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Abstract: This article discusses the stability problem of sampled-data-based dynamic positioning
ships (DPSs) using Takagi–Sugeno (T-S) fuzzy models. Firstly, dynamic equations for sampled-data
DPSs are established. Simultaneously combining several symmetric matrices with new integral
terms, a novel Lyapunov–Krasovskii function (LKF) is constructed, which allows the information
of a sampling pattern to be fully captured. Next, via the constructed LKF, the positive definiteness
requirements of a LKF are further relaxed, and the conservatism of the result can be reduced.
Consequently, stability criteria are given, and fuzzy sampled-data controllers are designed in terms
of linear matrix inequality (LMI). Finally, a simulation example is provided to verify the superiority
and applicability of the developed methods.

Keywords: fuzzy system; dynamic positioning ship; sampled-data control; Lyapunov–Krasovskii
functional; Takagi−Sugeno fuzzy models

1. Introduction

A DPS is a system that utilizes a combination of computers, position reference systems,
and thrusters to maintain a ship at a predetermined position [1]. It uses the measurement
equipment of the ship to collect environmental parameters, calculates the thrust of the
thruster based on the parameters of the global positioning system, and maintains fixed
positions and headings. Compared with anchoring positioning, a DPS relies only on ship
thrusters to overcome environmental interference and achieves the desired position for
engineering operations. Therefore, it has unique advantages, such as infinite depth opera-
tion, high mobility, and precise positioning. And a DPS has a wide range of applications,
such as cargo supply, oil extraction, heavy lifting, ocean surveying, deep water exploration,
ocean rescue, etc. Therefore, more and more scholars are studying the control problem of
DPSs ([2–7]). For example, reference [2] conducted fuzzy modeling for a DPS based on the
range of the yaw angle, and designed an observer that can provide excellent DP perfor-
mances that reduces the negative impact of external disturbance. Reference [3] designed
a quantization controller based on a switching mechanism to ensure the robustness and
control performance of a DPS, and signal quantization, time delay, and thruster failure
were simultaneously considered. Reference [4] used a neural network to design a system
controller for a DPS, and auxiliary devices like thruster and tug were considered. Ref-
erence [5] proposed a multitask control system for a DPS by introducing the integrated
neural controller, and the neural network structures were not required to be retrained while
performing different tasks. Reference [6] combined Luenberger observer and odd–even
space technology to DPS detect thruster faults, and designed a reconfigurable variable
structure controller to achieve fault-tolerant targets.

Recently, digital devices have been gradually replacing continuous time devices in
actual industrial systems. These control systems, which include continuous time objects
and discrete time controllers, are considered sampled-data control systems. Compared with
traditional continuous time control systems, sampled-data control systems only require
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the instantaneous sampling information of the system state, and thus greatly reduce
information transmission and communication costs. Therefore, they are widely applicable
in various systems, such as multiagent systems [8,9], chaotic systems [10,11], master–
slave systems [12], neural networks systems [13,14], Markovian jump systems [15], time
delay systems [16,17], etc. They have also been used in severable practical engineering
applications, including high-speed trains [18], autonomous airships [19], multipurpose
supply vessels [20], luxury cruises [21], unmanned marine vehicles [22], etc. For example,
reference [23] studied a discrete sampled-data system with a saturated actuator, and
designed a robust controller using a convex approach to ensure the local stability of
the systems with interval time delays. Reference [24] creatively introduced an algorithm
for event-triggered sampling control and proposed intermittent triggering conditions
at fixed sampling times. Reference [25] focused on a class of multi-agent systems and
transformed them into discrete systems, analyzed the inherent relationship between the
sampling period and steady-state performance, and obtained the range of the sampling
period. Reference [26] investigated the mean square exponential stability problem of a
sampled-data resistive memory neural network (MNN) system. The concept of security
level was first proposed to measure the anti-attack capability of a MNN. Reference [27]
proposed a dual deep Q-network method to solve the sampled-data control problem of
PBCNs, and an optimal sampled-data controller was designed to stabilize the PBCN.

Nowadays, T-S fuzzy systems (TSFSs) have obtained wide attention [28], and sever-
able sampled-data control results have been reported for TSFSs. Reference [29] investi-
gated the adaptive static output control problem of TSFSs with uncertainties. To reduce
the sampled-data frequency, new adaptive memory event-triggering mechanisms were
proposed. Reference [30] investigated the quantitative sampled-data control issue of a
network TSFS using a random network attack, and then new time delay product relaxation
conditions were proposed. Reference [31] proposed a non-periodic event-triggered commu-
nication scheme to solve the exponential stabilization issue of TSFSs under non-periodic
sampling conditions. Reference [32] investigated the stability problem of TSFSs under
sampled-data control using a new asymmetric LKF. Cyclic and discontinuous function
terms were improved by combining time delay and each sampling interval. Reference [33]
investigated the stability characteristics of a TSFS under sampled-data control. Based on the
input delay method, the system was converted to a variable time-delay system. Using the
reciprocally convex combination approach, stability criteria were established to guarantee
the stability of the TSFS.

A DPS is a sampled-data control system that uses a computer to collect severable
sensor information, and then the sailing status of the ship is obtained [34]. Recently, many
sampled-data control achievements of DPSs have been reported. In [35], the trajectory
tracking problem of a nonlinear sampled-data DPS was considered, and a reduced order
observer was introduced using the Euler approximation model. In [36], the systems of
the sampled-data DPS were converted into neutral systems; then the Wirtinger integral
inequality and delay-decomposition methods were introduced to reduce the conservatism
of the system. In [37], the fault-tolerant control problem of a sampled-data DPS was studied
using actuator failure. Reference [38] established fuzzy models for a sampled-data DPS, and
convex reciprocal inequalities were used to obtain the stability condition. Reference [39]
investigated the non-periodic sampling tracking control problem of a DPS using actuator
faults, and by introducing a new LKF, the mean square exponential stability criterion
was obtained.

However, there is still room for improvement regarding the sampling control problem
of DPSs. Firstly, during the LKF construction process, some terms in a LKF share common
quadratic functions. Secondly, some available information for sampling patterns is com-
pletely ignored. Thirdly, conditions on LKFs are too strict; that is, some matrices in a single
Lyapunov are strictly positive definite. To some extent, these limitations lead to a decrease
in the conservatism of the results.
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Motivated by the above analysis, the fuzzy sampling control problem of a nonlinear
DPS is studied here. Firstly, the dynamic equations of the system are established. Secondly,
an improved LKF is established to fully capture the characteristics of sampling modes and
further relax the positive definiteness requirements of LKFs. Based on the LMIs, stability
conditions are derived, and the designed approach of the sampling controller is given.
Finally, the superiority of this method is verified through a simulation example.

The developments and novelty of this article are summarized as follows.
(1) By introducing some novel terms, like d(t)

∫ 0
−d(t)

∫ t
t+θ

.
x(s)TZ

.
x(s)dsdθ, in the LKF,

the available characteristics of sampling patterns have been fully captured.
(2) Compared with the LKF in existing results, more available matrices are effectively

used in the LKF. Therefore, the proposed LKF has a more general form.
(3) Compared with the existing results, X-dependent terms are introduced in the LKF,

which are not required to be positive definite, and this means that the limitation conditions
of the symmetric matrices are overcome.

Notations: Rm is m-dimensional Euclidean space, MT is the transpose of matrix M,
“*” is the symmetric term of a matrix, and ∥ · ∥ is the spectral norm in Rm.

The subsequent structure of this article is as follows. In Section 2, models of the
sampled-data DPS system are established. In Section 3, the main results are described. In
Section 4, numerical validation and comparison results are described.

2. Problem Formulation

In order to deal with the sampled-data control problem for DPSs, dynamic equations
for a DPS are considered:

M
.
υ(t) + Dυ(t) + Gη(t) = u(t),

.
η(t) = J(ψ(t))υ(t),

(1)

where

M =


m − X .

u 0 0

0 m − Y .
v mxG − Y.

r

0 mxG − Y.
r Iz − N.

r

, D =


−X .

u 0 0

0 −Y .
v −Y.

r

0 −Y.
r −N.

r

,

J(ψ(t)) =


cos(ψ(t)) − sin(ψ(t)) 0

sin(ψ(t)) cos(ψ(t)) 0

0 0 1

.

where η(t) =
[
xa(t) ya(t) ψ(t)

]T is the position vector in the northeast coordinate
system; xa(t) and ya(t) represent the x and y positions, respectively; and ψ(t) represents
the yaw angle. υ(t) =

[
p(t) v(t) r(t)

]T denotes the velocity vector in the attached
coordinate system (see Figure 1). p(t) is surge velocity; v(t) is sway velocity; and r(t)
is yaw velocity. J(ψ) represents the rotation matrix of the two coordinates. u(t) is the
control force vector; and M and D are the inertial matrix and damping matrix, respectively.
G = diag{g11, g22, g33} represents the mooring force matrix. m is the ship’s mass; Iz is the
moment of inertia; xG is the distance vector; and X .

u, Y .
v, N.

r Y.
r are the added mass.

Remark 1. The derivation of the ship model is based on [1]. The case study in this paper is a
dynamic positioning ship controlled by thrusters. The damping force is assumed to be linear because
the ship’s speed is slow. Therefore, dynamic equations for surge, sway, and yaw for the DPS are
considered in this paper.
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Define
x(t) =

[
η(t) υ(t)

]T

=
[

xa(t) ya(t) ψ(t) p(t) q(t) r(t)
]T ,

(2)

and let

−M−1D =

a11 0 0

0 a22 a23

0 a32 a33

, M−1 =

d11 0 0

0 d22 d23

0 d32 d33

,−M−1G =

b11 0 0

0 b22 b23

0 b32 b33

. (3)

where a11, a22, a23, a32, a33, d11, d22, d23, d32, d33, b11, b22, b23, b32, b33 are constant.
Substitute (2) and (3) into (1) that

.
x(t) = A(t)x(t) + Bu(t), (4)

where

A(t) =



0 0 0 cos(ψ(t)) − sin(ψ(t)) 0

0 0 0 sin(ψ(t)) cos(ψ(t)) 0

0 0 0 0 0 1

b11 0 0 a11 0 0

0 b22 b23 0 a22 a23

0 b32 b33 0 a32 a33


, B =



0 0 0

0 0 0

0 0 0

d11 0 0

0 d22 d23

0 d32 d33


.

The overall fuzzy model is obtained that
Mode Rule i: IF z1(t) is fi1, · · · zn(t) is fin, THEN

.
x(t) = Aix(t) + Biu(t), i = 1, 2, . . . , n (5)

where z1(t), z2(t), . . . , zn(t) denote premise variables, fij denotes the fuzzy set, and n
denotes the rules number.

Assume the yaw angle satisfies ψ(t) ∈ (−π/2, π/2), then T-S fuzzy rules are consid-
ered that

Model Rule 1:
IF ψ(t) is about 0
Then

.
x(t) = A1x(t) + B1u(t), (6)

Model Rule 2:
IF ψ(t) is about π

2
(
ψ(t) < π

2
)

Then
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.
x(t) = A2x(t) + B2u(t), (7)

Model Rule 3:
IF ψ(t) is about −π

2
(
ψ(t) < π

2
)

Then
.
x(t) = A3x(t) + B3u(t), (8)

where

A1 =



0 0 0 1 −α 0

0 0 0 α 1 0

0 0 0 0 0 1

b11 0 0 a11 0 0

0 b22 b23 0 a22 a23

0 b32 b33 0 a32 a33


, A2 =



0 0 0 β −1 0

0 0 0 1 β 0

0 0 0 0 0 1

b11 0 0 a11 0 0

0 b22 b23 0 a22 a23

0 b32 b33 0 a32 a33


,

A3 =



0 0 0 β 1 0

0 0 0 −1 β 0

0 0 0 0 0 1

b11 0 0 a11 0 0

0 b22 b23 0 a22 a23

0 b32 b33 0 a32 a33


, Bi =



0 0 0

0 0 0

0 0 0

d11 0 0

0 d22 d23

0 d32 d33


, i = 1, 2, 3.

and in which α = sin(2◦) and β = cos(88◦). The overall T-S fuzzy model is obtained that

.
x(t) =

3

∑
i=1

µi(z(t))[Aix(t) + Biu(t)], (9)

where
µi(z(t)) =

ωi(z(t))
3
∑

i=1
ωi(z(t))

≥ 0, i = 1, 2, 3,

ωi(z(t)) =
n
∏
j=1

fij(zj(t)),

3
∑

i=1
µi(z(t)) = 1,

z(t) = [z1(t), z2(t), . . . , zn(t)],

and in which fij(zj(t)) denotes the membership grade of zj(t). The membership function
of ψ(t) is shown in Figure 2.

A diagram of the fuzzy modeling and controller design is shown in Figure 3.
Assume measurement signals of the DPS are available at the sampling time, which

satisfies that 0 = t0 < t1 < · · · < tk < · · · < lim
k→∞

tk = +∞.
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The sampling interval is supposed as

tk+1 − tk ≤ d, ∀k ≥ 0, d > 0,

where d denotes the upper bound of the sampling interval. Next, the corresponding
sampled-data controller is considered

u(t) = Kx(tk), tk ≤ t < tk+1, (10)

where K denotes the gain matrix. Next, T-S fuzzy controllers are expressed that
Controller Rule 1:
IF ψ(t) is about 0
Then

u(t) = K1x(tk). (11)

Controller Rule 2:
IF ψ(t) is about π

2
(
ψ(t) < π

2
)

Then
u(t) = K2x(tk). (12)
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Controller Rule 3:
IF ψ(t) is about −π

2
(
ψ(t) < π

2
)

Then
u(t) = K3x(tk). (13)

Next, the following fuzzy controller is obtained

u(t) =
3

∑
j=1

µj(z(t))Kjx(tk), tk ≤ t < tk+1, k = 0, 1, 2, . . . (14)

Substitute (14) into (11) to obtain

.
x(t) =

3

∑
i=1

3

∑
j=1

µi(z(t))µj(z(t))
[
Aix(t) + BiKjx(tk)

]
(15)

For the further deriving process, the lemma is given as:

Lemma 1 ([40]). For given matrix Z ∈ Rn, Z > 0, scalars τ2 > τ1, vector function w :
[τ1, τ2 ] ∈ Rn, the following inequality holds

−
∫ t−τ1

t−τ2
wT(α)Zw(α)dα

≤ − 1
τ2−τ1

(∫ t−τ1
t−τ2

wT(α)dα
)T

Z
(∫ t−τ1

t−τ2
w(α)dα

) (16)

−
∫ −τ1
−τ2

∫ t
t+α wT(s)Zw(s)dsdα

≤ − 2
τ2

2 −τ2
1

(∫ −τ1
−τ2

∫ t
t+α wT(s)dsdα

)T
Z
(∫ −τ1

−τ2

∫ t
t+α w(s)dsdα

) (17)

3. Main Results

In this section, by constructing an appropriate LKF, the stability conditions of system (15)
are given.

3.1. Construction of the Lyapunov Function

Firstly, the notations are defined as follows:

τ(t) = t − tk, d(t) = d − τ(t),

ς(t) =
[

xT(t) xT(tk)
∫ t

tk
xT(s)ds

]T

ζ(t) =
[

xT(t)
.
x(t)T xT(tk)

∫ t
tk

xT(s)ds
]

Theorem 1. The system (15) is asymptotically stable, if there exist symmetric matrices P > 0,

Q > 0, Z > 0,
[

R11 R12
∗ R22

]
> 0,

[
U11 U12
∗ U22

]
> 0, X11, X13, X22, X23, X33, G, Mij =[

MT
1ij MT

2ij MT
3ij MT

4ij

]T
, Nij =

[
NT

1ij NT
2ij NT

3ij NT
4ij

]T
and scales d > 0, εi, i = 1, 2,

3, 4, such that

Ψij
1 =


P + d

(
X11 + XT

11 + Q
)

d(X11 + X22 − Q) dX13

∗ d
(
X11 + XT

22 + Q
)

dX23

∗ ∗ dX33

 > 0 (18)
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Ψij
2 =


Ξij

11 + Ωij
11 Ξij

12 + Ωij
12 Ξij

13 + Ωij
13 Ξij

14 + dXT
33

∗ Ξij
22 + Ωij

22 Ξij
23 + Ωij

23 Ξij
11 + dX13

∗ ∗ Ξij
33 + Ωij

33 Ξij
34

∗ ∗ ∗ Ξij
44

 < 0 (19)

Ψij
3 ==

[
Π11ij Π12ij

∗ Π22

]
< 0. (20)

where

Π11ij =



Ξij
11 + Ωij

11 Ξij
12 + dNT

2ij Ξij
13 + dNT

3ij Ξij
14 + dNT

4ij

∗ Ξij
22 +

d2

4 Z Ξij
23 Ξij

24

∗ ∗ Ξij
33 + Ωij

33 Ξij
34

∗ ∗ ∗ Ξij
44


,

Π12ij =


−dM1ij dN1ij

−dM2ij dN2ij

−dET RT
12 − dM3ij dN3ij

−dM4ij dN4ij

,

Π22 =

[
−dQ − dR11 0

∗ −2Z

]
,

Ξij
11 = −

(
X11 + XT

11
)
+ MT

1ij + M1ij + ε1 AiGT + ε1GAT
i

Ξij
12 = P + MT

2ij − ε1G − ε2 AT
i GT

Ξij
13 = (X11 + X22) + MT

3ij − M1ij + ε1GBiKj + ε3 AT
i GT

Ξij
14 = −X13 + MT

4ij − N1ij + ε4 AT
i GT

Ξij
22 = −ε2G − ε2GT

Ξij
23 = −M2ij + ε2GBiKj − ε3GT

Ξij
24 = −ε4GT − N2ij

Ξij
33 = −

(
X22 + XT

22
)
− MT

3ij − M3ij + ε3GBiKj + ε3KT
j BT

i GT

Ξij
34 = −X23 − U12 − MT

4ij − N3ij + ε4KT
j BT

i GT

Ξij
44 = −X33 − 1

d U22 − NT
4ij − N4ij

Ω11 = d
(
X13 + XT

13
)
+ dU22 − Z

Ω12 = dX11 + dXT
11

Ω13 = dXT
23 + dUT

12 + Z

Ω22 = dR11 + dQ + d2

4 Z

Ω23 = −d(X11 + X22) + dR12

Ω33 = dR22 + dU11 − Z

Proof. Consider the following LKF

V(t) =
4

∑
i=1

Vi(t), t ∈ [tk, tk+1) (21)
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V1(t) = x(t)T Px(t) + d(t)ς(t)TXς(t) + d(t)
∫ t

tk

.
x(s)TQ

.
x(s)ds

V2(t) = d(t)
∫ t

tk

[ .
x(s)
x(tk)

]T

R
[ .

x(s)
x(tk)

]
ds

V3(t) = d(t)
∫ t

tk

[
x(tk)
x(s)

]T

U
[

x(tk)
x(s)

]
ds

V4(t) = d(t)
∫ 0
−d(t)

∫ t
t+θ

.
x(s)TZ

.
x(s)dsdθ

where

X =

 X11 + XT
11 −X11 − X22 X13

∗ X22 + XT
22 X23

∗ ∗ X33

,

R =

[
R11 R12

∗ R22

]
, U =

[
U11 U12

∗ U22

]
Using Lemma 1, the following inequality is obtained:

V1(t) ≥ x(t)T Px(t) + d(t)ς(t)TXς(t) + d(t)
d [x(t)− x(tk)]

TQ[x(t)− x(tk)]

= d(t)
d ςT(t)Ψij

1 ς(t)
(22)

From LMI (18), V1(t) ≥ 0 can be guaranteed, which means that V(t) ≥ 0.
Taking the derivative of V(t) yields

.
V1(t) = 2

.
x(t)T Px(t) + 2d(t)ςT(t)X

[
.
xT

(t) 0 xT(t)
]T

−ςT(t)Xς(t) + d(t)
.
xT

(t)Q
.
x(t)−

∫ t
tk

.
xT

(s)Q
.
x(s)ds,

.
V2(t) = d(t)

[ .
x(t)
x(tk)

]T

R
[ .

x(t)
x(tk)

]
−
∫ t

k

[ .
x(s)
x(tk)

]T

R
[ .

x(s)
x(tk)

]
ds,

.
V3(t) = d(t)

[
x(tk)
x(t)

]T

U
[

x(tk)
x(t)

]
−
∫ t

tk

[
x(tk)
x(s)

]T

U
[

x(tk)
x(s)

]
ds

= d(t)
[

x(tk)
x(t)

]T

U
[

x(tk)
x(t)

]
− τ(t)xT(tk)U11x(tk)

= −2xT(tk)U12
∫ t

tk
x(s)ds −

∫ t
tk

xT(s)U22x(s)ds

.
V4(t) = d(t)τ(t)

.
xT

(t)Z
.
x(t)− d(t)

∫ t
tk

.
xT

(s)Z
.
x(s)ds −

∫ 0
−τ(t)

∫ t
t+α

.
xT

(s)Z
.
x(s)dsdα

≤ (d(t)+τ(t))2

4
.
xT

(t)Z
.
x(t)− d(t)

∫ t
tk

.
xT

(s)Z
.
x(s)ds −

∫ 0
−τ(t)

∫ t
t+α

.
xT

(s)Z
.
x(s)dsdα

≤ d
4 d(t)

.
xT

(t)Z
.
x(t) + d

4 τ(t)
.
xT

(t)Z
.
x(t)− d(t)

d

[
x(tk)
x(t)

]T[ Z −Z
−Z Z

][
x(tk)
x(t)

]
−
∫ 0
−τ(t)

∫ t
t+α

.
xT

(s)Z
.
x(s)dsdα

(23)

□
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3.2. Introduction of Fuzzy Framework

Using Lemma 1, it can be obtained that

0 = 2
r
∑

i=1

r
∑

j=1
µi(z(t))µj(z(tk))ξ

T(t)Nij × [τ(t)x(t)−
∫ t

tk
x(s)ds −

∫ 0
−τ(t)

∫ t
t+α

.
x(s)dsdα]

≤ 2τ(t)
r
∑

i=1

r
∑

j=1
µi(z(t))µj(z(tk))ξ

T(t)Nijx(t)

−2
r
∑

i=1

r
∑

j=1
µi(z(t))µj(z(tk))ξ

T(t)Nij
∫ t

tk
x(s)ds

+ τ2(t)
2

r
∑

i=1

r
∑

j=1
µi(z(t))µj(z(tk))ξ

T(t)NijZ−1NT
ij ξ(t)

+ 2
τ2(t)

[∫ 0
−τ(t)

∫ t
t+α

.
xT

(s)dsdα
]

Z
[∫ 0

−τ(t)

∫ t
t+α

.
x(s)dsdα

]
≤ 2τ(t)

r
∑

i=1

r
∑

j=1
µi(z(t))µj(z(tk))ξ

T(t)Nijx(t)

−2
r
∑

i=1

r
∑

j=1
µi(z(t))µj(z(tk))ξ

T(t)Nij
∫ t

tk
x(s)ds

+ τ2(t)
2

r
∑

i=1

r
∑

j=1
µi(z(t))µj(z(tk))ξ

T(t)NijZ−1NT
ij ξ(t)

+
∫ 0
−τ(t)

∫ t
t+α

.
xT

(s)Z
.
x(s)dsdα

(24)
which implies ∫ 0

−τ(t)

∫ t
t+α

.
x(s)Z

.
x(s)dsdα ≤

3
∑

i=1

3
∑

j=1
µi(z(t))µj(z(tk))[

2τ(t)ξT(t)Nijx(t)− 2ξT(t)Nij
∫ t

tk
x(s)ds

+ dτ(t)
2 ξT(t)NijZ−1NT

ij ξ(t)
] (25)

Combine (23) with (25) such that

.
V4(t) ≤ d

4 d(t)
.
xT

(t)Z
.
x(t) + d

4 τ(t)
.
xT

(t)Z
.
x(t)− d(t)

d

[
x(tk)
x(t)

]T[ Z −Z
−Z Z

][
x(tk)
x(t)

]
+

3
∑

i=1

3
∑

j=1
µi(z(t))µj(z(tk))

[
2τ(t)ξT(t)Nijx(t)

−2ξT(t)Nij
∫ t

tk
x(s)ds + dτ(t)

2 ξT(t)NijZ−1NT
ij ξ(t)

]
(26)

For any matrixes G,Mij, i, j ∈ L and scalars εi, i = 1, 2, 3, 4, we have

0 =
3

∑
i=1

3

∑
j=1

µi(z(t))µj(z(tk))ξ
T(t)Mij ×

[
x(t)− x(tk)−

∫ t

tk

.
x(s)ds

]
(27)

0 = 2
[
ε1xT(t)G + ε2

.
xT

(t)G + ε3x(tk)G + ε4
∫ t

tk
xT(s)Gds

]
×
[
− .

x(t) +
3
∑

i=1

3
∑

j=1
µi(z(t))µj(z(tk))

(
Aix(t) + BiKjx(tk)

)] (28)
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From (22), (23) and (26)–(28), we obtain that

.
V(t) ≤ d(t)

d

3
∑

i=1

3
∑

j=1
µi(z(t))µj(z(tk))ξ

T(t)Ψij
3 ξ(t)

+ 1
d

3
∑

i=1

3
∑

j=1
µi(z(t))µj(z(tk))

∫ t
tk

[
ξ(t)
.
x(s)

]T

Ψ̂ij
4

[
ξ(t)
.
x(s)

]
ds

(29)

where

Ψ̂ij
4 =

[
Π11ij Θij
∗ −dQ − R11

]
+ d2

2

[
Nij
0

]
Z−1

[
Nij
0

]T

Θij =
[
−dMT

1ij −dMT
2ij −dR12 − dMT

3ij −dMT
4ij

]T
(30)

Following the Schur complement, (30) implies Ψ̂ij
4 < 0. It can be referred that

.
V(t) < −σ∥ x(t) ∥2 when

x(t) ̸= 0, σ > 0, which shows that the system (11) is asymptotically stable. This proof
is completed.

Remark 2. To fully capture the available characteristics of sampling patterns, some novel terms,
liked(t)

∫ 0
−d(t)

∫ t
t+θ

.
x(s)TZ

.
x(s)dsdθ, have been introduced in the LKF, which means that the con-

structed LKF is general.

Remark 3. Compared with the LKF in [38,39], more available matrices, such as Q, R, X, U, are
effectively used in the LKF. If we let R12 = R22 = Z = Q = 0 and U13 = U12 = U22 = X13 =
X23 = X33 = 0, the LKF will be reduced to those in [38,39], which means that the proposed LKF
has a more general form. Moreover, free matrices Mij and Nij are introduced into the differentiation
of the LKF. Hence, model transformation and bounding techniques are avoided, which overcomes an
important source of conservatism.

Remark 4. In the process of derivative and further proof of the LKF in [38,39], the positive definite
requirement of the matrix is necessary. In this paper, X-dependent terms are introduced in V1(t) and
are not required to be positive definite, which means that the limitation conditions of the matrices
are overcome. Hence, the conservativeness can be further reduced.

3.3. Design of Sampled-Data Controller

Theorem 2. Given scalars d > 0 and εi, i = 1, 2, 3, 4, the system (15) is asymptotically stable, if there

exist symmetric matrices P > 0, Q > 0, Z > 0,
[

R11 R12
∗ R22

]
> 0,

[
U11 U12
∗ U22

]
> 0, X11,

X13, X22, X23, X33, G, Mij =
[

MT
1ij MT

2ij MT
3ij MT

4ij

]T
, Nij =

[
NT

1ij NT
2ij NT

3ij NT
4ij

]T
,

such that

Ψij
1 =

P + d
(
X11 + XT

11 + Q
)

d(X11 + X22 − Q) dX13

∗ d
(
X11 + XT

22 + Q
)

dX23

∗ ∗ dX33

 > 0 (31)

Ψ̃
ij
2 =


Ξ̃

ij
11 + Ω̃

ij
11 Ξ̃

ij
12 + Ω̃

ij
12 Ξ̃

ij
13 + Ω̃

ij
13 Ξ̃

ij
14 + dXT

33

∗ Ξ̃
ij
22 + Ω̃

ij
22 Ξ̃

ij
23 + Ω̃

ij
23 Ξ̃

ij
24 + dX13

∗ ∗ Ξ̃
ij
33 + Ω̃

ij
33 Ξ̃

ij
34

∗ ∗ ∗ Ξ̃
ij
44

 < 0 (32)

Ψij
3 =

[
Π̃11ij Π̃12ij

∗ Π̃22

]
< 0, (33)
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where

Π̃11ij =


Ξ̃

ij
11 + Ω̃

ij
11 Ξ̃

ij
12 + dÑT

2ij Ξ̃
ij
13 + dÑT

3ij Ξ̃
ij
14 + dÑT

4ij

∗ Ξ̃
ij
22 +

d2

4 Z̃ Ξ̃
ij
23 Ξ̃

ij
24

∗ ∗ Ξ̃
ij
33 + Ω̃

ij
33 Ξ̃

ij
34

∗ ∗ ∗ Ξ̃
ij
44

,

Π̃12ij =


−dM̃1ij dÑ1ij

−dM̃2ij dÑ2ij

−dR̃T
12 − dM̃3ij dÑ3ij

−dM̃4ij dÑ4ij

, Π̃22 =

[
−dQ̃ − dR̃11 0

∗ −2Z̃

]
,

Ξ̃
ij
11 = −X̃11i − X̃T

11i + M̃T
1ij + M̃1ij − ε1 AiG̃T − ε1G̃AT

i

Ξ̃
ij
12 = P + M̃T

2ij + ε1G̃ − ε2 AT
i G̃T

Ξ̃
ij
13 = X̃11i + X̃22i + M̃T

3ij − M̃1ij − ε1BiK̃j − ε3G̃AT
i

Ξ̃
ij
14 = −X̃13i + M̃T

4ij − Ñ1ij − ε4G̃AT
i

Ξ̃
ij
22 = ε2G̃ + ε2G̃T

Ξ̃
ij
23 = −M̃2ij − BiK̃j + ε3G̃

Ξ̃
ij
24 = ε4G̃T − Ñ2ij

Ξ̃
ij
33 = −X̃22i − X̃T

22i − M̃T
3ij − M̃3ij − ε3BiK̃j − ε3K̃T

j BT
i

Ξ̃
ij
34 = −X̃23i − Ũ12 − M̃T

4ij − N3ij − ε4K̃T
j BT

i

Ξ̃
ij
44 = −X̃33i − 1

d Ũ22 − ÑT
4ij − Ñ4ij

Ω̃11 = d
(

X̃13 + X̃T
13

)
+ dŨ22 − Z̃

Ω̃12 = dX̃11 + dX̃T
11

Ω̃13 = dX̃T
23 + dŨT

12 + Z̃

Ω̃22 = dR̃11 + dQ̃ + d2

4 Z̃

Ω̃23 = −d
(

X̃11 + X̃22

)
+ dR̃12

Ω̃33 = dR̃22 + dŨ11 − Z̃

The fuzzy controller is obtained that

Kj = K̃jG̃−T (34)

Proof. Denoting

G̃ = G−1, K̃j = KjG̃T , P̃i = G̃PiG̃T , X̃11i = G̃X11G̃T ,

X̃22i = G̃X22G̃T , X̃13i = G̃X13iG̃T , X̃23i = G̃X23iG̃T ,

X̃33i = G̃X33iG̃T , R̃11 = G̃R11G̃T , R̃12 = G̃R12G̃T ,

R̃22 = G̃R22G̃T , Q̃ = G̃QG̃T , Ũ11 = G̃U11G̃T , Ũ12 = G̃U12G̃T ,

Ũ22 = G̃U22G̃T , Z̃ = G̃ZG̃T , Γ1 = diag
{

G̃, G̃, G̃
}

,

Γ2 = diag
{

G̃, G̃, G̃, G̃
}

, Γ3 = diag
{

G̃, G̃, G̃, G̃, G̃, G̃
}

,

M̃ij = Γ2MijΓT
2 , Ñij = Γ2NijΓT

2 .
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Pre- and post-multiplying (18), (19), (20) by Γ1, Γ2, Γ3 and ΓT
1 , ΓT

2 , ΓT
3 , respectively, (31),

(32), (33) are obtained. This completed the proof. □

4. Numerical Examples

In this section, an application example of a DPS is introduced to show the superiority
of the methods. M, D and G are considered as follows [41].

M =


1.0852 0 0

0 2.0575 −0.4087

0 −0.4087 0.2153

, D =

 0.0865 0 0

0 0.0762 0.1510

0 0.0151 0.0031

,

G =

 0.0389 0 0

0 0.0266 0

0 0 0

.

Let α = sin 20 and β = cos 880, we have

A1 =



0 0 0 1.0000 −0.0349 0

0 0 0 0.0349 1.0000 0

0 0 0 0 0 1.0000

−0.0358 0 0 −0.0797 0 0

0 −0.0208 0 0 −0.0818 −0.1224

0 −0.0394 0 0 −0.2254 −0.2468


,

A2 =



0 0 0 0.0349 −1.0000 0

0 0 0 1.0000 0.0349 0

0 0 0 0 0 1.0000

−0.0358 0 0 −0.0797 0 0

0 −0.0208 0 0 −0.0818 −0.1224

0 −0.0394 0 0 −0.2254 −0.2468


,

A3 =



0 0 0 0.0349 1.0000 0

0 0 0 −1.0000 0.0349 0

0 0 0 0 0 1.0000

−0.0358 0 0 −0.0797 0 0

0 −0.0208 0 0 −0.0818 −0.1224

0 −0.0394 0 0 −0.2254 −0.2468


,

Bi =



0 0 0

0 0 0

0 0 0

0.9215 0 0

0 0.7802 1.4811

0 1.4811 7.4562


, i = 1, 2, 3.

Firstly, we compare the proposed method with references that used traditional T-S
fuzzy models. From Table 1, the maximum sampling internal is d = 0.681. Note that results
in [37–39] are 0.25, 0.264, and 0.532, respectively. This means that the sampling internal in
this paper improves [37–39] by 160.8, 146.97, and 22.56%, respectively. It also shows that
the proposed controllers play an important role in obtaining a longer sampling interval.
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Table 1. Maximum values of the upper sampling internal.

Method [37] [38] [39] Theorem 1

d2 0.25 0.264 0.532 0.681

Next, we combined references that used different methods, such as T-set [42], Pareto
optimality under T-set [43], and intuitionistic fuzzy T-set [44], to obtain the maximum
sampling internal. In Table 2, we can see that the values of the obtained sampling internal
were close to the method proposed in this paper, which illustrates that the technology
derived from the T-set has its advantages. And T-sets can be used to replace fuzzy sets to
represent uncertainty.

Table 2. Maximum values of the upper sampling internal.

Technologies Maximum Sampling Internal

T-set 0.583

Pareto optimality under T-set 0.624

Intuitionistic fuzzy T-set 0.652

Proposed method 0.681

The initial values are chosen that xs(t) =
[
15 m 15 m 0.2◦ 0 m/s 0 m/s 0◦

]
.

And the other parameters are d = 1.6s, ε1 = ε2 = 1, ε3 = ε4 = 0. Then, the gain can be
computed that

K1 =

 −0.0260 −0.0387 −0.0309 −0.6802 −0.0002 −0.0004

0.0619 −0.0067 0.0395 0.0004 −1.3157 0.2556

−0.0124 0.0061 0.0066 −0.0001 0.2653 −0.1315



K2 =

 −0.0123 0.0143 0.0154 −0.7071 −0.0002 0.0000

−0.0196 0.0251 0.0698 0.0003 −1.3667 0.2643

0.0041 −0.0002 0.0011 −0.0001 0.2754 −0.1364



K3 =

 −0.0123 0.0143 0.0154 −0.7071 −0.0002 0.0000

−0.0196 0.0251 0.0698 0.0003 −1.3667 0.2643

0.0041 −0.0002 0.0011 −0.0001 0.2754 −0.1364


To illustrate the control performance of the proposed approaches, comparison results

with those of the PID controller [45] are presented in Figures 4–9.
The PID value was chosen such that

Kp = diag
(
[2.8 × 103, 6 × 103, 2.3 × 106]

)
Kp = diag([1, 1, 1])

Kp = diag
(
[4.5 × 104, 3.5 × 104.1 × 104]

)
In Figures 4–9 it is shown that the ship’s position, yaw angle, and velocities reached

expected values within about 10 s, while under the PID controller designed in [39], it took
longer to reach the predetermined targets, which means that the designed method in this
paper, which used the proposed method, has a faster response speed. In addition, this
demonstrates that the oscillation amplitude of the system is relatively small, indicating that
the designed controllers have good anti-interference ability. Meanwhile, Figures 4–9 further
indicate that the designed sampled-data controller also has a relatively fast speed response
time, which means that the controller has fast convergence speed and high stability.
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5. Conclusions

This article investigated DPS stabilization problems using sampled-data under T-S
fuzzy models. To reduce the conservatism of the obtained results, some novel terms were
introduced in the constructed LKF, and a larger sampling interval was achieved. The main
novelty of the LKF is that the sampling mode information is fully utilized; in addition, the
positive definite constraints of LKFs are relaxed, and additional free matrices are provided
to further reduce the conservatism. Experimental results showed that the developed control
methods are superior. In the future, we will explore using the T-set method instead of
the fuzzy set to represent real-life scenarios and fully consider the characteristics of linear
time-varying systems [46], which will become a new topic in future work.
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