] in search of a range of data-compatible equations of
state with controlled uncertainties. Low-density constraints from nuclear physics around
the equilibrium density of nuclear matter, pg = 0.16 fm 3, are commonly introduced by
referring to results of chiral effective field theory (ChEFT) [34]. At asymptotically high
densities, perturbative QCD (pQCD) is applicable and provides a constraint to be matched
in extrapolations far beyond the conditions realized in neutron star cores [35,36]. Bayesian
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inference studies have recently been further extended [31] by the supplementary obser-
vational data reported in [37] (the black widow pulsar PSR J0952-0607 with a mass of
M = 2.35+0.17 Mg, in solar mass units).

This report presents a survey of results obtained in the detailed inference analysis
of Ref. [31] and discusses possible interpretations. A central topic is the evaluation of
constraints and possible evidence for a first-order phase transition within the posterior
uncertainties of the EoS deduced from the existing empirical neutron star data. Later parts
of this manuscript refer to ongoing considerations about the structure and composition of
dense matter in neutron star cores. In view of the constraints emerging from the analysis of
the observational data, especially of the heaviest known neutron stars, we discuss the quest
for a chiral phase transition, quark-hadron continuity and its realization as a soft crossover,
a Fermi liquid approach to neutron star matter, and other related issues.

2. Equation of State of Neutron Star Matter
2.1. Observational Constraints
2.1.1. Neutron Star Masses and Radii

Information about the masses of the heaviest neutron stars derives primarily from
precise Shapiro time delay measurements of pulsars orbiting in binary systems with white
dwarf companions. Three such massive objects, PSR J1614-2230 [4,6,7], PSR ]J0348+0432 [5],
and PSR J0740+6620 [8,9], have been established in the past:

PSR J1614-2230 M =1.908 +0.016 M, , 1)
PSR J0348+0432 M =201+0.04 M, @)
PSR J0740+6620 M =2.08+0.07 M, . €)

The heaviest neutron star observed so far was recently reported [37]—a black widow pulsar,
PSR J0952-0607 M =235+017M; . 4)

This result was obtained based on the detection of the black widow’s companion star. PSR
J0952-0607 is also one of the fastest rotating pulsars. With a spin period of 1.4 ms, it requires
radius-dependent corrections for rotational effects, as described in [31]. For example, the
rotating mass of a 2.35 M, star with an assumed radius of R = 12 km decreases by 3% to
an equivalent non-rotating mass of about 2.28 M.

Together with their masses the radii of neutron stars can be inferred from X-ray profiles
of rotating hot-spot patterns measured with the NICER telescope. Two neutron stars have
been investigated in this way [10,12]:

PSR J0030+0451 M=134"1 M, , R=1271"113km, (5)
PSR J0740+6620 M = 20721057 M, , R =12.39"}30km. (6)

All of the mass and radius data are included as inputs when setting constraints for the
neutron star EoS. In the case of PSR J0740+6620, the analysis of the NICER measurement
includes the Shapiro delay result. Therefore, only the data from NICER have been used
in the Bayesian inference dataset. An alternative analysis of the NICER data was also
performed by a second independent group [11,13]. Both results are mutually compatible
within their uncertainties.

2.1.2. Binary Neutron Star Mergers and Tidal Deformabilities

Gravitational wave signals produced by a merger of two neutron stars in a binary have
been detected by the LIGO and Virgo collaborations [15-17]. These signals are interpreted
using theoretical waveform models that depend on the mass ratio of the two neutron
stars, My /Mj, and a mass-weighted combination of their tidal deformabilities. Based on
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information from the GW170817 event, the (dimensionless) tidal deformability for a 1.4
solar mass neutron star was deduced [16]:

Apg=190"30 . 7)

The GW170817 event was further investigated together with electromagnetic signals. In
one such analysis [38], the following masses and tidal deformabilities were reported for the
individual neutron stars in the binary:

M; = 1467053 Mo, Ay =255"118,
M, = 126709 Mg, Ay = 6617558 . 8)

The GW190425 event, which could have also been a binary neutron star merger, was also
included in the inference analysis [17].

2.2. Inference of Sound Velocity and the EoS in Neutron Stars

Based on the data in the previous subsection, the squared sound velocity and the
equation of state

2(e) = o and P(e) = /08 de' (¢, )

of neutron star matter can be inferred using Bayesian methods. In our recent work [29,31],
the ChEFT constraint at low baryon density was used in the Bayesian inference procedure
as a likelihood (not as a prior) within a conservative window of baryon densities [39],
0 S 1.3 pg. The equations of state were interpolated to pQCD results at asymptotically
high densities. Unlike the conclusions drawn in [36], and as explained in detail in [31], we
did, however, not find a strongly constraining influence of pQCD extrapolations down to
neutron star densities. Possible reasons for this discrepancy were also discussed in [40].

The result of the inferred sound velocity in Figure 1 shows, within the 68% highest
posterior density credible bands, a rapid increase in c2 beyond the conformal limit of 1/3 at
energy densities relevant for a wide range of neutron stars with masses M ~ 1.4-2.3 M.
A quantification in terms of a corresponding Bayes factor [21,29,31] demonstrates extreme
evidence for c? exceeding the conformal bound inside neutron stars.

1.0 L4 Mo—
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Figure 1. Squared speed of sound [31] as a function of the energy density inferred from the empirical
dataset listed in Section 2.1. Median (solid curve) and highest posterior density credible bands at
levels of 68% (gray band) and 95% (dashed curves) are displayed. Intervals are indicated for the 68%
ranges of central energy densities in the cores of 1.4 and 2.3 M neutron stars.



Symmetry 2024, 16, 111

40f19

Figure 2 presents the inferred posterior bands for the EoS. Notably, the additional
inclusion of the heaviest pulsar PSR J0952-0607 in the dataset leads to a more rapidly rising
pressure as compared to previous inference results, which do not incorporate these data.
Within the range of energy densities 0.5-0.8 GeV/fm3 reached in the core of a 2.3 solar
mass star and corresponding to baryon densities between 3.0py and 4.6p, the pressure
even exceeds that of the time-honored APR EoS [41].

s 600p 2 3 4 pfpe 57
I )
= 1.4 M
[} L
Z 400
W
= 200}
05 550 500 7501000

€ [MeV fm™?]

Figure 2. Equation of state P(e) [31] deduced from the inferred sound velocity based on the empirical
dataset listed in Section 2.1. The median, 68%, and 95% posterior credible bands are displayed, as
in Figure 1. The APR EoS [41] (dotted line) is shown for comparison. Also shown for orientation is
the baryon density scale, p/ g (in units of the equilibrium density of nuclear matter pg = 0.16 fm—3),
which was computed for the median of P(¢).

A further quantity of interest is the chemical potential associated with the conserved
baryon number,

de(p)  PHe

dp P

u(p) =

where the latter equality is the Gibbs—-Duhem relation at a temperature of zero. By solving
the equation p = p; exp f;(p) de'[¢' 4+ P(¢')] ! for e(p) with a boundary condition ¢; = &(p;)
chosen at a suitably low density p;, the baryon chemical potential can be computed for any
given equation of state P(¢) within the uncertainty bands in Figure 2. The resulting u(p)
bands in Figure 3 show a steep rise at baryon densities of p > 2 pg, indicating that strongly
repulsive forces are at work. The agnostic approach for the inference of the sound speed
on which these results are based does not permit distinction between different species of
constituents inside neutron stars, so i represents the total chemical potential from all active
degrees of freedom carrying baryon number: y = Y, x;u;, where x; = p;/p is the fraction
corresponding to each baryonic species i. However, irrespective of whether these species
are nucleons, other baryonic composites, or quarks, the empirically inferred behavior of u
demonstrates that these degrees of freedom must be correlated by strongly repulsive forces
as the density increases in order to build up the necessary high pressure in the cores of
neutron stars to support two solar masses and beyond. We return to this discussion again
at a later stage.

The approach to conformality in strongly interacting matter at high baryon density
has been an important theme in several recent investigations [42-45]. A key quantity is the
trace anomaly measure,

_ (11)
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Conformal matter is characterized by an equation of state P = ¢/3, so the signature for
its occurrence is A — 0 over an extended energy density range. The posterior credible
bands for the trace anomaly measure deduced from the data-based EoS are shown in
Figure 4. Starting from A = 1/3 at zero energy density, the median of A turns negative at
e ~ 0.7GeV/fm?, entering a high-pressure domain with P > ¢/3. This crossing appears
within the range of energy densities possibly realized in the cores of the heaviest neutron
stars. At much higher energy densities beyond those displayed in Figure 3, pQCD then
implies a switch back to positive A before the asymptotic limit A — 0 is approached.

2.0
7]
[GeV]
15
1.0
0 1 2 3 1 5 6
P/ Po

Figure 3. Baryon chemical potential j(p) in neutron star matter, normalized at y(p = 0) = 939 MeV.
Posterior credible bands [31] at the 68% level (gray band) and 95% level (dashed lines) are shown.
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Figure 4. Median and credible bands [31] of the trace anomaly measure, A = % — g, at the 68% level
(gray band) and 95% level (dashed lines).

2.3. Selected Neutron Star Properties

Numerically solving the Tolman-Oppenheimer—Volkov (TOV) equations leads to
posterior credible bands for the mass—radius relation of neutron stars, as displayed in
Figure 5. Notably, the median of R(M) suggests an almost constant radius R, which is
independent of M.

The density profiles p(r) computed for neutron stars in the mass range 1.4-2.3 M,
reach central baryon densities, p. = p(r = 0), that are systematically below 5 pg in the cores
of even the heaviest stars. For example,

0c(14Mo) = (26+£04)py and  p(23Ms) = (3.84+0.8) pg, (12)

at the 68% level [31]. In a baryonic picture of neutron stars, this implies that the average
distance between baryons even in the highly compressed star center exceeds 1 fm, more
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than twice the characteristic short-range hard-core distance of 1/2 fm in nucleon—-nucleon
interactions. We return to this point at a later stage.

T |
e = ~ \+ Riley et al.
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//_7 /84— Nattila et al
e { /

/ -

| [ 5 ! :

PSR J0740 + 6620

'[ !
ﬁPSR J0030 + 0451
! ~

\
| L\ | L\ | |

10 12 R [km] 14

Figure 5. Posterior credible bands [31] of the radius R as a function of the neutron star mass M at
the 68% level (gray band) and 95% level (dashed line) compared to the analysis of NICER data by
Riley et al. for PSR J0030+0451 and PSR J0740+6620 [10,12]. In addition, the mass-radius credible
interval at the 68% level of the thermonuclear burster 4U 1702-429 (blue) is displayed [46] (which
was not included in the Bayesian analysis).

For each given EoS, the TOV equations can be solved in combination with equations
for the tidal deformability A. This leads to posterior probability bands, A(M), as a function
of neutron star mass, as shown in Figure 6. The large uncertainties of the empirical values
deduced from the analysis of the gravitational wave events do not allow one to constrain
the tidal deformability bands to a stronger degree so far.

I I
1500 [ —
GW 170817
+ Fasano et al.
1000 —
{ Abbot et al.
A
500
0
1.0 1.5 M/M@ 2.0

Figure 6. Posterior credible bands [31] of the tidal deformability as a function of neutron star mass at
the 68% level (gray band) and 95% level (dashed lines) compared to values deduced from the merger
event GW170817 [15,38].

3. Constraints on Phase Transitions in Neutron Stars

The nature and location of the transition from dense nuclear or neutron matter to
quark and gluon degrees of freedom is still largely unknown. Lattice computations have
been successful in exploring the QCD phase structure at high temperatures and vanishing
baryon chemical potential, establishing that the transition is a continuous crossover at
a temperature of T, ~ 155 MeV. However, at nonzero baryon densities, the notorious
sign problem in the Euclidean action prevents a similarly systematic approach. As a
consequence, studies of the phase diagram at low temperatures and high baryon densities
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are primarily based on models with varying assumptions about the relevant active degrees
of freedom [47].

A key element of this discussion is the question about a possible phase transition
from spontaneously broken to restored chiral symmetry in QCD. At high baryon densities
beyond p > 2 pg, various hypotheses have been explored, ranging from a chiral first-order
phase transition to continuous hadron—quark crossovers [2,48-52]. The behavior of the
sound speed c; is a prime indicator for phase transitions or crossovers. This is schematically
illustrated in Figure 7, which shows typical patterns of such transitions as they would
show up in the sound speed. For example, a first-order phase transition with Maxwell
construction is characterized by a region of constant pressure over an interval of density (or
energy density) in which two phases coexist. Between the lower and upper endpoints of
this phase coexistence interval, the squared sound velocity c? = dP/de jumps to zero and
back. In a first-order phase transition with Gibbs construction, the pressure in the mixed
phase is not constant, but 0P/ de still changes discontinuously [53]. A crossover has no such
discontinuities but features a pronounced maximum in c2. Purely nucleonic scenarios lead
instead to a continuously rising sound speed.

1.0 c2 nucleonic
S crossover
phase transition

L (1st order) .
0.5

- Gibbs |

0 ! Maxwell ! .
0 0.5 1.0 1.5
€ [GeV fm™?]

Figure 7. Characteristic behaviors of the squared sound velocity in the presence of a phase transition
Or a Crossover.

3.1. Evidence against a Very Low Squared Sound Speed in Neutron Stars

One indication of the possible appearance of a first-order phase transition would be a
very low squared sound velocity (c2 < 0.1) within the range of energy densities relevant for
neutron stars. Let us introduce c; i, as the minimum speed of sound following a maximum
at lower densities. Given the inferred bands of probability distributions for c2 in Section 2.2

and Figure 1, one can quantify the evidence for two competing scenarios: minimum
2

f,mm < 0.1; in terms of corresponding Bayes factors, Bcgzz:zgi A
detailed analysis of such Bayes factors was carried out in [31] for the minimum speed of
sound up to different maximum masses of neutron stars, M. Bayes factors exceeding
10 or 100 indicate strong or extreme evidence, respectively, for the scenario where the
minimum csz, remains larger than 0.1. This is the case for all masses My;ux < 2.1 Mg, as
demonstrated in Table 1. Only for even heavier neutron stars does this evidence turn out
to be lower. It is worth noting that the inclusion of the heavy black widow pulsar PSR
J0952-0607 plays an important role that strengthens the evidence against c2 < 0.1 further
in comparison with previous analyses, which did not include this object [29]. Squared
sound speeds cg > 0.1 in the cores of neutron stars with My, < 2.0 M were also found
in [24,26] without the inclusion of the black widow pulsar.

These limiting bounds on very low speeds of sound suggest that the appearance
of a strong first-order phase transition with Maxwell construction is unlikely for most

of the known neutron stars. An additional feature of a Maxwell-constructed first-order

> 0.1 versus c2

c s,min
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transition is an extended phase coexistence region. This will be examined more closely in
the following subsection.

2
CS,VVIiﬂ >0.1
¢ <01

s,min —

Table 1. Bayes factors B comparing EoS samples with competing scenarios: (a) minimum

sczluared speed of sound (following a maximum) with cém in

€5 min < 0.1. The minimum speeds of sound are computed up to the maximum neutron star masses,
as indicated (taken from [31]).

> 0.1 versus (b) equations of state with

Mopax/ Mg 1.9 2.0 2.1 2.2 23
Bomin>01 500.9 229.8 15.0 3.6 22
2 . <0.1

s,min —

3.2. Evidence against a Strong First-Order Phase Transition in the Cores of Neutron Stars

The relatively moderate baryon densities inferred in the cores of neutron stars together
with the evidence against very small sound speeds can be complemented by an additional
study that is specific to first-order phase transitions with Maxwell construction. Such phase
transitions are characterized by a domain of phase coexistence that extends over a certain
range of baryon densities, Ap. The width of this domain, Ap/p (with p the density at
which the coexistence interval starts), is a measure of the strength of the phase transition,
i.e., the magnitude of surface tension between the two coexisting phases. We refer to a
‘strong’ first-order phase transition if the width of the mixed phase is Ap/p > 1. One
example is the liquid—gas phase transition in symmetric nuclear matter at temperatures of
T < 15MeV [54,55]. In contrast, a “‘weak’ first-order phase transition has a value of Ap/p
that is small compared to unity.

The posterior credible bands inferred from neutron star data, as displayed in Figure 2,
permit a systematic study of the maximum possible phase coexistence widths over the range
of relevant energy densities. Starting from P(¢), the Gibbs—Duhem relation is used to re-
express pressure as a function of baryon density, P(p). In this way, posterior credible bands
for P(p) can be derived. These constrain the maximum possible widths of mixed-phase
domains, (Ap/p)max- An example is shown in Figure 8. In the analysis in [31], it turned
out that these maximum possible phase coexistence regions were narrow: (Ap/p)max =~ 0.2
at the 68% level. Even within the 95% credible bands, this width did not exceed 0.3. In
fact, one finds that (Ap/p)max stays nearly constant as a function of baryon density p
(taken at the starting point of the mixed-phase interval) over the whole region of densities
p =~ 2 — 5 py that are relevant for neutron stars.

p/po
1 2 3 4 )
500 | 1 1 1 1 1 ]
400 L LI TTITITIN y
1st order phase transition “Ap-

(Maxwell construction)

[\
el
e}
T
I

0 250 500 750 1000
€ [MeV fm™?]

Figure 8. Illustration of the constraint on the maximum width of a Maxwell-constructed coexistence
region for a first-order phase transition within the 68% credible band of P(¢). The upper (baryon
density) scale refers to the median of the P(¢) distribution, as in Figure 2.
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We note that the study performed in [56] also discussed restrictive constraints on strong
first-order phase transitions but did not include the NICER and J0952-0607 black widow
pulsar data. Even with this much more limited database, the authors found possible phase
coexistence intervals of only Ap/p < 0.5 for first-order phase transitions within neutron
stars. As can be expected, the additional radius constraints imposed by the NICER data
constrain the maximum extension of the phase coexistence region even further. Moreover,
we reiterate the additional restrictive impact of J0952-0607 in constraining the possible
occurrence of phase transitions. This is at variance with conclusions drawn about a strong
deconfinement transition in neutron star matter [18,26] on the basis of a dataset that did
not yet include the heaviest pulsar observed so far.

3.3. Intermediate Summary

The conclusion drawn in our reported analysis is that only a weak first-order phase
transition with a mixed-phase width Ap/p < 0.2 — 0.3 in a Maxwell construction can be
realized inside neutron stars within the posterior credible bands of the inferred equation of
state. A strong first-order phase transition is, thus, very unlikely to occur [31]. It is worth
pointing out that this conclusion is entirely based on the analysis of observational data,
independent of any specific EoS model. As will be discussed later, this rules out some
relativistic mean-field models that suggested the occurrence of a strong (chiral) first-order
phase transition already at densities below those encountered in neutron star cores. On the
other hand, the empirical uncertainty bands still leave room for a continuous transition,
such as a hadron-to-quark crossover [49-52]. The possibility of a purely baryonic equation
of state with a monotonically rising speed of sound is also not excluded [29].

4. Phenomenology and Models

The previous sections have shown how present and forthcoming neutron star data
(masses, radii, and tidal deformabilities) provide constraints for the equation of state and
for possible phase transitions in cold, dense baryonic matter. The enhanced stiffness of
the EoS at high baryon densities is a necessary feature; sufficiently high pressures are
required to support neutron stars with masses around and beyond 2 M, at relatively large
radii (R >~ 11-13 km). The central core densities are not as extreme as was previously
imagined. Even in the core of a 2.3 M neutron star, the baryon density at its center stays
below five times the equilibrium density of nuclear matter (at the 68% credible level; see
Equation (12)). The upper border of the 95% credible interval of the inferred central density
pc(23Mg)/po = 3.82:2 [31] lies slightly above 5pg, but with a very low probability.
This observation has consequences for the interpretation of the possible structure and
composition of neutron star matter, which we discuss in the following.

4.1. Reminder of Low-Energy Nucleon Structure and a Two-Scale Scenario

Spontaneously broken chiral symmetry, as the long-wavelength manifestation of QCD,
governs the low-energy structure and dynamics of hadrons, including nucleons and pions.
As chiral Nambu-Goldstone bosons, pions play a distinguished role in this context. Models
based on chiral symmetry often view the nucleon as a complex system of two scales [57]:
a compact hard core that hosts the three valence quarks and, thus, encloses the baryon
number and a surrounding quark-antiquark cloud in which pions figure prominently as
the ‘soft” degrees of freedom.

Such a two-scale scenario is manifested in empirical form factors and sizes of nucleons.
Consider, for example, the proton and neutron electromagnetic form factors and their
slopes at zero momentum transfer, which determine the corresponding mean squared radii.
The empirical r.m.s. proton charge radius, (r%,>1/ 2 = 0.840 £ 0.003 fm, combined with six
times the slope of the neutron electric form factor, (r2) = —0.105 & 0.006 fm?, gives the
isoscalar and isovector mean square radii of the nucleon, <r%,v> = (r%) + (r2), with the
following resulting values [58]:
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\/(r3) ~0.78fm, 4/(r3) ~0.90fm . (13)

Each of the nucleon form factors G;(4%) related to a current with index i has a representation
in terms of a dispersion relation,

2 oo Im G; (¢t
i) =G0y + T [ G

wJy o tHt—g%—ie)’ 14

with the squared four-momentum transfer 4> = g3 — 7. The mean square radii are given as

6 [ dt
o= /t 2Si(t), (15)

(r?) = 6 dGi(q%)
" Gi(0) dg?

where the distribution S;(t) = ImG;(t)/G;(0) represents the spectrum of intermediate
hadronic states through which the external probing field couples to the respective nucleon
current. For example, the isovector charge radius reflects the interacting two-pion cloud
of the nucleon governed by the p meson and a low-mass tail extending down to the 77t
threshold, ty = 4m?%. The isoscalar charge radius is related to the three-pion spectrum,
which is strongly dominated by the narrow w meson [59] and starts at ty = 9m?2. The
isoscalar charge form factor of the nucleon, G£(¢?) (with GE(0) = 1), is particularly suitable
for discussing a delineation between the ‘core’ and ‘cloud’ parts of the nucleon [60,61]. The
vector meson dominance principle implies, in its simplest version, a representation of the
form

En(g?
CE(P) = o +fq(2q| /)mZJ . (16)

The form factor Fg(q?) of the baryon number distribution in the nucleon core acts as a
source for the w field that propagates with its mass m,,. Introducing the mean square

2
radius of the baryon core, (r3) = 6dpsq(2q )

| 2—0, the mean square isoscalar charge radius
becomes

(r5) = (r3) + el (17)

Using m,, = 783 MeV, the estimated baryonic core radius is

\/ (r3) ~ 0.47 fm . (18)

A nucleon core size of about 1/2 fm is characteristic of chiral ‘core + cloud” models. It also
holds up in more detailed treatments of the spectral distributions governing the nucleon
form factors [58]. The inclusion of additional ¢ meson and 7rp continuum contributions in
the spectral function of G£(4%) moves the core radius to just slightly larger values.

Consider as another example the form factor associated with the axial vector current of
the nucleon. The corresponding mean-square axial radius deduced from neutrino—deuteron
scattering data is reported as [62]

(r%) = (0.46 +£0.22) fm? . (19)

A schematic axial vector dominance picture would assign a dominant part of the ‘cloud’
contribution to this form factor through the spectrum of the a; meson with its large width. If
an approximate scale of this ‘cloud’ part is identified with 6(r%) ~ 6/m?2 using the physical
ay mass, m, ~ 1.23 GeV, one finds

(2 =[(rh) —6(r3)]V? ~ 0.55fm (20)
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with an estimated uncertainty of about 25%.

Yet another interesting piece of information is the mass radius of the proton deduced
from J/Y¥ photoproduction data [63]. It involves the form factor of the trace, Tﬁ , of the
nucleon’s energy—-momentum tensor and is supposed to be dominated by gluon dynamics
at the center of the nucleon. Low-mass (e.g., two-pion) components are suppressed. The
result quoted in [63],

(P2 = (055+0.03) fm, (21)
is, once again, remarkably close to an assumed ‘core’ size scale of ~ 1/2 fm.

These empirical considerations motivate a picture of the nucleon as containing a
compact ‘hard’ core in which the valence quarks and their baryon number are confined,
and a ‘soft” surface of quark-antiquark pairs forming a mesonic cloud. This structure has
implications for the behavior of nucleons in dense baryonic matter. With a core size of
Reore ~ 1/2 fm and a cloud range given, e.g., by the proton charge radius, Roug ~ 0.84 fm,
there is a significant separation of volume scales in vacuum: (Rgjoud/ Rcore)3 ~ b.

This scale separation is expected to increase further in dense baryonic matter for
the following reasons. The properties of the soft multi-pion cloud are closely tied to
spontaneously broken chiral symmetry and the approximate Nambu-Goldstone boson
nature of the pion. The size of this cloud is expected to increase with density, along with the
decreasing in-medium pion decay constant, f(p), which acts as a chiral order parameter.
The baryonic core, on the other hand, is governed by gluon dynamics, without a leading
connection to chiral symmetry in QCD. This core is, therefore, expected to be quite stable
against changes from increasing density up until the compact hard cores begin to touch
and overlap.

qq

baryon density low

Figure 9. Sketch of low- and high-density baryonic matter. Baryons (e.g., nucleons) are viewed as
valence quark cores surrounded by clouds of quark-antiquark pairs (e.g., chiral meson clouds). At
densities of p 2 2 — 3 py, the percolation of quark-antiquark pairs over larger distances starts, as
indicated. Valence quark cores begin to touch and overlap at baryon densities p 2 5 py.

What arises in this way is a two-scale scenario for dense baryonic matter, as described
in [51] and sketched in Figure 9. At p ~ py, the tails of the meson clouds of nucleon
pairs overlap, resulting in two-body exchange forces. As the average distance between
nucleons decreases with increasing density, around p 2 2 — 3 py, the soft clouds of g4
pairs start to be delocalized. Their mobility expands over larger distances in a percolation
process involving larger numbers of nucleons. In the terms of conventional nuclear physics,
this corresponds to the emergence of many-body forces, the strength of which grows
with increasing density. At that stage, the baryonic cores are still separated but subject
to increasingly repulsive Pauli principle effects. The cores begin to touch and overlap
at average nucleon—nucleon distances of d < 1 fm, corresponding to densities p 2 5 po.
Further compression of baryonic matter would still have to overcome the strongly repulsive
hard core in the nucleon-nucleon interaction. Recalling the inferred credible intervals of
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the central densities in heavy neutron stars (Equation (12)), one concludes that a phase
transition to valence quark deconfinement does not seem likely in a two-scale picture and
under the conditions in the cores of neutron stars unless they are extremely heavy.

An interesting and closely related result emerges from a detailed analysis of y—scaling
in electron-nucleus scattering at large momentum transfers (|§] 2 1 GeV) and low energy
transfers [64]. The persistently observed y—scaling under these kinematical conditions
implies that the electrons still scatter from strongly correlated pairs of nucleons, rather than
quarks, at short distances. The conclusion drawn in [64] is that at local densities as large as
five times pp, nuclear matter still appears to behave as a collection of nucleons.

4.2. Quark-Hadron Continuity and Crossover

While a strong first-order phase transition in neutron star matter seems unlikely based
on the current empirical observations, a continuous crossover from hadrons to quarks is
still possible within the present data-driven constraints. Such a scenario is realized, for
example, in the QHC21 equation of state [52]. It features a smooth interpolation between
low and high densities from nuclear to quark matter regimes. The quark matter phase
is described by a three-flavor Nambu-Jona-Lasinio (NJL) model that includes pairing
(diquark) degrees of freedom and a strongly repulsive vector coupling between quarks. In
order to build up the necessary pressure at high densities, this vector coupling must be
comparable to or larger than the strength of the standard scalar—pseudoscalar interaction
in the NJL model. The density at which the interpolated turnover to quark matter takes
place in the QHC21 EoS is chosen as p 2 3.5 py, within the range of central densities that
can be reached in M 2 2 M, neutron stars. A crossover from hadrons to quarks could also
involve an intermediate phase of quarkyonic matter [49,65].

4.3. Restoration of Chiral Symmetry in Dense Matter: From First-Order Phase Transition
to Crossover

The quest for chiral symmetry restoration at high baryon densities—a transition from
the spontaneously broken Nambu-Goldstone realization to the unbroken Wigner—Weyl
mode—has been a persistent issue for a long time. A possible first-order chiral phase transi-
tion and the existence of a corresponding critical endpoint in the QCD phase diagram have
always been topics of prime interest [66—68]. Early hypotheses concerning the occurrence
of a first-order phase transition were frequently based on Nambu—Jona-Lasinio (NJL)-type
models in mean-field approximation [69-71], which were later extended by incorporating
confinement aspects through added Polyakov-loop degrees of freedom [72-74].

The empirical constraints on strong first-order phase transitions in dense neutron star
matter, as described in Section 3.2, are strikingly at variance with previous mean-field
(e.g., NJL model) predictions. These suggested that a first-order chiral phase transition
should already appear at relatively low baryon densities around p ~ 2 — 3 pg. A possible
explanation for this discrepancy can be found in [55,75], where a chiral nucleon-meson
(ChNM) field theory was used to explore the effects of fluctuations beyond mean-field
(MF) approximation. The starting point was a relativistic chiral Lagrangian, L(¥; 7, o; Uy ),
shaped around a linear sigma model with nucleons (¥), pions (77), and a scalar (o) field.
Short-range dynamics were parametrized in terms of heavy isoscalar and isovector vector
fields (v ). The expectation value (¢) of the scalar field acted as a chiral order parameter
normalized in the vacuum to the pion decay constant, f; ~ 92 MeV. Two classes of
fluctuations beyond MF were then systematically studied: first, vacuum fluctuations that
introduced an additional term proportional to o* In(¢/ f) in the MF partition function;
secondly, fluctuations involving pion loops and nucleon particle-hole excitations. The
vacuum fluctuations can be included in an extended mean-field (EMF) approximation [76].
Fluctuations involving pion and nucleon loops are computed using non-perturbative
functional renormalization group (FRG) methods. The parameters of the ChNM model—in
particular, those related to short-distance dynamics—are fixed to reproduce empirical
nuclear physics data [55,75].



Symmetry 2024, 16, 111

13 0of 19

Figure 10 demonstrates the important role of fluctuations beyond the mean-field
approximation for the chiral order parameter (¢). In symmetric nuclear matter, the mean-
field approximation of the ChNM model correctly reproduces the first-order liquid—gas
phase transition at low density. However, the chiral order parameter also displays a
strong first-order chiral phase transition with a Maxwell-constructed phase coexistence
region starting already below 2 pg. For neutron matter, which has no liquid—gas phase
transition, the MF approximation nevertheless predicts a first-order chiral phase transition
at densities around p ~ 3 pg, which is well within the range of densities realized in neutron
stars. However, in both nuclear and neutron matter, the inclusion of fermionic vacuum
fluctuations (i.e., the effect of the ground state zero-point energy) in the extended mean-field
(EMF) approximation converts the first-order chiral phase transition into a smooth crossover
and shifts it to densities of p > 5p¢. This effect is further enhanced by the additional
fluctuations included in the full FRG calculation, as demonstrated in Figure 10. As a result,
the restoration of chiral symmetry is relegated to very high baryon densities beyond the
inferred core densities in even the heaviest neutron stars (see Equation (12)). A comparable
impact of fluctuations on the phase structure is seen in alternative chiral models [77,78].

Another approach based on chiral symmetry is the parity-doublet model. In this model,
the active coupled baryonic degrees of freedom are the nucleon with spin-parity 1/2% and
its chiral partner with spin-parity 1/2~, where the latter is identified with the N*(1535)
resonance. Spontaneous chiral symmetry breaking in vacuum manifests itself in the mass
splitting of these two states, while the in-medium restoration pattern of this symmetry is
signaled by the N and N* masses becoming degenerate. A recent detailed analysis [79] of
the chiral order parameter in this model using extended mean-field approximation found a
chiral phase transition in nuclear matter, but at extremely high densities (p > 10 pp) that
are far beyond the density scales reached in neutron stars.

........ e
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T
neutron matter
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Figure 10. Chiral order parameters in symmetric nuclear matter and neutron matter at a temperature of
T = 0as a function of baryon density in units of nuclear ground state equilibrium density, oy = 0.16 fm—3.
Dotted lines: liquid—gas phase transition (L-G) in symmetric nuclear matter. Dashed lines: first-order
chiral phase transitions emerging from the mean-field (MF) approximation of a relativistic chiral nucleon—
meson (ChNM) field-theoretical model. Solid lines show the results of extended mean-field (EMF)
calculations (with the inclusion of fermionic vacuum fluctuations) and functional renormalization group
(FRG) calculations based on the same ChNM model. The figures were adapted from Refs. [55,75].
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4.4. Dense Baryonic Matter: A Fermi Liquid Picture

The constraints on the equation of state inferred from the current empirical data still
permit an interpretation of neutron star core matter in terms of baryonic degrees of freedom,

such as a system dominated by neutrons [41] with small fractions of protons and perhaps

hyperons [80-82]. The inferred baryon chemical potential u(p) = asa(;)) shown in Figure 3

does not distinguish between different species of baryons. Its behavior nonetheless displays
increasingly strong correlations at high densities. It is instructive to analyze the gross
properties of this state of matter using the Landau theory of relativistic Fermi liquids [83].
Here, we perform a schematic study assuming “neutron-like” quasiparticles [84] with a
baryon number of B = 1 and a density-dependent mass of m(p) while ignoring other small
admixtures in the composition of the dense medium. These quasiparticles are characterized
by their (relativistic) Landau effective mass m} at a Fermi momentum of pp = (372 0)'/3,

mi(p) = \/pF +m2(p), (22)

together with an effective potential, U(p), so that the baryon chemical potential can be
written as [84]

u(p) =mp(p) +U(p) . (23)

The median of the y(p) posterior credible bands in Figure 3 is now taken as a guiding start-
ing point to extract the baryonic quasiparticle properties. With an educated ansatz for m(p),
the density dependence of the potential U(p) can then be deduced and further discussed.
One possible choice is to take m(p) (with m(0) = 939 MeV) from the non-perturbative FRG
calculation employing the chiral nucleon-meson field-theoretical model [75] discussed in
Section 4.1. The resulting Landau effective mass m] (o) is shown in Figure 11 together with
the potential U(p) = u(p) — mj (p). The 95% credible band of 1(p) in Figure 3 leads to an
uncertainty of about 15% for U at high densities. It is instructive to fit the resulting quasi-
particle potential by a series in powers of baryon density for p < 5 pg (with pg = 0.16 fm 2,
as before):

n
U(p) =) un (p> : (24)
n 00
The coefficients fitted to the median of y(p) are
u; =909MeV, up, =153MeV, uz=32MeV, uy=—-04MeV. (25)

This pattern reflects a hierarchy of many-body correlations, recalling that the term linear in
density represents two-body interactions, the term of order p? corresponds to short-range
three-body forces, and so forth. The role of the repulsive N-body terms with N > 2 is
quite significant; at p >~ 4 py, corresponding to an average distance of about 1 fm between
the baryonic quasiparticles, these terms contribute as much as the two-body forces to the
potential U and generate the strong pressure to support heavy neutron stars. Of course, these
statements rely on the ansatz for the density-dependent mass m(p), which is guided by the
FRG calculations of pure neutron matter. A small fraction of protons in beta-equilibrated
matter will not substantially change this picture. However, neutron star core compositions
that qualitatively deviate from this simplified picture may lead to different conclusions.

Finally, consider the dimensionless Fermi liquid parameters, Fy and F;, of the spin-
averaged quasiparticle interaction. In terms of the quasiparticle mass and potential, they
are given as [84]

PE om «, ou _ 3U(p)
= g‘FmL(P)% , Fi(p) = ") (26)
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Further useful relations are 1 + Fy = N(0)(0p/dp) with the density of quasiparticle states
at the Fermi surface, N(0) = m}pp/m?, and 1+ F /3 =1—U/u = m} /p.

950 F T T T T T
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850 [ U
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800 | MeV]
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700 b s s
0 T ; 3 1 5 °
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Figure 11. The Landau effective mass m] (p) = \/p% + m?(p) and potential U(p) of quasiparticles
representing the median of the posterior distribution of the baryon chemical potential u(p) (see
Figure 3).

The result in Figure 12 shows a strongly increasing Fj at high densities. This reflects
once again the growing importance of many-body correlations as matter becomes more
and more compact. Such repulsive correlations are responsible for the increase in the
sound velocity beyond its canonical conformal limit, ¢s > 1/ /3, as seen in Figure 1. The
Fermi liquid parameter F; is smaller in magnitude and has a negative slope, indicating the
decreasing effective mass at higher densities.
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Figure 12. The Landau Fermi liquid parameters derived from quasiparticle properties that are based
on the median of the data-inferred baryon chemical potential y (see Figure 3).

The Landau parameter F displays the typical behavior of a strongly correlated Fermi
system. However, it is interesting to observe that, in comparison with the leading Landau
parameters in liquid 3He, the correlations in neutron star core matter are not extraordinarily
strong. Values of Fy ~ 9.3 were reported for >He at zero pressure, and Fy ~ 68.2 at a
pressure of 27 bar [85]. Accordingly, the Fermi liquid parameters for matter in the density
range that is reached inside even the heaviest neutron stars, p < 5py, are significantly
smaller. From this perspective, the dense baryonic medium encountered in the center of
neutron stars is perhaps not as extreme as often imagined.
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5. Concluding Remarks

The neutron star database, which was recently extended by adding the heaviest
pulsar (PSR J0952-0607) observed so far, requires a much stiffer equation of state for
neutron star matter compared to those of previous analyses. As a consequence, the baryon
densities reached in the cores of even very heavy neutron stars do not exceed about
five times the density of normal nuclear matter. In a baryon-dominated system, such
densities correspond to average distances between any two baryons of 1 fm or larger.
Chiral model descriptions of the nucleon suggest a scale separation between a compact
valence quark core and a mesonic cloud, so the nucleonic cores with radii of about 1/2 fm
would begin to touch and overlap only in the deep interior of extremely heavy neutron
stars. The appearance of a strong first-order phase transition becomes unlikely under
such conditions. This is consistent with the empirical results, which suggest that extended
phase coexistence regions and small minimum sound speeds are not favored by the current
data. This interpretation is further endorsed by the fact that fluctuations beyond the mean-
field approximation convert a possible first-order chiral phase transition into a smooth
crossover at high densities. However, this is at variance with conclusions about a strong
deconfinement phase transition that have been drawn from datasets that do not yet include
the 2.35 solar mass black widow pulsar. On the other hand, a continuous hadron-to-quark
crossover scenario—or alternatively, baryonic matter as a strongly correlated relativistic
Fermi liquid—remains possible within the inferred data-driven constraints.
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