
Citation: Murodov, S.; Badalov, K.;

Rayimbaev, J.; Ahmedov, B.; Stuchlík,

Z. Charged Particles Orbiting

Charged Black-Bounce Black Holes.

Symmetry 2024, 16, 109. https://

doi.org/10.3390/sym16010109

Academic Editor: Jose Antonio de

Freitas Pacheco

Received: 27 December 2023

Revised: 11 January 2024

Accepted: 15 January 2024

Published: 16 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Charged Particles Orbiting Charged Black-Bounce Black Holes
Sardor Murodov 1,2,3 , Kodir Badalov 1,2,3 , Javlon Rayimbaev 4,5,6,7,* , Bobomurat Ahmedov 1,8,9
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Abstract: The detailed and comprehensive analysis of radiation processes in accretion disks consisting
of electrically charged particles around black holes may provide powerful information about the
spacetime geometry of the central black hole. We investigate the circular orbits of electrically
charged particles around an electrically charged black-bounce Reissner–Nordström (RN) black hole,
known as an RN Simpson–Visser (SV) black hole. We also study the profiles of the innermost stable
circular orbits (ISCOs), energy, and angular momentum of the particles in their ISCOs, as well as the
efficiency of energy release processes in the accretion disk in the Novikov–Thorne model. Finally,
we calculate and study the effects of the black-bounce parameter as well as the black-hole charge
on the intensity of the radiation of ultrarelativistic charged particles orbiting the charged RN SV
black hole along circular orbits and falling into the black hole. It is observed that the black-bounce
parameter essentially decreases the ISCO radius, and consequently the energy extraction and intensity
of electromagnetic radiation.

Keywords: black-bounce black hole; Simpson–Visser spacetime; ISCO; charged particles; radiation
intensity

1. Introduction

Black holes are often described in astrophysical scenarios as rotating compact objects
characterized by their spin parameter, which is responsible for their energetics. The first
exact solutions for charged black holes were derived independently by Reissner and
Nordström and involved a combination of general relativity (GR) and linear Maxwell
electrodynamics [1,2]. These solutions, known as RN black holes, introduced the concept
of electric charge for black holes but suffered from a physical singularity.

To address the singularity problem, researchers have explored exact solutions for
charged black holes in GR combined with nonlinear electrodynamics. These solutions,
termed regular (rotating)-black-hole solutions, were proposed by scientists in the litera-
ture [3–8]. These regular-black-hole solutions aim to provide alternatives that avoid or
mitigate the issues associated with physical singularities, often by introducing nonlinearity
modifications to the standard Maxwell equations.
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For the first time, Simpson and Visser introduced a straightforward method to address
singularity issues by modifying the metric through the coordinate transformation r with√

r2 + l2. This solution is commonly referred to as the SV spacetime or Schwarzschild
spacetime with a black bounce [9]. Subsequently, electrically charged versions of SV-RN
black holes were introduced in the literature [10–12]. Additionally, an extension to the
rotating case is presented in [13]. It is noteworthy that the SV spacetime exhibits diverse
features, describing regular black holes for length scale parameter values below 2, one-
way wormholes or black holes with a null throat at l = 2, and traversable wormholes for
l > 2 [14–16].

The presence of the parameter l introduces uncertainty, as its physical significance
remains unknown. It has been suggested that l might encapsulate effects arising from
quantum gravity [17,18] or be influenced by non-electric or massive scalar fields. Analogous
and generalized versions of the SV-black-hole solution are explored in [19], providing an
in-depth analysis of the energy conditions within various models [15,17,20].

Hence, to decipher the nature and gravitational implications of the parameter l, one
can scrutinize the astrophysical consequences of the (charged/rotating) SV spacetime
through observational means. In our prior investigation [21], we delved into the study
of Quasi-Periodic Oscillations (QPOs) originating from charged particles orbiting around
a magnetized SV spacetime. Our findings indicated that in SV spacetime with magnetic
interaction effects, an increase in the l parameter leads to a greater divergence from observed
data. This suggests that in microquasars, the central object might manifest as a wormhole
rather than a black hole, particularly when the magnetic parameter is elevated.

Additionally, recent work by the authors in [22] explored the shadow characteristics of
SV black holes/wormholes, establishing meaningful constraints on the parameter l using
data from the Event Horizon Telescope (EHT) observations of the M87* and SgrA* super-
massive black holes. Their results demonstrated that the SV black hole’s shadow closely
resembles that of the Kerr black hole. However, the SV wormhole, being a no-horizon
spacetime, can exhibit a closed photon ring when it has substantial spin. The exploration
of gravitational lensing/retrolensing in a weak-field limit, alongside investigations into
quasi-normal spectra and gray-body factors, has been conducted in the context of the SV
spacetime. This research has recently been documented in references [23–25], and the strong
deflection limit in the SV spacetime is specifically addressed in Ref. [26,27]. In particular,
it has been observed that the photonsphere in the SV spacetime remains independent of
the parameter l within the range l ≤ 3. This finding suggests that the SV metric does not
distinguish between a black hole and a wormhole in this parameter range.

Furthermore, in the work presented in Ref. [28], the authors demonstrated that a
degeneracy in the combined effects of the black-hole charge and bounce parameters can
result in orbital motion around RN SV black holes that is indistinguishable from motion
around a Schwarzschild black hole. Additionally, relationships between the black-hole
charge and bounce parameter were identified, which have the potential to break this
degeneracy. These relationships were derived by utilizing precession data from the S2 star
orbits around Sgr A* anchored in the center of the Milky Way galaxy, as detected by the
GRAVITY collaboration, and the measured shadow size of the Sgr A* supermassive black
hole imaged by the Event Horizon Telescope.

To investigate the structure of spacetime around the RN black hole, one can examine
the motion of test particles, as discussed in various studies [29–40]. The characteristics of
the RN solution and the influence of the electromagnetic field on the spacetime structure
around compact objects are examined in the references (see, e.g., [41–44]).

The presence of external electromagnetic fields surrounding black holes or the in-
trinsic magnetic fields of the highly magnetized neutron stars significantly impacts rich
astronomical observations of compact gravitational objects through electromagnetic radia-
tion. Additionally, it plays a crucial role in influencing the highly energetic astrophysical
processes occurring in their vicinity. While an external test electromagnetic field with a
magnitude less than 1019 G may not alter the spacetime structure, its influence on the
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energetic processes and dynamics of charged and magnetized particles around compact
gravitational objects is vital [45]. The no-hair theorem posits that black holes cannot pos-
sess an intrinsic magnetic field traced to their origin [46]. One approach to investigating
magnetic fields associated with black holes involves exploring the external magnetic field
in their vicinity. Pioneering work in this area was conducted by R. Wald, particularly in the
study of the structure of external electric and magnetic fields around rotating and static
black holes immersed in an external asymptotically uniform magnetic field [47].

Over the years, various aspects of electromagnetic field properties near black holes
immersed in external asymptotically uniform magnetic fields, as well as the intrinsic
magnetic fields of rotating magnetized neutron stars characterized mainly by a dipolar
structure, have been extensively examined by multiple researchers across different gravity
models [48–50].

In the present paper, we investigate the circular motion and electromagnetic radiation
of charged particles near electrically charged black holes in RN SV spacetime. The paper
consists of the introduction, four main sections (Sections 2–5), where we discuss the effects
of the black hole’s total charge and the black-bounce parameters on the circular motion and
radiation of charged particles, and finally, Section 6.

We adopt the spacetime signature (−,+,+,+) and employ the geometrized unit
system with GN = c = 1. The Latin indices are anticipated to range from 1 to 3, while the
Greek indices span from 0 to 3.

2. Charged Black-Bounce Black holes

The geometry of spacetime around charged (RN) black-bounce black holes can be
described using spherical coordinates (xα = t, r, θ, φ) in the following form [11]:

ds2 = − f (r)dt2 +
dr2

f (r)
+ h(r)dΩ2

2, (1)

where the metric components of the “regularized” charged spacetime (for details, see [11]) are

f (r) = 1− 2M√
r2 + l2

+
Q2

r2 + l2 ; h(r) = r2 + l2 , (2)

The event horizon radius can be found by solving f (r) = 0, as follows:

r
M

=

√√√√2

(
1 +

√
1− Q2

M2

)
− l2 −Q2

M2 . (3)

We visually examine the characteristics of the event horizon in Figure 1. Notably,
when Q = 0, the event horizon becomes zero at l = 2, resulting in the transformation
(coincidence) of the black-hole spacetime into a wormhole spacetime. However, this limit
diminishes to l = 1 for the maximum value of the black-hole charge Q = 1. Likewise, the
maximum value of Q also decreases with the increase in l.
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Figure 1. The event horizon radius vs. the black-hole charge and the length parameter. M = 1.
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The strength of the electric field around the charged SV black hole is [11]

E(r) =
Qr

(r2 + l2)
3/2 . (4)

One can find the time component of the electromagnetic four-potentials by integrating
At =

∫
E(r)dr, and we have

At = −
Q√

r2 + l2
. (5)

3. Charged-Particle Motion

In this section, we analyze the motion of charged particles characterized by mass m
and electric charge e moving within the combined gravitational and electromagnetic fields
specified by the lapse function in Equation (2) and the four-potential electromagnetic vector
outlined in Equation (5).

3.1. Equations of Motion for Charged Particles

In this section, we derive equations of motion of charged particles in circular orbits in
spacetime (1) using the Hamilton–Jacobi equation,

gµν
( ∂S

∂xµ − eAµ

)( ∂S
∂xν
− eAν

)
= −m2 . (6)

The action of charged particles’ motion has the following separated form:

S = −Et + Lφ + Sr + Sθ . (7)

Here, E and L are integrals of motion defining the energy and angular momentum of the
charged particle, respectively. Sr and Sθ are the radial and angular functions. After some
algebraic calculations, one can obtain

− 1
f (r)

(E− eAt)
2 + f (r)

(
∂Sr

∂r

)2
+

1
h(r)

(
∂Sθ

∂θ

)2
+

L2

h(r) sin2 θ
= −m2. (8)

From this point, we restrict the motion of the particle to a constant plane θ = θ0,
without vertical motion θ̇ = 0 (pθ = (∂Sθ/∂θ) ≡ 0), and we have

ṫ =
1

f (r)
(
E − qAt

)
, (9)

φ̇ =
L

h(r) sin2 θ0
, (10)

ṙ2 =
(
E − qAt

)2 − f (r)
(

1 +
L2

h(r) sin2 θ0

)
(11)

where q = e/m is the specific charge of the particles, and E = E/m and L = L/m are the
specific energy and angular momentum of the particles, respectively, known as integrals
of motion. One can rewrite the equation for the radial motion at the fixed plane in the
standard form,

ṙ2 =
(
E −V−eff

)(
E −V+

eff

)
. (12)

The circular motion of the charged particles can be described using the equations
E = Veff and ṙ = 0, and the effective potential can be found as solutions of Equation (11).
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Hence, the effective potential for the circular motion of the charged particles reads in the
equatorial plane (θ0 = π/2) as

V±eff(r;L) = qAt ±

√
f (r)

(
1 +

L2

h(r)

)
. (13)

The effective potential is composed of two components, namely Coulomb and gravita-
tional interactions, and exhibits symmetry dependent on the sign of q, which represents
the specific charge of the test particle. Throughout the paper, we consistently refer to the
effective potential as V+

eff, unless explicitly stated otherwise [51].
In our investigation, we specifically consider the positive root of the effective potential,

denoted by V+
eff. This choice corresponds to what is known as positive root states, where

the four-velocity is oriented toward the future and the energy is positive relative to local
observers. For a more in-depth understanding, see [46].

In Figure 2, we illustrate the radial variations in the effective potential Veff = V+ for
different combinations of black hole and particle charges, as well as length parameters. In
this examination, we maintain the angular momentum at a fixed value of L2/M2 = 20. The
gravitational influence of the RN black hole charge is observed to increase the maximum
effective potential. However, for positive values of the qQ coupling and the l parameter,
the maximum decreases, while, for qQ < 0, the effective potential increases.

Schw BH

RN BH; Q=0.4

q=0.1; Q=0.2; l=1

q=0.1; Q=-0.1; l=1

q=-0.2; Q=0.4; l=1

2 5 10 20

0.85

0.90

0.95

1.00

1.05

1.10

r

Veff

ℒ= 20

Figure 2. Radial profiles of the effective potential for the circular motion of charged particles around
RN SV black holes. M = 1.

3.2. Circular Orbits

The solutions of V′eff = 0 (where ′ indicates a partial derivative by r) within the fixed
background indicate that a particle with a particular specific charge q traces a circular
orbit at a specified radius r when its specific angular momentum satisfies the correspond-
ing relation:

L2
± =

1

[h(r) f ′(r)− f (r)h′(r)]2

{
f (r)h2(r) f ′(r)h′(r)− h3(r)

(
f ′(r)2 − 2 f (r)qA′(r)2

)
±qA′(r) f (r)h2(r)

√
h2(r)q2 A′(r)2 − h′(r)

[
h(r) f ′(r)− f (r)h′(r)

]}
. (14)

When Q = 0 and l = 0, corresponding to the Schwarzschild case, the angular momen-
tum solution for circular orbits can be expressed as L2

± = Mr2/(r− 3M). Now, we will
investigate the solution in (14) to identify the conditions under which both L2

± are real.
For the solution in Equation (14) to produce real values, the expression under the

square root must remain consistently positive. Therefore, when considering the specific
angular momentum at the circular orbit, we need to consider two scenarios:
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a. Since h2(r)q2 A′(r)2 is always positive, h(r) f ′(r)− f (r)h′(r) ≤ 0 must be found for
any specific charge q and for q = 0;

b. When h(r) f ′(r) − f (r)h′(r) > 0, then h2(r)q2 A′(r)2 ≥ h′(r)|h(r) f ′(r) − f (r)h′(r)|
must be satisfied for large values of the particle’s charge.

One can see from Equation (14) that L2
+ < L2

− for positive charges and L2
− > L2

+ for
negatively charged particles. Therefore, L2

+|q<0 = L2
−(q > 0) < L2

+(q > 0) = L2
−(q < 0).

The conditions outlined in (15) require establishing stable circular orbits, implying a
balance between competing forces that act on the charged particle. Three forces, Coulomb,
gravitational, and centrifugal, act on the particle during its orbit around the charged black-
bounce black hole. For negatively charged particles, gravitational and Coulomb forces
align in the same direction, while the centrifugal force points inward toward the charged
black hole with Q > 0. To maintain equilibrium, the sum of Coulomb and gravitational
forces must counteract the centrifugal one. This involves using L2

− for negatively charged
particles, considering that the centrifugal force is proportional to L2, and the value of L2

should be large enough to prevent the particle from falling into the central object.
On the contrary, for positively charged particles, both the centrifugal and Coulomb

forces are in the same direction. Therefore, for positively charged particles, we exclusively
employ L2

− since the value of L2 should be small enough to prevent the particle from being
pulled to infinity. Given these considerations, we examine the radii of the circular orbits
of charged particles using the solution L2

− obtained from Equation (14), where r > rcrit,
where rcrit is the radius of the last circular orbit.

The radial profiles of the angular momentum and energy of charged particles are
depicted in Figure 3 for circular orbits in the spacetime of an electrically charged RN SV
black hole, considering various values of the parameters q, Q, and l. In the top-left panel, it
is evident that both the gravitational influence of the black-hole charge and the Coulomb
forces contribute to a reduction in the values of angular momentum and energy. Similarly,
the impact of the parameter l also leads to a decrease in both quantities.
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q=0.2; Q=0.1; l=1;
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Figure 3. The angular momentum (top left) and energy (top right) of charged particles for circular
orbits as a function of the radial coordinate. The (bottom panel) represents E − L space for different
l, q, and Q parameters, and M = 1.
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3.3. Charged-Particle Trajectories

In Figures 4 and 5, we demonstrate the trajectories of positively (q = 1) and negatively
(q = −1) charged particles in the spacetime of charged black-bounce black holes (Q = 0.2),
respectively. Here, we use the initial conditions for the angular momentum of the particles
L = 3, with initial radial and angular coordinates r0 = 7 and θ0 = (π/2 + 0.2) rad,
respectively. We have examined the values of the parameter l = 1, 1.7, and 1.8. It is
observed from the figures that the parameter l weakens gravity near the black hole. One
can see that the positively charged particles fall into the black hole at l = 1.7. However,
under the same conditions, negatively charged particles have some bounded orbits. In the
case of l = 1.8, the particles with q = 1 orbit in bounded orbits that differ from the orbits of
the particles with q = −1.

Figure 4. Trajectories of positively charged particles around the charged black-bounce RN black holes
for different values of l. Here, we fixed L = 0.3, q = 1, Q = 0.2, M = 1, and initial coordinates are
taken as r0 = 7 & θ = 1.6(π/2 + 0.2) rad.

3.4. The ISCO Radius

Presently, we investigate the ISCOs of charged particles revolving around charged
black holes within the SV spacetime. From an astrophysical standpoint, ISCOs serve to
delineate the inner boundary of the accretion disk encircling the black hole. The stability of
circular orbits in a fixed plane is determined by meeting the following conditions:

Veff = E , V′eff = 0 , V′′eff ≥ 0 . (15)

Here, we examine the impact of particle and black-hole charges, along with the length
parameters, on the ISCO radius.
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Figure 5. The same figure as Figure 4, but for negatively charged particles. In this case, we also fixed
L = 0.3, q = 1, Q = 0.2, M = 1, and initial coordinates are taken as r0 = 7 & θ = 1.6(π/2 + 0.2) rad.

In Figure 6, we illustrate the relationship between the ISCO radius of charged particles
and their charge (top row), the black-hole charge (bottom right panel), and the parameter
l. In particular, there is a symmetric behavior in ISCO profiles when q is replaced by −q
and −Q is replaced by Q, that is, qQ→ −qQ. For Q = 0.1 (Q = −0.1), a minimum in the
ISCO value is observed at rISCO = 5.97744 for q = −0.05 (q = 0.05), and when Q = ±0.2,
the ISCO minimum changes to rISCO = 5.8546 at q = ±0.1. The increase in l leads to a
decrease in the ISCO radius, ultimately reaching zero at a critical value of l that defines the
wormhole spacetime.
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Figure 6. ISCO profiles: The dependence of the ISCO radius on the particle charge (top two panels)
for Q = ±0.2 (left panel) and Q = ±0.1 (right panel); ISCO radius vs. the black hole (left-bottom
panel); ISCO radius vs. l parameter (bottom-right panel). M = 1.
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3.5. Angular Momentum at ISCO

In this subsection, we discuss the angular momentum of charged particles at their
ISCOs around the charged black-bounce black hole.

Examining Figure 7, it is evident that for electrically neutral particles, the angular
momentum (LISCO) experiences a symmetric and slight decrease in both negative and
positive values of Q. Conversely, in the case of Q > 0, the angular momentum increases
(decreases) for positively (negatively) charged particles. However, all results exhibit the
inverse behavior when Q < 0. Thus, symmetrically inverse results can be observed when
the coupling parameter qQ approaches its negative counterpart, denoted as −qQ.

RN BH

q=0.1; l=0.2

q=0.2; l=0.5

q=-0.1; l=0.8

q=-0.2; l=1
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C
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Q=-0.1; l=0.3

Figure 7. Values of angular momentum of charged particles corresponding to ISCOs around charged
black-bounce black holes versus the black-hole charge Q (left panel), and the particle’s charge (right
panel). M = 1.

3.6. Energy at ISCO

In this context, we explore the impact of charge variations on the energy of charged
particles around the charged bouncing black hole at their ISCOs, considering variations in
both black-hole and particle charges, as well as the parameter l.

The patterns in the ISCO energy profiles, as evident in Figure 8, closely resemble
the trends observed in the angular momentum profiles presented in Figure 7 for neutral
particles. However, in the scenario where qQ < 0, the energy E experiences an increase,
whereas for qQ > 0, it decreases in a (quasi)linear fashion. It should be noted that even
slight variations in the values of q and Q lead to significant changes in both LISCO and
EISCO. Furthermore, a marginal increase in l results in a slight reduction in both the energy
and angular momentum.

RN BH

q=0.1; l=0.2

q=0.2; l=0.5

q=-0.1; l=0.8

q=-0.2; l=1
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C
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Figure 8. Similar figure to Figure 7, but for the particle energy at ISCOs. M = 1.

The connections between the ISCO energy and the ISCO angular momentum are
depicted in Figure 9 across various configurations of black-hole and particle charges, as
well as the parameter l. The figure reveals that particles can exhibit a correspondingly large
ISCO energy and ISCO angular momentum, with notably greater energy in cases of electric
repulsion, when qQ < 0, compared to instances of electric attraction (qQ > 0).
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Figure 9. The angular momentum vs. energy of the particles at their ISCOs around the RN black hole
in SV spacetime. M = 1.

4. The Energy Efficiency

A compelling scenario unfolds when examining the dynamics of a charged test particle
within a Keplerian accretion disk as it descends toward the central black hole, releasing
energy in the form of electromagnetic and/or gravitational radiation. The quantity of
radiated energy is determined by the contrast between the particle’s locally observed rest
energy and its energy at the ISCO, acting as a reflection of the spacetime characteristics.
Consequently, the energy efficiency of the accretion disk can be calculated using the formula
introduced by Novikov in 1973 [52].

The significance of the ISCO in the vicinity of black holes is associated with the inner
boundary of an accretion disk. Intriguingly, as test particles plunge into the central region
of the black hole within the Keplerian accretion disk, they extract a specific amount of
energy that may be converted into electromagnetic and gravitational radiation under
certain constraints. The energy released through radiation is commonly computed as the
difference between the particle’s rest energy (as determined by a suitable observer) and the
particle’s ISCO energy (EISCO) [52].

According to [53], electromagnetic radiation in an accretion disk is due to the rotational
kinetic energy of the disk, and it is mainly dependent on the rate of matter inflow. In fact,
the physics of the accretion disk is more complicated than we know, and there are lots of
factors one has to take into account when studying the dynamics of the steady accretion
disk, such as the role of viscosity, radiation mechanisms, time dependence, instability,
variability, the inner boundary, etc. [54].

Moreover, the bolometric luminosity emitted from the accretion disk is directly cor-
related with the energy efficiency of the central black hole, expressed by the equation
η = Lbol/(Ṁc2), where Ṁ denotes the accretion rate [55].

In this context, here, we also explore the efficiency of released energy, taking into
account the electromagnetic forces acting on electrically charged particles by the electric
field generated by the electric charge of the black-bounce RN black hole. Consequently, the
efficiency of the energy released from the accretion disk can be mathematically represented
as follows [52]:

η = 1− E r=rISCO . (16)

The impact of the Coulomb interaction between the electric charges of the black hole
and the particles orbiting the black-bounce RN black hole on the efficiency of energy release
from the accretion disk is illustrated in Figure 10 for various values of l. The efficiency
of energy release increases with increasing positive values of the qQ coupling, while it
decreases when qQ is negative. For the scenario where q = 0 (depicted by the black line in
the left panel and referred to as RN BH), both positive and negative values of the black-hole
charge lead to a slight increase in efficiency.
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Figure 10. The dependence of the energy efficiency on the black-hole and particle charges M = 1.

5. Intensity of Electromagnetic Radiation by Accelerated Charged Particle

The process of matter accretion around both supermassive and stellar-mass black holes
is widely acknowledged as a mechanism for producing high-energy relativistic particles
near active galactic nuclei and the low-mass X-ray binary sources associated with stars,
respectively. Although the precise mechanisms governing the generation of energy in these
highly energetic sources remain to be fully understood, there is a prevalent consensus that
underscores the substantial influence of magnetic fields in the surroundings of rotating
black holes, playing a crucial role in the creation of high-energy relativistic particles [56–58].

An essential inquiry arises concerning the relevance of a black hole’s charge in the
context of extracting energy. It is firmly established that relativistic charged particles,
particularly those propelled by an external electromagnetic field, release electromagnetic
radiation. Synchrotron radiation from an accelerated charged particle, a fundamental
example of such radiation processes, serves as a relativistic variant of cyclotron radiation.
Prior investigations have explored synchrotron radiation from charged particles near a
magnetized Schwarzschild black hole (Landau and Lifshitz, 2013) [59]. One may determine
the ISCO radius, being the inner edge of the accretion disk around a black hole, through
iron emission lines in the accretion disk [60], X-ray reverberation around the black hole [61],
and the energetic spectrum of relativistic jets [62], which may help to determine the black-
hole spin.

In this context, our focus shifts to the exploration of electromagnetic radiation emitted
by an accelerated charged particle orbiting around a charged black hole. The radiation
spectrum produced by a relativistic charged particle in profoundly curved spacetime is
expressed as (see Ref. [63] for details),

I =
2q2

3
wαwα, (17)

where wα = Uβ∇βUα, and it stands for the four-acceleration. Using the non-geodesic
equation, it is expressed as

dUα

dλ
+ Γα

µνUµUν =
q
m

Fα
βUβ, (18)

We can rewrite the expression for the four-acceleration of the charged particles in an
external electromagnetic field in the following form:

wα =
q
m

Fα
βUβ , wαUα ≡ 0. (19)

As evident from Equation (19), the four accelerations of the particle are perpendicular
to its four velocities. In conclusion, considering all the previously discussed points, the
formulation for the spectrum of electromagnetic radiation can be expressed as [63]

I =
2q4

3m2 FαγFγβUαUβ . (20)
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5.1. Acceleration of Charged Particles in Stable Circular Orbits

In this case, we assume that charged particles radiate in stable circular orbits in a
fixed plane Uα = Ut(1, 0, 0, Ω), where Ω = dφ

dt is the angular velocity of the particles.
The directions of the velocity and acceleration of the charged particles are perpendicular,
satisfying the condition wαUα ≡ 0, and we have wα = (0, wr, 0, 0), with

wr =
qFrt

m
√
−gtt −Ω2gφφ

. (21)

Using Equations (20) and (21), one may obtain an estimation of the intensity [63]:

I ' 1.3× 1024
( q

e

)4(me

m

)2
(

M�
M

)2( f
f −Ω2r2

)
, (22)

To show the effect of l, below, we analyze the intensity (22), normalizing it to the
RN-black-hole case.

Graphical analyses of the ratio of the intensity of the radiation of charged test particles
(q = 1 and q = −1) in circular orbits around charged black-bounce black holes and RN
black holes I(r, l, Q, q)/I(r, 0, Q, q) are presented in Figure 11, with the left and right panels
showing the Q > 0 and Q < 0 cases, respectively. The intensity decreases with increasing l,
as well as in the case of qQ > 0. However, it increases in qQ < 0 cases. The intensity rate is
higher in the qQ < 0 case than in qQ > 0 at larger values of l.
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Figure 11. Radial dependence of the intensity of electromagnetic radiation of charged particles
orbiting the black-bounce RN black hole along circular orbits normalized to the RN limit at l = 0 for
various values of the parameters q, Q (left and right panels for Q > 0 and Q < 0 cases, respectively),
and l. M = 1.

5.2. Acceleration of Falling Charged Particles into Central Black Hole

In this subsection, we assume that the charged particles are falling, with spiral-like tra-
jectories, into the central charged black hole with the four-velocity
Uα = Ut(1, u, 0, Ω) (u = dr

dt is the radial velocity) and the corresponding four-acceleration
wα = (wt, wr, 0, 0) (where wt =

q
m FtrUr and wr =

q
m FrtUt). Consequently, one can obtain

the expression of the intensity of electromagnetic radiation by falling charged particles in
this form [63]:

I = − 2q4

3m2

(
u2gtt + grr

gtt + u2grr + Ω2gφφ

)
F2

rt. (23)

In Figure 12, we show the radial profiles of the intensity of charged particles falling
into the charged RN SV black hole normalized to the RN limit (l = 0) for positive (left
panel) and negative (right panel) values of Q. One can see that the presence of l causes a
decrease in the intensity. Also, the intensity rates are almost the same at larger values of
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l and smaller values of qQ. However, at smaller l and larger qQ, the intensity is slightly
greater in the case qQ > 0 than in qQ < 0.
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Figure 12. Similar figure to Figure 11, but for the radiation of falling charged particles (left and right
panels for Q > 0 and Q < 0 cases, respectively). M = 1.

6. Conclusions

In this study, we investigated the circular orbits of electrically charged particles around
electrically charged black-bounce RN black holes, known as RN SV black holes.

• First, we have analyzed the effective potential for circular orbits and found that
the gravitational effect of the RN black hole’s charge increases the maximum of
the effective potential. However, for positive values of the qQ coupling and the l
parameter, the maximum decreases, while, for qQ < 0, the effective potential increases.

• Also, we have studied the circular orbits of charged particles and shown that both the
gravitational influence of the black-hole charge and the Coulomb forces contribute
to a reduction in the values of angular momentum and energy corresponding to
circular orbits. Similarly, the impact of the parameter l also leads to a decrease in
both quantities.

• It is also shown that there is a symmetrical behavior in ISCO profiles when q is replaced
by −q and −Q is replaced by Q, i.e., qQ→ −qQ. For Q = 0.1 (Q = −0.1), a minimum
in the ISCO values is observed at rISCO = 5.97744 for q = −0.05 (q = 0.05), and when
Q = ±0.2, the ISCO minimum changes to rISCO = 5.8546 at q = ±0.1. The increase in
l leads to a decrease in the ISCO radius, ultimately reaching zero at a critical value of l
that defines the wormhole spacetime.

• Our performed analyses have shown that the angular momentum (LISCO) for elec-
trically neutral particles slightly decreases for both negative and positive values of
Q. Conversely, in the case of Q > 0, the angular momentum increases (decreases) for
positively (negatively) charged particles.

• In a similar scenario, for qQ < 0, the energy E increases, while for qQ > 0, it decreases
in a (quasi)linear fashion. It is worth noting that even small variations in the values of
q and Q lead to significant changes in both LISCO and EISCO. Furthermore, a marginal
increase in l results in a slight reduction in both the energy and angular momentum.

Finally, we have investigated the intensity of the radiation of charged particles orbiting
along circular orbits and falling into the central charged RN black hole in the SV spacetime,
leading to the following observations:

• In the case of the radiation from orbiting charged particles, the intensity of the radiation
decreases with increasing l, as well as in the case of qQ > 0. However, it increases in
qQ < 0 cases.

• In the case of falling charged particles, the effect of the l parameter is long-lasting at
far distances. The intensity rates are almost the same at higher values of l and lower
values of qQ. However, for a smaller l and a bigger qQ, the intensity is slightly larger
in the qQ > 0 case than in the qQ < 0 one.
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