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Abstract: We review several variants of three-dimensional quantum electrodynamics (QED3) with
N f fermion (or boson) flavors, including fermionic (or spinorial) QED3, bosonic (or scalar) QED3,
N = 1 supersymmetric QED and also models of reduced QED (supersymmetric or not). We begin
with an introduction to these models and their flow to a stable infra-red fixed point in the large-N f

limit. We then present detailed state-of-the-art computations of the critical exponents of these models
within the dimensional regularization (and reduction) scheme(s), at the next-to-leading order in the
1/N f expansion and in an arbitrary covariant gauge. We finally discuss dynamical (matter) mass
generation and the current status of our understanding of the phase structure of these models.

Keywords: renormalization group; multiloop calculations; non-perturbative effects; phase transitions;
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1. Introduction
1.1. Fermionic and Bosonic QEDs

Three-dimensional quantum electrodynamics (QED3) is an archetypal Abelian gauge
field theory model describing strongly interacting planar fermions. In a Minkowski space
and for massless fermions, it is described by the following action:

SfQED3
=
∫

d3x
[

iψ̄i 6Dψi− 1
4

FµνFµν− 1
2ξ

(∂µ Aµ)2
]

, (1)

where ψi are the 2Nf flavors (i = 1,.. .,2Nf ) of two-component massless Dirac fermions (or,
equivalently, the Nf flavors of four-component massless Dirac fermions, Ψi), Aµ is the
three-dimensional gauge field, Dµ = ∂µ + ieAµ is the gauge covariant derivative and ξ is the
gauge-fixing parameter. It has been attracting continuous interest for the past four decades.
The original motivation [1,2] came from the fact that QED3 shares several important features
of four-dimensional quantum chromodynamics (QCD4), such as asymptotic freedom,
confinement and dynamical chiral symmetry breaking induced by the radiative generation
of a fermion mass [3–14] (see recent progress in [15–19]). In the last three decades, a
considerable revival of interest in QED3 also arose from its applications to condensed matter
physics systems with relativistic-like gapless quasiparticle excitations at low energies, such
as high-Tc superconductors [20–23], planar antiferromagnets [24] and graphene [25,26] (for
graphene, see reviews in refs. [27–30]).

Besides the above fermionic QED3 (fQED3), early studies [2] focused on the so-called
(massless) bosonic QED3 (bQED3), the action of which is given by the following:

SbQED3
=
∫

d3x
[∣∣Dµφi

∣∣2− 1
4

FµνFµν− 1
2ξ

(∂µ Aµ)2
]

, (2)

where φi are 2Nf flavors (i = 1,.. .,2Nf ) of the complex pseudo-scalar field, φ. Note that
this model does not contain a φ4-term and is sometimes referred to as pure scalar QED or
tricritical bQED in the literature (see, e.g., [31–33]).
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A salient feature of both fQED3 and bQED3 is that they are super-renormalizable
with a dimensionful coupling constant (e2 has a dimension of mass). Remarkably, early
studies [1,2,4] realized that, within a 1/Nf expansion, an interacting fixed point emerges
in the low-energy limit, and both models become effectively renormalizable deep in the
infra-red (IR) with a dimensionless coupling constant, 1/Nf . This led to the study of their
critical properties with the help of large-Nf techniques (see [34] for a review). Critical expo-
nents such as the field and mass anomalous dimensions are particularly important. They
encode the renormalization of the composite operator, ψ̄ψ [35,36], and play a crucial role in
the study of fundamental quantum field theory mechanisms, such as dynamical symmetry
breaking and electron mass generation. Precision calculations require the computation of
higher-order corrections that often represent a major technical challenge. Beyond precision,
these corrections sometimes reveal new physics that is missed by simple low-order esti-
mates. They also allow the study of the stability of a non-trivial IR fixed point with respect
to radiative corrections. Finally, while the above models are well behaved in the limit of a
large number of flavors, the fate of IR singularities are ubiquitous in super-renormalizable
models, and QED3 often serves as a toy model for such studies [37–41] (see recent progress
in [42–44]).

1.2. Supersymmetric QEDs

Another interesting variant of QED3 corresponds to (minimal) N = 1 supersymmetric
three-dimensional QED (SQED3). This model can be obtained naively by combining
the fermionic and bosonic QED3 models described above, together with a superpartner
for the photon, the photino. Mathematically, the degrees of freedom of N = 1 SQED3
are the 2Nf matter multiplets {φj,ψj,Fj} and a gauge multiplet {Aµ,λ}. In the matter
multiplet, the complex pseudo-scalars, φj, are the superpartners of the two-component
Dirac spinors, ψj, and the Fj are complex auxiliary scalar fields without any dynamics (they
ensure the equality of the degrees of freedom in the matter and gauge multiplet). In the
gauge multiplet, obtained after choosing the Wess–Zumino gauge [45], the photino, λ, is a
two-component Majorana field. The action of N = 1 massless SQED3 is then given by

SSQED3 =
∫

d3x
[

iψ̄i 6Dψi− 1
4

FµνFµν− 1
2ξ

(∂µ Aµ)2

+ |Dµφi|2+
i
2

λ̄6 ∂λ− ie(ψ̄iλφi− λ̄ψiφ∗i )+ |Fi|2
]

, (3)

which, similarly to the two previous models, is super-renormalizable and has a non-trivial
fixed point deep in the IR, at which it becomes effectively renormalizable [46], the more
recent [33,47] for a review).

Supersymmetric variants of QED3 have attracted continuous interest through the last
decades. This has been partly motivated by the fact that the enhanced symmetry may
simplify the resolution and, perhaps, even lead to an exact solution. As a matter of fact,
the case of (non-minimal) N = 2 SQED3 has been studied in an early seminal paper of
Pisarski [3] by dimensional reduction from the case of (minimal) N = 1 four-dimensional
supersymmetric QED (SQED4), with focus on dynamical electron mass generation along
the lines of the non-supersymmetric case. Actually, in N = 1 SQED4, a non-perturbative
non-renormalization theorem forbids dynamical mass generation [48], and it was then
argued in [46] that it, therefore, extends by dimensional reduction to N = 2 SQED3. Fur-
ther evidence for the absence of dynamical mass generation in N = 2 SQED3 came from
numerical simulations [49] and a refined analytic treatment [50].

The situation inN = 1 SQED3 is more subtle because of the absence of non-renormaliza-
tion theorem in this case. The model was first considered by Koopmans and Steringa [46]
along the lines set by Appelquist et al. for standard fQED3 [5]. Their truncated (to leading
order (LO) in 1/Nf -expansion) Schwinger–Dyson equations approach resulted in a critical
fermion flavor number, Nc = 1.62. This implies that a dynamical (parity-invariant) mass
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generation may occur for Nf = 1, i.e., one four-component Dirac spinor. A decade later,
additional evidence for the generation of dynamical electron mass in minimal SQED3 was
also found in [51]. There is, however, no rigorous statement for electron mass generation
for minimally supersymmetric SQED3 [46,51].

In the last two decades, N = 1 SQED3 has attracted significant attention (together
with other supersymmetric and non-supersymmetric gauge theories) in the context of the
study of IR dualities and renormalization group flows (see, e.g., [52–57]). Interestingly, it
was argued in [47] that N = 1 SQED3 at Nf = 1 is dual to a conformal field theory in the
IR. This suggests that no dynamical mass for the electron should be generated in contrast
to the previously mentioned early (leading order) calculations [46,51]. In this review, we
will present a refined, next-to-leading order (NLO) analysis. We will show that, at NLO,
Nc = 0.39, which is strong evidence that no electron mass is radiatively generated in N = 1
SQED3, which is in agreement with the analysis based on dualities [47].

At the interface with condensed matter physics, there have also been proposals during
the last years that SUSY may emerge in the low-energy limit of various lattice models
(see, e.g., [58–65]). To this day, there is still no evidence that SUSY is realized in nature,
and an emergent SUSY should certainly be difficult to detect in the lab [66]. Nevertheless,
computing critical exponents in the corresponding models is certainly valuable in order to
assess the potential impact of supersymmetry on experimentally measurable observables.

1.3. Reduced QEDs

Another model corresponds to the so-called reduced QED (QEDdγ ,de ) that describes
relativistic fermions in de-dimensional space–time and interacting via the exchange of mass-
less bosons in dγ-dimensions (de≤ dγ). In a Minkowski space, the QEDdγ ,de action [67–69]
reads

S=
∫

dde xiψ̄iγ
µe Dµe ψi +

∫
ddγ x

[
−1

4
Fµγνγ Fµγνγ−

1
2ξ

(
∂µγ Aµγ

)2
]

, (4)

where ψi are the 2Nf flavors of two-component Dirac spinors in de dimensions
(µe = 0,1,.. .,de−1). In (4), the coupling of the fermion to the gauge field is restricted
to de-dimensional space–time such that the gauge field is free in the dγ−de co-dimensional
space, i.e., Dµe = ∂µe + ieAµe , where Aµe = Aµe(z= 0) such that z is the collective coordinate
in the (dγ−de)-dimensional space. It was introduced in [67], motivated by the study of
dynamical chiral symmetry breaking in brane-world theories (see also [70]). Soon after, a
first application was devoted to the especially important case of conformal QED4,3 (also
known as pseudo-QED from [71] and mixed-dimensional QED from the recent [72]) in
relation to graphene [73]. More precisely, QED4,3 describes graphene [25] at its infra-red
(IR) Lorentz-invariant fixed point [74]. Importantly, it has been shown in [75] that there is
mapping between QED4,3 and fermionic QED3 in a large-Nf limit.

Theoretically, there has been rather extensive studies on QED4,3 during the last decade
with primary applications to graphene-like systems, e.g., their transport and spectral
properties [68,69,76–80] and quantum Hall effect [72,81] (in [72], the model was invoked
as an effective field theory describing half-filled fractional quantum Hall systems) and
dynamical symmetry breaking [75,82], on which we will focus in the following. From
a more field theoretic point of view, the model was shown to be unitary [83], and its
properties were studied under Landau–Khalatnikov–Fradkin transformation [84,85] as
well as under duality transformations [86]. Renewed interest in the model and its formal
properties was triggered by a study [87] on interacting boundary conformal field theories
(see, e.g., [88–92]).

Motivated by condensed matter applications, supersymmetric extensions of reduced
QED were also constructed and analyzed in [93,94] via superconformal techniques on
the boundary for both N = 1 and N = 2 cases. In [94], non-perturbative computations
of transport properties in the N = 2 case were carried out with the help of localization
techniques. Once again, the N = 1 case is more subtle, and no exact solution is, so far,
known. It is this case that will be of interest to us in the following. In particular, the
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supersymmetric extension of QED4,3 will be denoted as SQED4,3. In this ultra-relativistic
super-graphene model, the matter fields (electrons and selectrons) are localized on a (2+1)-
dimensional plane, while the gauge fields (photons and photinos) are (3+1)-dimensional.
The corresponding action reads

SSQED4,3 =
∫

dde x
[

iψ̄iγ
µe Dµe ψi + |Dµe φi|2+ |Fi|2− ie(ψ̄iλφi− λ̄ψiφ∗i )

]
+
∫

ddγ x
[
− 1

4
Fµγνγ Fµγνγ− 1

2ξ
(∂µγ Aµγ)2+

i
2

Λ̄Γµγ ∂µγ Λ+
1
2

D2
]

, (5)

where de = 3 and dγ = 4, Λ denotes a four-component Majorana field, Γµγ are four 4 × 4
gamma matrices, γµe are three 2 × 2 gamma matrices and D is a real auxiliary field without
dynamics (see [93] for more details). As will be seen in the following, just as for the non-
SUSY case, there exists mapping between SQED3 in the large-Nf expansion and SQED4,3 in
the small-coupling expansion. The mapping is very similar to the non-SUSY case up to a
factor of two from SUSY.

Let us emphasize that, in this review, we will always consider suspended (super)-
graphene, as opposed to a model defined on the boundary, as considered in, e.g., [93]. In
our case, the boundary is considered as a transparent interface, while the model of [93]
considers a purely reflecting boundary (graphene on a substrate). Nevertheless, the two
models can be simply related by doubling the interaction, αbdry = α/2.

1.4. Outline of the Review

In order to adopt a unifying approach, we will introduce in Section 2 a general model
that encompasses all of the above-described models. We will present the perturbative
setup, consisting of the Feynman rules (including subtleties related to the presence of
Majorana spinors) and our renormalization conventions. In Section 3, we will then perform
the full LO and NLO computations in the large-Nf expansion of all the polarizations and
self-energies and derive all the corresponding anomalous dimensions. This will lead us to
briefly discuss a generalized version of the Furry theorem for these models. In Section 4, we
apply our general results to the models of interest, i.e., fQED3, bQED3, SQED3 and, finally,
QED4,3 and SQED4,3, where we compute the optical conductivity of the (super-)graphene
material. In Section 5, we will discuss the criteria for dynamical mass generation and the
related phase structure of these models. The conclusion will be given in Section 6. Let
us finally note that this review represents an extended version of our previous (short)
paper [95].

2. General QED Model and Conventions
2.1. The General gQED3 Model

In the Introduction, we formally introduced a total of five models, namely, fQED3,
bQED3, SQED3 and also the reduced QED4,3 and SQED4,3. In this section, we introduce
a general model that encompasses the first three of them with the help of additional
parameters. The reduced models will be analyzed from the results of the general model
with mapping [75].

The general model is denoted as gQED3, and its corresponding action reads

SgQED3
=
∫

d3x
[

iψ̄i /Dψi− 1
4

F̂µν F̂µν−
1

2ξ
(∂̂µ Âµ)2

+S|D̂µφi|2+
iS
2

λ̄/∂λ− ieS(ψ̄iλφi− λ̄ψiφ∗i )+S|Fi|2

−SE 1
2
(∂̂µ Āν)

2− eESψ̄i γ̄µ Āµψi + e2ESĀ2|φi|2
]

. (6)
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In (6), the first line corresponds to the fQED3 action (1). The second line is the N = 1 SUSY
content, where each superpartner field is associated with a tracking factor S∈ {0,1} such
that Φ→ SΦ, ∀Φ∈ {φ,λ, Āµ} and S2 = S. Hence, at any step of the calculation, we may
turn on (respectively, off) SUSY by setting S= 1 (respectively, S= 0). This will highlight
SUSY effects in our computations and allow us to check our expressions by recovering
known results for the corresponding non-SUSY theories. The third line of (6) is due to the
use of the dimensional reduction (DRED) scheme [96–98] (see also [99] for a review), which
is the most convenient regularization scheme for practical calculations in supersymmetric
theories. DRED allows for preserving SUSY at the perturbative level by the introduction
of extra particles, the so-called ε-scalars, carried by the field Ā. These particles arise from
the formal splitting of the gauge field as Aµ = Âµ + Āµ. Here, we use the notations of
the review [100], where hatted (respectively, barred) quantities have d (respectively, 3−d)
components. To better appreciate the effects of DRED during the computations, the ε-scalar
field will be associated with a tracking factor E ∈ {0,1} such that Āµ→E Āµ and E2 = E .
Indeed, as we shall see in the following, although ε-scalars affect only few quantities at
NLO, their effect is crucial in order to ensure the validity of supersymmetric identities.

In addition, we will work with 2Nf arbitrary n-component spinors. In the SQED3
case, n= 2 is necessary to ensure the equality of the matter and gauge degrees of freedom.
Nevertheless, working with arbitrary n component spinors will allow us to take the case
of n= 0-component spinors, i.e., no fermions, which corresponds to the case of bQED3.
Indeed, by killing the spinorial degrees of freedom with n= 0, one exactly recovers the
action of bQED3, Equation (2). In order to keep track of both cases while limiting the
complexity of our formulas, one can notice that the identity n2S= 2nS holds in both cases.
We shall, therefore, use the constraint, n(n−2)S= 0, to simplify our computations.

The action (6) is the general model we will work with in the rest of this article. It
completely describes N = 1 supersymmetric QED in the DRED scheme with suitable
parameters (S, E , n) that allow the recovery of the subcases of fQED3 and bQED3 (as well
as QED4,3 and SQED4,3 via mapping) as well as the study of the effect of DRED by turning
it on (or off) with E = 1 (or 0). These parametrizations are summarized in Table 1.

Table 1. Parameter values used to recover the different large-Nf models from the gQED3 action (6).

Model S n E
N = 1 SQED3 1 2 1
Bosonic QED3 1 0 0

Fermionic QED3 0 2 0

Let us remark that the action (6) is completely massless. In the following, in order to
compute the mass anomalous dimensions of the model, we will introduce a mass term
for the matter multiplet, i.e., for the electron and the selectron. Since we are interested in
dynamical mass generation, we will focus on the parity-even mass terms, i.e., of the form,

Lm =mψ

 Nf

∑
i=1

ψ̄iψ
i−

2Nf

∑
i=1+Nf

ψ̄iψ
i

+m2
φ

 Nf

∑
i=1
|φi|2+

2Nf

∑
i=1+Nf

|φi|2
. (7)

Moreover, we will work within the limit of small masses, i.e.,

mx� pE� e2Nf , (mx =mψ,mφ), (8)

with pE the Euclidean momentum. This limit will have, as a main advantage, to remove
all the tadpoles in the theory. In bQED3 and SQED3 (and, therefore, SQED4,3), the four-
point bosonic coupling indeed gives rise to tadpoles, as opposed to the case of fQED3,
where no tadpoles are present, since the theory only has three-point coupling. The masses
will, therefore, enter the electron and selectron propagators as small IR regulative masses,
allowing the computation of their corresponding mass anomalous dimensions. All our
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calculations will then be carried using massless techniques (see, e.g., the review in [101]).
We postpone to Section 5 the study of a potential dynamical generation of small parity-even
masses (7) in the matter multiplet.

2.2. Feynman Rules

The gQED3 model (6) contains both Dirac and Majorana fermions. Therefore, one
has to be careful to properly define the Feynman rules of the model in order to avoid sign
mistakes. In the following, we will use a method based on the conventions of [102,103]. We
first derive the bare gauge-multiplet propagators from the general action (6), reading

Photon: D̂µν
0AA(p) = 〈Âµ(−p)Âν(p)〉0 =

p
µ ν =

−i
p2 d̂µν(p), (9a)

ε-scalar: D̄µν
0AA(p) = 〈Āµ(−p)Āν(p)〉0 =

p
µ ν =

−iSE
p2 ḡµν , (9b)

Photino: D0λλ̄(p) = 〈λ(−p)λ̄(p)〉0 =
p

=
iS
6 p , (9c)

with d̂µν(p) = ĝµν− (1− ξ)( p̂µ p̂ν/p2). It is important to remark that the photino (λ) Majo-
rana line (9c) carries a fermion flow, but is not represented with a dedicated arrow. We also
derive from (6) the bare matter-multiplet propagators, reading

Electron: S0ψψ̄(p) = 〈ψ(−p)ψ̄(p)〉0 =
p

=
i

6 p−mψ
, (10a)

Selectron: S0φφ∗(p) = 〈φ(−p)φ∗(p)〉0 =
p

=
iS

p2−m2
φ

. (10b)

Note that the arrow on the Dirac fermion (ψ) and the pseudo-scalar (φ) propagators
indicates the charge flow or, equivalently, the matter flow. As for the photino (9c), the
fermion flow on the Dirac fermion line (10a) is not indicated. Together with these gauge
and matter propagators comes additional rules for the loops

• Each matter-field loop (ψ and φ field charge flow) gives a factor of 2Nf , i.e., graphically

≡ 2Nf , ≡ 2Nf , ≡ 2Nf . (11)

• Each fermion loop (ψ and λ field fermion flow) gives a factor (−1) and a trace over
the spinorial indices, i.e., graphically

≡−Tr, ≡−Tr, ≡−Tr. (12)

Lastly, we provide all the vertices of the action (6), yielding in graphical form

Γ̂µ
0Aψψ̄

= µ =−ieγ̂µ , (13a)

Γ̂µ
0Aφφ∗(p,k) =

p

k

µ =−ieS( p̂+ k̂)µ , Γ̂µν
0AAφφ∗ =

µ

ν

= 2ie2Sĝµν , (13b)

Γ̄µ
0Aψψ̄

= µ =−ieESγ̄µ , Γ̄µν
0AAφφ∗ =

µ

ν

= 2ie2ESḡµν , (13c)
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Γ0λ̄ψφ∗ = = eS, Γ0ψ̄λφ = =−eS. (13d)

Note that the first vertex (13a) is purely of fQED origin, the second line (13b) are the vertices
of bQED origin, then the vertices (13c) come from the ε-scalar contributions and, finally, the
vertices (13d) are of pure SUSY origin.

In addition to all these rules, one should be careful about fermion flows when both
Dirac and Majorana fermions are present. This usually results in a multitude of additional
Feynman rules to cope with all the possible flow cases in order to obtain the correct signs
everywhere. In the following, we will use the compact Feynman rules of [102,103] that are
based on assigning an additional fermion flow line on diagrams (when necessary) along
fermionic lines to obtain the correct signs. The additional Feynman rules are then written
down by specifying the fermion flow (arrow above) and, for the fermionic propagators
(recalling that the middle arrow is the charge/matter flow and the bottom arrow is the
momentum), they read

p
= S0ψψ̄(p),

p
= S0ψψ̄(−p), (14a)

p
= S0ψψ̄(−p),

p
= S0ψψ̄(p), (14b)

p
= D0λλ̄(p),

p
= D0λλ̄(−p), (14c)

which amounts to adding a minus sign on the flowing momentum for each opposite arrow.
Similarly, for the fermionic Dirac vertices (fermion flow indicated with the arrow on the
right), they read

µ =−ieγ̂µ , µ =+ieγ̂µ , (15a)

µ =−ieESγ̄µ , µ =+ieESγ̄µ , (15b)

which amounts to a complex conjugation (charge conjugation) of the vertex if the fermion
flow goes backward with respect to the charge/matter flow. Note that the other vertices
mixing both Majorana and Dirac fermion (see (13d)) are real and are, therefore, unchanged
under the inversion of the fermion flow.

Actually, in the vast majority of cases, the simple rules (9) to (13), i.e., without the
additional fermion flow lines (14) and (15), are sufficient. This comes from the fact that
most of the diagrams that we consider are such that the charge flow can follow naturally
the fermion flow, both being continuous and unidirectional, i.e., graphically

p1 p2 p3

, (16)

where the hidden fermion flow goes from left to right, i.e., through the Dirac fermion, then
the Majorana fermion and then the Dirac fermion again so that all arrows are properly
aligned (reversing any of the arrows in this diagram would generate non-trivial minus
signs not accounted for in the simple Feynman rules above). In such a case, provided that
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the momentum arrows follow the (hidden) fermion flow and the charge flow, one can safely
use the simple Feynman rules without the sign corrections shown above, i.e., (9) to (13).

Nevertheless, the advanced Feynman rules (14) and (15) will be required for a few
diagrams, where one encounters a configuration of the type

p1 p3?

. (17)

In such a case, we are forced to use the advanced Feynman rules (14) and (15). In the follow-
ing, this will be the case for only one diagram, which is the seventh (labeled (g)) diagram
of the two-loop contribution to the fermion self-energy at NLO, i.e., Σψ(g)

2 (see (104e)).
Note that, in principle, these advanced Feynman rules are also needed for the compu-

tation of the photino polarization because of the Majorana external legs. However, these
diagrams are always appearing in pairs (with respect to opposite charge flows) that are
exactly equal, such that we can consider only the case where all arrows are aligned and
double the result. See the discussion below (56) for an example.

We conclude this section by a brief warning to the reader that would like to use the
software Qgraf [104,105] (as we did) to generate the diagram expressions of any theory
involving both Dirac and Majorana fermions. First, Qgraf does not seem to be able to
provide the correct minus signs from the fermionic loops in (12). The simplest solution
we found is to include additional trivial delta functions, δαβ, in the propagators for ψ and
λ, where α,β are the spinor indices, such that δαα =−1. Similarly, one can implement in
an automated way the inclusion of the factors 2Nf for (12) with similar delta functions
on the fields ψi and φj, i.e., δij such that δii = 2Nf . Moreover, Qgraf may have trouble in
generating diagram expressions with continuous and unidirectional fermion flows in rare
cases. More specifically, the software seems to always generate the flow properly (i.e., the
indices generated by Qgraf that we use to orient the charge and fermion flows are aligned
with the momenta arrows), except when there is an isolated fermion between two Majorana
or the reverse, i.e., a chain of the form (17). In this particular case, we need additional
routines to check the Qgraf output and possibly correct these fermionic flows by using the
rules (14) and (15). As advertised before, our routine has corrected only one diagram in the
NLO computations, which is Σψ(g)

2 (see (104e)).

2.3. Numerator Algebra

We work in a three-dimensional Minkowski space with the metric gµν =diag(+,−,−).
The three n×n Dirac γ-matrices satisfy the usual Clifford algebra, {γµ,γν}= 2gµν In, where
Tr(In) = n. Since we work in the DRED scheme, the metric tensor and γ-matrices are
decomposed as

gµν = ĝµν + ḡµν, γµ = γ̂µ + γ̄µ , (18)

so that there are d= 3−2ε matrices γ̂µ and 2ε matrices γ̄µ, in order to keep a total integer
number of three matrices γµ. All of these matrices are of arbitrary size n×n to be able
to take the limits n= 0 for bQED3, as well as n= 2 for SQED3 and fQED3. In the DRED
scheme, the following intuitive properties hold

gµ
µ = 3, ĝµ

µ = d= 3−2ε, ḡµ
µ = 2ε, (19a)

{γµ,γν}= 2gµν In , {γ̂µ,γ̂ν}= 2 ĝµν In , {γ̄µ,γ̄ν}= 2 ḡµν In , (19b)

as well as the very important case of the mixed dimensional anticommutator

{γ̂µ,γ̄ν}= 0. (20)

As expected, the usual Dirac trace computations will be modified but in a somewhat trivial
way thanks to the property (20). In the following, we will have to compute traces involving
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gamma matrices living in two different spacetimes, such as Tr(γ̂µγ̄νγ̂ργ̄σ). This requires
some care. In practice, one first sorts out the matrices, e.g., gathers hatted matrices to the left
and barred ones to the right. This can be conducted using repetitively the anticommutation
of the hatted and barred matrices (20), i.e.,

Tr(γ̂µ ···γ̄νγ̂ρ ···γ̄σ) =−Tr(γ̂µ ···γ̂ργ̄ν ···γ̄σ). (21)

Once completely sorted, one splits the traces into two parts using the following crucial
trace splitting formula

Tr(γ̂ν1 ···γ̂νn γ̄µ1 ···γ̄µm) =
1
2

Tr(γ̂ν1 ···γ̂νn)Tr(γ̄µ1 ···γ̄µm), (22)

where all matrices on the left are hatted and all matrices on the right are barred. Once
sorted and split, both traces can be computed using the usual algorithm

Tr(γ̂µ1 γ̂µ2 ···γ̂µm) =
m

∑
i=2

(−1)i ĝµ1µi Tr(��ZZγ̂µ1 γ̂µ2 ···��ZZγ̂
µi ···γ̂µm), m> 3, (23)

and the same algorithm for traces over only barred matrices, γ̄µi . These recursive formulas
allow us to reduce any trace methodically until reaching the fundamental ones

Tr(In) = n, Tr(γµ) = 0, Tr(γµγν) = ngµν , Tr(γµγνγρ) = inTnεµνρ . (24)

At this point, we recall that in three-dimensional theories, the trace over three gammas
may not be zero, depending on the choice of the representation for the γ matrices, but
proportional to the fully antisymmetric tensor, εµνρ. To this end, we introduce the additional
parameter Tn, such that T2 = 1, T4 = 0 and T 2

n = Tn. Anyway, in large-Nf massless three-
dimensional QED3 (fermionic, bosonic and supersymmetric), these odd traces do not
contribute to any result, as expected from parity-even theory. We will explicitly check this
fact by observing that Tn will never appear in the rest of this article, even if we perform all
the computations taking it into account. In the DRED scheme, the trace identities (24) split
into two copies with the following intuitive properties

Tr(γ̂µ) = 0, Tr(γ̂µγ̂ν) = nĝµν , Tr(γ̂µγ̂νγ̂ρ) = inTn ε̂µνρ , (25a)

Tr(γ̄µ) = 0, Tr(γ̄µγ̄ν) = nḡµν , Tr(γ̄µγ̄νγ̄ρ) = 0. (25b)

Note that we take ε̄µνρ = 0, as it makes sense that the Levi-Civita tensor in 2ε dimensions
vanishes as ε→ 0. Using the (mixed dimensional) trace techniques described above allows
for computing any fermionic trace in gQED3 and its subcases.

2.4. Renormalization Setup

We now have sufficient background material to introduce the renormalization setup
and conventions for the gQED3 model. Upon turning on the interactions, the Feynman
rules for the gauge multiplet (9) are dressed via their respective Dyson equations and read

D̂µν
AA(p) = 〈Âµ(−p)Âν(p)〉=

p
µ ν =

−i
1−Πγ(p2)

d̂µν

p2 , (26a)

D̄µν
AA(p) = 〈Āµ(−p)Āν(p)〉=

p
µ ν =

−iES
1−Πε(p2)

ḡµν

p2 , (26b)

Dλλ̄ (p) = 〈λ(−p)λ̄(p)〉=
p

=
iS

1−Πλ(p2)

1

/p
, (26c)
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where the polarizations, Πx, for the photon (Πγ), the ε-scalar (Πε) and the photino (Πλ),
are parameterized via the following projections

Π̂µν(p) = (p2 ĝµν− p̂µ p̂ν)Πγ(p2) =⇒ Πγ(p2) =
Π̂µ

µ(p)
(d−1)p2

∣∣∣∣∣
mx=0

, (27a)

Π̄µν(p) = p2 ḡµνΠε(p2) =⇒ Πε(p2) =
Π̄µ

µ(p)
2ε p2

∣∣∣∣
mx=0

, (27b)

Πλ(p) = 6 pΠλ(p2) =⇒ Πλ(p2) =
Tr[6 pΠλ(p)]

n p2

∣∣∣∣
mx=0

, (27c)

respectively. Using this setup, all integrals can be carried out in the massless limit, i.e.,
mx→ 0 for x = {ψ,φ}, as an IR rearrangement.

An important remark is that in (26a), the tensorial structure still yields d̂µν(p) =
ĝµν− (1− ξ)( p̂µ p̂ν/p2) because we are using a non-local gauge, i.e., we take

ξ→ ξ(p2) =
ξ

1−Πγ(p2)
, (28)

where ξ will still be considered as the gauge-fixing parameter in the following. This trick is
widely used in the QED3 literature to keep computations light (see, e.g., [35]; see also, for the
SUSY case [106–108]). We recall that the use of a non-local gauge (28) is possible without
affecting the physical results because the gauge-fixing parameter, ξ, is a mathematical
artifact that does not appear in physical results.

As we will prove explicitly in the next sections, all the polarizations (27) are finite.
Indeed, we recall that, in the large-Nf limit, SQED3 [46], similarly to bQED3 [1,2] and
fQED3 [3,4], is a non-running (“standing”) gauge theory, i.e., the coupling is not renormal-
ized, implying finite polarizations and, therefore, vanishing beta functions. This leads to
the triviality of the renormalization constants for the coupling, gauge-multiplet fields and
gauge-fixing parameter, formally Zx = 1, and γx = 0 with x∈ {e,γ, ε,λ,ξ}, which imply a
trivial beta function for the running of the coupling e reading β=−2εᾱ, where α= e2/(4π)
and ᾱ= α/(4π). In this case, the coupling trivially renormalizes as α→ µ2εα, where µ is the
renormalization scale. In the following, we will work in the modified minimal subtraction
scheme, where the renormalization scale is defined as µ̄2 = 4πe−γE µ2, and further, (MS
scheme) subtracts 4π and γE, the Euler–Mascheroni constant. We will refer to this modified
version of the dimensional reduction scheme as DRED.

Now considering the matter multiplet, turning on the interactions leads to the follow-
ing dressed propagators

Sψψ̄ (p) =
p

=
i

1−Σψ
p (p2)

1

/p
, (29a)

Sφφ∗(p) =
p

=
iS

1−Σφ
p(p2)

1
p2 , (29b)

where the matter-multiplet self-energies are parameterized as

Σψ(p) = 6 pΣψ
p (p2)+mψ Σψ

m(p2), (30a)

Σφ(p) = p2 Σφ
p(p2)+m2

φ Σφ
m(p2). (30b)

From these, the components p and m can be extracted with the following projectors

Σψ
p (p2) =

Tr[6 pΣψ(p)]
n p2

∣∣∣∣
mx=0

, Σψ
m(p2) =

Tr[Σψ(p)]
nmψ

∣∣∣∣
mx=0

, (31a)
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Σφ
p(p2) =

Σφ(p)
p2

∣∣∣∣
mx=0

, Σφ
m(p2) =

∂Σφ(p)
∂m2

φ

∣∣∣∣∣
mx=0

, (31b)

where mx = {mφ,mψ}. As for the gauge polarizations, using this setup allows all integrals
to be computed in the mx→ 0 limit, i.e., completely massless, as an IR rearrangement.

The renormalization conventions for the non-trivial renormalization constants are
defined as

ψ= Z1/2
ψ ψr , φ= Z1/2

φ φr , mψ = Zmψ mψr , mφ = Zmφ mφr . (32)

The renormalization constants can be extracted from the bare self-energies thanks to the
expression of the renormalized self-energies

Σψ
pr = 1− (1−Σψ

p )Zψ , Σψ
mr = 1− (1+Σψ

m)ZψZmψ , (33a)

Σφ
pr = 1− (1−Σφ

p)Zφ , Σφ
mr = 1− (1+Σφ

m)ZφZ2
mφ

, (33b)

leading to the following simple set of relations

(
1−Σψ

p

)
Zψ =finite,

(
1−Σφ

p

)
Zφ =finite,

1+Σψ
m

1−Σψ
p

Zmψ =finite,
1+Σφ

m

1−Σφ
p

Z2
mφ

=finite, (34)

where “finite” means of the order of ε0, so that no additional counter diagrams needs to be
computed. Finally, the associated anomalous dimensions are defined as

γx =
dlogZx

dlogµ
, x∈ {ψ,φ,mψ,mφ}, (35)

and correspond to the critical exponents of the theory that we want to compute.

2.5. The Large-Nf Expansion

In this section, we briefly introduce graphically the idea of the large-Nf expansion (see,
e.g., [34] for complete a review). Let us consider fQED3 for simplicity. We first recall that, in
the loop expansion, the Dyson Equation (26a) for the photon can be written graphically as

=

+

+ + +

+ + + ··· (36)

In the loop expansion (36), the perturbative series is well defined in the small-coupling
e regime, just by vertex counting. When the coupling, e, is not suitable as the expansion
parameter, such as in super-renormalizable theories like gQED3, one can use the so-called
large-Nf expansion technique. Naively, the series (36) is not perturbative in this regime
since each fermion loop gives a factor Nf , thereby increasing with the complexity of the
diagram. The trick to perform the 1/Nf expansion is then to resum the infinite chain of
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simple matter loops in force field propagators. Hence, considering the first term of each
line in (36), i.e., the simple bubble chains, we can define the new propagator

1 = + + + ···

= ×

1+ +

( )2

+ ···


= × 1

1−
. (37)

Going further, we recall that the bare photon propagator has momentum dependence,
∼ p−2, and the fermionic simple bubble diagram reads ∼ e2Nf pE (with pE the Euclidean
momentum). Therefore, the new propagator (37), in the large-Nf limit, reads

1 ∼
( )−1

∼ 1
e2Nf pE

. (38)

This new photon propagator is then said to be softened [1,2] since its behavior in the
infra-red is attenuated. Using this softened propagator, the first contribution to the electron
self-energy is, therefore,

1

∼ 1
Nf

, (39)

where the (dimensionful) coupling, e2, drops in favor of 1/Nf . Therefore, in the large-Nf
limit (that takes into account an infinite number of diagrams), fQED3 becomes renormaliz-
able with dimensionless coupling 1/Nf . Moreover, the expansion for the dressed photon
propagator (36) can be rewritten as

= 1 + 1 1 1 + 1 1 1 + ··· (40)

which now behave perturbatively in 1/Nf .
Similarly, at the next-to-leading order (NLO), one can resum the two-loop contribu-

tions, yielding a new propagator, 2 ∼ 1/N2
f , in the IR limit, which allows computing

NLO corrections to the electron self-energy at 1/N2
f , etc. So, the strategy goes as follows.

At leading order (LO):

(1) Compute the one-loop polarization using bare Feynman rules and compute the LO-
softened photon by resumming the one-loop polarization.

(2) Compute the other diagrams of the theory at O(1/Nf ) using the LO-softened photon
only.

Then, at next-to-leading order (NLO):

(3) Compute the two-loop polarizations using the LO-softened photon propagator and
compute the new NLO-softened photon propagator by resumming the two-loop
polarization.

(4) Compute the other diagrams of the theory at NLO, i.e., O(1/N2
f ) using both the LO

and NLO-softened photon propagators.

and pursue similarly at NNLO if desired, which goes beyond the scope of this review.
This reasoning can be easily extended for the full gQED3 model by resumming all

polarizations of the gauge multiplet. In general, large-Nf techniques are expected to be



Symmetry 2023, 15, 1806 13 of 53

very powerful as they resum an infinite number of diagrams. Moreover, since the new
coupling of the theory is 1/Nf , the value of α= e2/(4π) can be arbitrarily large, which is
extremely useful to study the critical properties of the corresponding field theories that
originate from non-perturbative effects.

3. Perturbative Calculations up to NLO in gQED3

3.1. Gauge-Multiplet Polarizations at LO

In this first section, we compute in detail the first correction to the polarizations of
the gauge multiplet, i.e., for the photon, the ε-scalar and the photino, at LO in the 1/Nf
expansion, i.e., at O(Nf ).

3.1.1. Photon Polarization at LO

We first consider the photon propagator (26a) and compute the LO photon polarization
operator, which consists of the following two contributions

Π̂µν
1 (p) = Π̂µν

1(a)(p)+ Π̂µν

1(b)(p). (41)

Graphically, the corresponding two diagrams read

iΠ̂µν

1(a)(p) =
p

k

k− p

µ ν =−µ2ε2Nf

∫
[ddk]Tr

[
Γ̂µ

0Aψψ̄
S0ψψ̄(k− p)Γ̂ν

0Aψψ̄S0ψψ̄(k)
]

(42a)

iΠ̂µν

1(b)(p) =
p

k

k− p

µ ν = µ2ε2Nf

∫
[ddk]Γ̂µ

0Aφφ∗(k− p,k)S0φφ∗(k− p)

× Γ̂ν
0Aφφ∗(k,k− p)S0φφ∗(k). (42b)

Note that the first diagram (a) is of pure fermionic (QED3) origin, while the second one (b)
is of pure bosonic (bQED3) origin. Therefore, at this order, the SQED3 photon polarization
directly appears as a simple sum of the fermionic (spinorial) and bosonic (scalar) results.
Using the Feynman rules for the vertices (13) and the matter (electrons and selectrons)
propagators (10) leads to the following expression

iΠ̂µν

1(a)(p) =−µ2ε2Nf e2
∫
[ddk]

Tr[γ̂µ(/k−/p+mψ)γ̂ν(/k +mψ)]

((k− p)2−m2
ψ)(k2−m2

ψ)
, (43a)

iΠ̂µν

1(b)(p) = µ2ε2Nf Se2
∫
[ddk]

(2k̂− p̂)µ(2k̂− p̂)ν

((k− p)2−m2
φ)(k2−m2

φ)
. (43b)

Using the photonic polarization projector (27a) and performing the trace on the d= 3−2ε
(hatted) space using the recursive Formula (23) gives the following expressions

Π(a)
1γ (p2) =−iµ2ε

Nf e2

p2
2(d−2)n

d−1

∫
[ddk]

k2− k · p
k2(k− p)2 , (44a)

Π(b)
1γ (p2) =−iµ2ε

Nf e2

p2
2S

d−1

∫
[ddk]

(2k− p)2

k2(k− p)2 . (44b)
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These integrals, once wick rotated to the Euclidean space, are then straightforward to
compute using the results of Appendix A and yield in the DRED scheme

Π(a)
1γ (p2) =−

Nf e2

(4π)3/2 pE

(
µ2

−p2

)ε
(d−2)n

d−1
eγEε G(d,1,1), (45a)

Π(b)
1γ (p2) =−

Nf e2

(4π)3/2 pE

(
µ2

−p2

)ε
2S

d−1
eγEε G(d,1,1), (45b)

where G(d,α,β) is known exactly and defined in Appendix A. Performing the ε-expansion
yields

Π(a)
1γ (p2) =−

nNf e2

16pE

(
1− (1−2log2+Lp)ε+O(ε2)

)
, (46a)

Π(b)
1γ (p2) =−

SNf e2

8pE

(
1+(1+2log2−Lp)ε+O(ε2)

)
, (46b)

where Lp = log(−p2/µ2). As expected, in the fQED3 case (S= 0, n= 2), only the first
diagram, which is purely fermionic, contributes. In contrast, in the bQED3 case (S= 1,
n= 0), only the second diagram, which is purely bosonic, contributes. The total photon
polarization function is, therefore, given by

Π1γ(p2) =Π(a)
1γ (p2)+Π(b)

1γ (p2) =−
Nf e2

(4π)3/2 pE

(
µ2

−p2

)ε
(d−2)n+2S

(d−1)
eγEε G(d,1,1), (47)

and since it is finite in d= 3, its exact expression in this dimensionality reads

Π1γ(p2) =−
(n+2S)Nf e2

16pE

. (48)

Interestingly, in the cases of SQED3 (S= 1, n= 2), fQED3 (S= 0, n= 2) and bQED3 (S= 1,
n= 0), we deduce the following results

ΠSQED3
1γ (p2) =−

Nf e2

4pE

, ΠfQED3
1γ (p2) =−

Nf e2

8pE

, ΠbQED3
1γ (p2) =−

Nf e2

8pE

. (49)

In this very simple case, the SQED3 photon polarization is simply the sum of the fermionic
and bosonic parts since there is no one-loop diagram involving a mixture of both. Therefore,
the SQED3 photon polarization is twice the value found for fQED3, which was first obtained
in [1,2]. Note that our result for SQED3 coincides with the earlier one-loop result given in
ref. [46] but now obtained in the dimensional reduction scheme.

3.1.2. ε-Scalar Polarization at LO

Next, we proceed similarly for the ε-scalar propagator (26b) and compute the LO
ε-scalar polarization function, which consists of a single non-vanishing diagram, defined as

iΠ̄µν
1 (p) =

p

k

k− p

µ ν =−µ2ε2Nf

∫
[ddk]Tr

[
Γ̄µ

0Aψψ̄
S0ψψ̄(k− p)Γ̄ν

0Aψψ̄S0ψψ̄(k)
]
. (50)
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Using the Feynman rules for the vertices (13) and the matter (electron and selectron)
propagators (10) leads to the following expression

iΠ̄µν
1 (p) =−µ2ε2Nf ESe2

∫
[ddk]

Tr[γ̄µ(/k−/p+mψ)γ̄ν(/k +mψ)]

((k− p)2−m2
ψ)(k2−m2

ψ)
. (51)

Using the projector defined in (27b) and performing the trace in the 2ε-dimensional (barred)
space with the help of the recursive formula (23) yields

Π1ε(p2) =−4iµ2ε
Nf e2

p2 ES
∫
[ddk]

k2− k · p
k2(k− p)2 . (52)

After wick rotation and using the results of Appendix A, we have

Π1ε(p2) =−
Nf e2

(4π)3/2 pE

(
µ2

−p2

)ε

2ESeγEε G(d,1,1). (53)

Since this result is again finite in d= 3, it can be written as

Π1ε(p2) =−
ESNf e2

4pE

. (54)

Let us note that in the case of bQED3 (S= 1, n= 0, E = 0), as well as in the case of fQED3
(S= 0, n= 2, E = 0), this polarization is obviously zero. Indeed, the ε-scalars are relevant
only in the case of SQED3 (S= 1, n= 2, E = 1), yielding

ΠSQED3
1ε (p2) =−

Nf e2

4pE

, (55)

which is exactly equal to the polarization of the photon in the same case, ΠSQED3
1γ (p2)

calculated in (49). As we will comment later on, such an equality is expected from SUSY.

3.1.3. Photino Polarization at LO

Lastly, we proceed in the same way for the photino propagator (26c) and compute LO
photino self-energy, which consists of two non-vanishing diagrams with opposite charge
flows. Since it is a photino (Majorana) polarization, in principle, we need to follow the
advanced Feynman rules (14) and (15), leading to

−iΠ(a)
1λ (p) =

k

k − p

p
= µ2ε2Nf

∫
[ddk]Γ0ψ̄λφS0ψψ̄(k)Γ0λ̄ψφ∗S0φφ∗(k− p), (56a)

−iΠ(b)
1λ (p) =

k

k − p

p
= µ2ε2Nf

∫
[ddk]Γ0λ̄ψφ∗S0ψψ̄(k)Γ0ψ̄λφS0φφ∗(k− p), (56b)

where we assigned a continuous and unidirectional fermion flow that goes from left to
right. In the case of the diagram (a), all flows are in the same direction so that there is no
need for the advanced Feynman rules. In the case of diagram (b), the charge flow and the
fermion flow are opposite to each others. However, the charge flow is also opposite to the
momentum flow so that the momentum obtains an additional minus sign. All together,
the Dirac propagator remains unchanged, and diagram (b) is equal to diagram (a). The
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resulting contribution is then defined as twice the configuration where all flows are aligned

−iΠ1λ(p) = 2× µ2ε2Nf

∫
[ddk]Γ0ψ̄λφS0ψψ̄(k)Γ0λ̄ψφ∗S0φφ∗(k− p). (57)

It turns out that this reasoning will apply to all the photino polarization diagrams at higher
orders. Therefore, for automation purposes, one can always consider only the configuration
where all flows are aligned and simply multiply it by two so that the advanced Feynman
rules with fermion flow specification are almost never needed (see discussion below (17)).
Using now the simple Feynman rules (11) and (13), its expression reads

−iΠ1λ(p) = 4µ2εNf e2S
∫
[ddk]

/k +mψ

(k2−m2
ψ)((k− p)2−m2

φ)
. (58)

Then, using the projector (27c) and performing the fermionic trace, we have

Π1λ(p2) = 4iµ2ε
Nf e2

p2 S
∫
[ddk]

k · p
k2(k− p)2 , (59)

and, after wick rotation, using the results of Appendix A, it yields

Π1λ(p2) =−
Nf e2

(4π)3/2 pE

(
µ2

−p2

)ε

2SeγEε G(d,1,1). (60)

Since this result is again finite, we set it exactly in d= 3 and obtain

Π1λ(p2) =−
SNf e2

4pE

. (61)

Note that this result is relevant only in the SQED3 case (S= 1, n= 2), reading

ΠSQED3
1λ (p2) =−

Nf e2

4pE

, (62)

which is exactly equal to both the one-loop photon (49) and ε-scalar (54) polarization
functions. Summarizing, we find that for SQED3, the photon, ε-scalar and photino self-
energies are all equal and finite at the LO of the 1/Nf -expansion, reading

ΠSQED3
1γ (p2) =ΠSQED3

1ε (p2) =ΠSQED3
1λ (p2) =−

Nf e2

4pE

, (63)

which is first-order perturbative proof that the polarizations are all equal in the gauge
multiplet, as expected from SUSY. Moreover, the finiteness of the polarizations is a first-
order perturbative proof that the theory has no anomalous dimensions for the gauge fields
in accordance with the fact that it is a standing gauge theory, as previously advertised.

3.1.4. IR-Softened Gauge Multiplet at LO

We are now in a position to compute the softened gauge propagators at the leading
order of the 1/Nf expansion (see (37)). By substituting the one-loop (LO) results obtained
for the polarization of the photon (48), the ε-scalar (53) and the photino (61) into the
definition of the dressed gauge propagators (26), the propagators soften in the large-Nf

limit, i.e., pE�Nf e2, and read

D̂µν
1AA(p) = 1

p
µ ν =

16i
(n+2S)Nf e2

d̂µν(p)
pE

, (64a)

D̄µν
1AA(p) = 1

p
µ ν =

4iES
Nf e2

ḡµν

pE

, (64b)
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D1λλ̄(p) = 1

p
=
−4iS
Nf e2

/p
pE

, (64c)

where the tensorial structure of the photon is still given by d̂µν(p) = ĝµν− (1− ξ)( p̂µ p̂ν/p2)
thanks to the use of the non-local gauge (see (28)). These new softened propagators can
then be used to compute the LO self-energies of both the electron and its superpartner.

3.2. Matter-Multiplet Self-Energies at LO

In this section, we compute in detail the first correction to the self-energies of the
matter multiplet, i.e., for the electron and the selectron, at the LO in the 1/Nf expansion,
i.e., at O(1/Nf ).

3.2.1. Electron Self-Energy at LO

We start with the electron propagator (30) and compute its LO correction, which
consists of three contributions

Σψ
1 (p) =Σψ(a)

1 (p)+Σψ(b)
1 (p)+Σψ(c)

1 (p), (65)

one for each gauge interaction, which are defined as

−iΣψ(a)
1 (p) =

p k

p− k
1

= µ2ε
∫
[ddk]Γ̂µ

0Aψψ̄
S0ψψ̄(k)Γ̂

ν
0Aψψ̄D̂1AA,µν(p− k), (66a)

−iΣψ(b)
1 (p) =

p k

p− k
1

= µ2ε
∫
[ddk]Γ̄µ

0Aψψ̄
S0ψψ̄(k)Γ̄

ν
0Aψψ̄D̄1AA,µν(p− k), (66b)

−iΣψ(c)
1 (p) =

p k

p− k
1

= µ2ε
∫
[ddk]Γ0λ̄ψφ∗S0φφ∗(k)Γ0ψ̄λφD1λλ̄(p− k), (66c)

where the photon, ε-scalar and photino propagators are indeed the IR-softened ones at first
order (64). Using the simple Feynman rules here is enough, i.e., using Equations (9)–(13),
and we obtain

−iΣψ(a)
1 (p) =− 16i

(n+2S)
µ2ε

Nf

∫
[ddk]

γ̂µ(/k +mψ)γ̂νd̂µν(p− k)
(k2−m2

ψ)|p− k|
, (67a)

−iΣψ(b)
1 (p) =−4iES

µ2ε

Nf

∫
[ddk]

γ̄µ(/k−mψ)γ̄µ

(k2−m2
ψ)|p− k|

, (67b)

−iΣψ(c)
1 (p) = i4S

µ2ε

Nf

∫
[ddk] /p−/k

(k2−m2
φ)|p− k|

. (67c)

Note that in (67), the (dimensionful) electric constant, e, drops out in favor of the new
coupling 1/Nf thanks to the softening of the gauge-multiplet propagators. These diagrams
are then split into the part proportional to the external momentum, p, (also called the
vectorial part sinceit is proportional to /p) and the one proportional to the mass, mψ, (also
called the scalar part) using the projectors (31). First, focusing on the vectorial part, using
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the projector (31a) and computing these three diagrams with projection, trace calculation,
wick rotation, integral evaluation and wick rotate back, we find the following exact results

Σψ(a)
1p (p2) =

4
(4π)3/2 Nf

(
µ2

−p2

)ε
4(d−2)
n+2S

(
d−1

2d−3
− ξ

)
eγEε G(d,1,1/2), (68a)

Σψ(b)
1p (p2) =

4
(4π)3/2 Nf

(
µ2

−p2

)ε
2(d−3)(d−2)ES

n(2d−3)
eγEε G(d,1,1/2), (68b)

Σψ(c)
1p (p2) =− 4

(4π)3/2 Nf

(
µ2

−p2

)ε
(d−1)S
2d−3

eγEε G(d,1,1/2), (68c)

where Σψ(b)
1p is finite due to the ε-scalar, while the two other contributions are singular in the

limit d→ 3. Secondly, focusing on the scalar part, using the projector (31b) and computing
these three diagrams with the same approach yields the following exact results

Σψ(a)
1m (p2) =

4
(4π)3/2 Nf

(
µ2

−p2

)ε
4(d−1+ ξ)

n+2S
eγEε G(d,1,1/2), (69a)

Σψ(b)
1m (p2) =− 4

(4π)3/2 Nf

(
µ2

−p2

)ε
2(d−3)ES

n
eγEε G(d,1,1/2), (69b)

Σψ(c)
1m (p2) = 0, (69c)

where the first contribution is singular in the limit d→ 3, while the second diagram vanishes
in d= 3, and the last graph (c) is exactly zero because of the gamma matrix trace. Summing
all the contributions, the total vectorial and scalar electron self-energies are therefore, given,
expanded in d= 3−2ε, by

Σψ
1p(p2) =

4
3(n+2S)π2Nf

(
µ2

−4p2

)ε(
2−3ξ−2S

ε
+

2
3

(
7− (13+3E)−9ξ

)
+O(ε)

)
, (70a)

Σψ
1m(p2) =

4
3(n+2S)π2Nf

(
µ2

−4p2

)ε(
3(2+ ξ)

ε
+6(3+ES+2ξ)+O(ε)

)
. (70b)

Note that some log(2) are resummed by adding a 4 next to the momentum p2. From this
result, we extract straightforwardly, with (34), the LO electron wave function and mass
renormalization

Zψ = 1+
4(2−3ξ−2S)

3(n+2S)π2Nf ε
+O(1/N2

f ), Zm = 1+
8(S−4)

3(n+2S)π2Nf ε
+O(1/N2

f ). (71)

As expected, the general mass renormalization factor is completely gauge-invariant, which
is a strong check on our results. From the definition of the anomalous dimension (35), we
derive the general anomalous dimensions

γψ =− 8(2−3ξ−2S)
3(n+2S)π2Nf

+O(1/N2
f ), γmψ =

16(4−S)
3(n+2S)π2Nf

+O(1/N2
f ). (72)

In the relevant cases of SQED3 (S= 1, n= 2) and fQED3 (S= 0, n= 2), the general results
simplify as

γ
SQED3
ψ =

2ξ

π2Nf
+O(1/N2

f ), γ
SQED3
mψ

=
4

π2Nf
+O(1/N2

f ), (73a)

γ
fQED3
ψ =−4(2−3ξ)

3π2Nf
+O(1/N2

f ), γ
fQED3
mψ

=
32

3π2Nf
+O(1/N2

f ). (73b)
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Note that γ
SQED3
ψ vanishes in the Landau gauge (ξ = 0), which is then the so-called “good

gauge” at LO. This is to be contrasted with the non-supersymmetric case, γ
fQED3
ψ , (first

obtained in [35]) that vanishes in the so-called Nash gauge [6], ξ = 2/3. Note also that the
bQED3 case is obviously irrelevant here since we consider the anomalous dimension of
the electron field and mass. We will further discuss the quantities (73) once we obtain their
supersymmetric counterpart in the next section and their NLO correction after that.

3.2.2. Selectron Self-Energy at LO

We proceed similarly for the electron superpartner, the selectron, which is the scalar
propagator and compute its LO scalar self-energy, which consists of the sum of the two
diagrams

Σφ
1 (p) =Σφ(a)

1 (p)+Σφ(b)
1 (p), (74)

that are defined as

− iΣφ(a)
1 (p) =

p k

k− p
1

= µ2ε
∫
[ddk]Γ̂µ

0Aφφ∗(k,p)S0φφ∗(k)Γ̂ν
0Aφφ∗(p,k)

× D̂1AA,µν(k− p), (75a)

− iΣφ(b)
1 (p) =

p k

k− p
1

=−µ2ε
∫
[ddk]Tr

[
Γ0ψ̄λφS0ψψ̄(k)Γ0λ̄ψφ∗D1λλ̄(k− p)

]
, (75b)

where the photon and photino propagators are indeed the IR-softened ones (64) and Σφ
1b

contains a hybrid (Dirac/Majorana) fermion loop. Note that, for the diagram (b), we can
assign a counter-clockwise fermion flow and momentum flows that follows the fermion
loop consisting of the Dirac and Majorana fermions. Therefore, using the simple Feynman
rules given by (9) to (13) is indeed enough and leads to

−iΣφ(a)
1 (p) =− 16iS

n+2S
µ2ε

Nf

∫
[ddk]

(k̂+ p̂)µ(k̂+ p̂)νd̂µν(k− p)
(k2−m2

φ)|k− p|
, (76a)

−iΣφ(b)
1 (p) =−4iS

µ2ε

Nf

∫
[ddk]

Tr
[
(/k +mψ)(/k−/p)

]
(k2−m2

ψ)|k− p|
. (76b)

Performing the traces and using the projection (31b) yields the two LO contributions to the
momentum part of the selectron self-energy

Σφ(a)
1p (p2) =

4eγEε

(4π)3/2 Nf

(
µ2

−p2

)ε
4S

(n+2S)

(
4(d−1)(d−2)

2d−3
− (2d−5)ξ

)
G(d,1,1/2), (77a)

Σφ(b)
1p (p2) =− 4eγEε

(4π)3/2 Nf

(
µ2

−p2

)ε
n(d−2)S

2d−3
G(d,1,1/2), (77b)

as well as the two LO contributions to the mass part of the selectron self-energy

Σφ(a)
1m (p2) =− 4eγEε

(4π)3/2 Nf

(
µ2

−p2

)ε
2S

n+2S

(
4(d−3)(d−1)− 2d−5

d−4

(
2d2−13d+19

)
ξ

)
×G(d,1,1/2), (78a)

Σφ(b)
1m (p2) =

4eγEε

(4π)3/2 Nf

(
µ2

−p2

)ε
n(d−1)S

2
G(d,1,1/2). (78b)
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The total selectron momentum and mass self-energy, in ε-expanded form, yields

Σφ
1p(p2) =

4S
3(n+2S)π2Nf

(
µ2

−4p2

)ε(
8−3ξ−n

ε
+

2
3

(
28−5n

)
+O(ε)

)
, (79a)

Σφ
1m(p2) =

4S
3(n+2S)π2Nf

(
µ2

−4p2

)ε(
3(ξ+n)

ε
+3(8−3ξ+3n)+O(ε)

)
. (79b)

From these results, we extract the LO scalar wave function and mass renormalization

Zφ = 1+
4(8−3ξ−n)S
3(n+2)π2Nf ε

+O(1/N2
f ), Zmφ = 1− 4(n+4)S

3(n+2)π2Nf ε
+O(1/N2

f ). (80)

As expected from such a physical quantity, the general mass renormalization factor is
completely gauge-invariant. We can now derive the anomalous dimensions for the selectron
field and mass using the definition (35), yielding

γφ =−
8(8−3ξ−n)S
3(n+2)π2Nf

+O(1/N2
f ), γmφ =

8(n+4)S
3(n+2)π2Nf

+O(1/N2
f ), (81)

Note that in the relevant cases of SQED3 (S= 1, n= 2) and bQED3 (S= 1, n= 0), the above
general results simplify as

γ
SQED3
φ =−2(2− ξ)

π2Nf
+O(1/N2

f ), γ
SQED3
mφ

=
4

π2Nf
+O(1/N2

f ), (82a)

γ
bQED3
φ =−4(8−3ξ)

3π2Nf
+O(1/N2

f ), γ
bQED3
mφ

=
16

3π2Nf
+O(1/N2

f ). (82b)

A few remarks are necessary here. First, we observe that for SQED3, the mass anomalous
dimension for the selectron (82a) is identical to the one of the electron (73a), i.e.,

γ
SQED3
mψ

= γ
SQED3
mφ

=
4

π2Nf
+O(1/N2

f ), (83)

as expected from supersymmetry. In striking contrast, the field anomalous dimensions
for the selectron (82a) and the electron (73a) are different. This is due to the use of a
gauge-fixing term that breaks supersymmetry (Wess–Zumino gauge). This is not an issue
since the breaking of SUSY will occur only for gauge-dependent quantities that are, by
definition, non-physical. Secondly, let us remark that in the SQED3 case, the field anomalous
dimension of the selectron vanishes for ξ = 2. Since for the fermionic part of SQED3,
the good gauge was the Landau gauge ξ = 0, and it is, therefore, not possible to cancel
both matter-field anomalous dimensions at the same time. This may cause trouble for
computations of the critical properties of the model using the Schwinger–Dyson equations
(see the devoted Section 5). As for the bQED case (82b), we see that the good gauge is then
ξ = 8/3. We will further discuss these results again after improving them to NLO.

3.3. Vanishing Contributions and Generalized Furry Theorem

Before going to higher orders and computing any NLO diagrams, we first need to
discuss some additional diagrams that may enter the incoming NLO computations as
subdiagrams. These LO diagrams are made of matter bubbles and triangles and are of
uttermost interest because a lot of them are vanishing, either exactly or in pairs. On the one
hand, this will tremendously reduce the number of diagrams to be computed at NLO but
will also ensure that matter bubbles are connected to each other in a way suitable for the
large-Nf expansion.

We first focus on three one-loop diagrams made out of a matter bubble that are exactly
vanishing, as shown in Figure 1.
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(a) (b) (c)

Figure 1. Exactly vanishing one-loop bubble diagrams. (a) B1, (b) B2, (c) B3.

The first vanishing bubble contribution is the mixed polarization B1 (ongoing photon
and outgoing ε-scalar), as displayed in Figure 1a. Since this diagram is proportional to
Tr(γ̄µ) = 0, it reads B1 = 0. More generally, we conjecture that every diagram with an odd
number of ε-scalar external lines is exactly zero. The two other contributions, given by
Figure 1b,c, are also exactly vanishing by parity on the internal momentum integral, i.e.,
B2 = B3 = 0.

Multiple other vanishing contributions come from matter triangles. These are built
from triangles of electrons and selectrons together with external legs of any allowed kinds,
i.e., taken in the gauge multiplet. In total, there are 8 triangles (disregarding the possible
charge flows), as shown in Figure 2. In the following, we will briefly describe why all of
these diagrams (that are proportional to Nf ) are vanishing.

The first one is the pure fermionic QED matter triangle diagram, T1, and is vanishing
because it always appears paired up with its mirror conjugate diagram with opposite
charge/matter flow. An explicit computation is a check at the first order of the Furry
theorem in QED [109], which is the all-order proof that in QED, and any diagram with an
odd number of photon legs can be discarded since they will cancel with their opposite flow
diagrams, as a direct consequence of the conservation of energy and charge conjugation
symmetry. In the following, we will discuss how the Furry theorem, generalized for
gQED3, holds at least at the leading order, i.e., for diagrams made of matter triangles and
three external legs taken in the gauge multiplet. The second vanishing contribution is the
pure bQED diagram, T2, and also vanishes with its opposite charge flow counterpart. It,
therefore, generalizes Furry’s theorem to the case of bQED3. The third and fourth vanishing
diagrams are the supersymmetric triangles made of mixed electron and selectrons, thereby
generalizing Furry’s theorem to SQED3 without ε-scalars. Finally, as for the diagrams
containing ε-scalars, we have the three contributions T5, T6 and T7 that are exactly zero for
any momentum or charge flow direction. This is because they contain an odd number of
ε-scalar external legs, i.e., they are ultimately related to Tr(γ̄µ) = 0. We are left with a last
triangle, T8, made of an electron loop together with one photon plus two ε-scalars external
legs. This diagram is different since it is not vanishing because of ε-scalars, as in this case
it is proportional to Tr(γ̄µγ̄ν) 6= 0. We then have to consider the diagrams with the two
opposite charge flows, that also vanishes upon explicit computation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Vanishing one-loop matter triangles in gQED3. (a) T1, (b) T2, (c) T3, (d) T4, (e) T5, (f) T6,
(g) T7, (h) T8.
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We have to then check explicitly that every matter triangle does indeed vanish, either
exactly or with respect to their (reversed matter flow) twin diagrams. This completes
the perturbative leading order proof that the generalized Furry theorem holds in SQED3
withing the DRED scheme, and, therefore, as subcases, also in fQED3 and bQED3. This
means that every diagram containing a matter triangle can be set to zero in gQED3, i.e., in
SQED3, fQED3 and bQED3. Some prominent examples of diagrams that we can drop are
the large number of Aslamazov–Larkin-type diagrams. Taking into account these various
vanishing contributions tremendously reduces the number of diagrams that has to be
computed at NLO. Indeed, as we shall see in the following, it ensures that up to NLO, not
a single diagram of three-loop type needs to be computed. This is crucial because the three-
loop master integrals with half integer indices are still unknown and are a big challenge to
compute due to the inherent branch-cut structure of the integrals, which results in intricate
hypergeometric functions and transcendental numbers (Catalan number, Clausen function,
etc.; see, e.g., [110,111]). Moreover, the generalized Furry theorem at LO also guarantees
that matter loops are connected by simple chains of force field propagators, like in the
simpler fQED3 case, in accordance with our starting assumption, ensuring that the large-Nf
expansion is reliable. We can now go forward and proceed with the NLO computations.

3.4. Gauge-Multiplet Polarizations at NLO

In this section, we compute the NLO polarizations of the gauge multiplet, i.e., for the
photon, the ε-scalar and the photino at NLO in the 1/Nf expansion, i.e., at O(1/N0

f ). We
will show that all of these polarizations are finite and gauge-invariant for gQED3. In the
following, we shall use shorthand notation for the polarization results

Π(y)
2X (p2) =

e2

2(n+2S)pE

(
µ2

−p2

)2ε

Π̃(y)
2X , ∀X ∈ {γ,ε,λ}. (84)

3.4.1. Photon Polarization at NLO

We first consider the NLO correction to the photon polarization that consists of 20 Feyn-
man diagrams labeled (a,b,. . .,t). Taking into account the fact that mirror conjugate graphs
take the same value, we are left with 11 distinct graphs to evaluate. This can be conducted
exactly for all the diagrams, following the same procedure as for the one-loop case. Their
expressions read

1
2
× 1 : Π̃(a)

2γ =−4S(2+ ξ)

π2 +O(ε), (85a)

4×
1

: Π̃(bcde)
2γ =

16S
3π2

(
1
ε
+

19
3
+

3ξ

2

)
+O(ε), (85b)

2× 1 : Π̃( f g)
2γ =− 2S

3π2

(
8−3ξ

ε
+

128
3
−9ξ

)
+O(ε), (85c)

1 : Π̃(h)
2γ =− 2S

π2

(
ξ

ε
+

70
9
−3ζ2+5ξ

)
+O(ε), (85d)



Symmetry 2023, 15, 1806 23 of 53

2× 1 : Π̃(ij)
2γ =− n

3π2

(
2−3ξ

ε
+

14
3
−6ξ

)
+O(ε), (85e)

1 : Π̃(k)
2γ =

n
3π2

(
2−3ξ

ε
− 32

3
+9ζ2−6ξ

)
+O(ε), (85f)

2× 1 : Π̃(lm)
2γ =

4SE
3π2 +O(ε), (85g)

1 : Π̃(n)
2γ =−4SE

3π2 +O(ε), (85h)

2× 1 : Π̃(op)
2γ =

2nS
3π2

(
1
ε
+

13
3

)
+O(ε), (85i)

2× 1 : Π̃(qr)
2γ =

2nS
3π2

(
1
ε
+

19
3

)
+O(ε), (85j)

2× 1 : Π̃(st)
2γ =−4nS

3π2

(
1
ε
+

11
3

)
+O(ε). (85k)

Summing all the contributions (85), all poles cancel, and the final result is finite, reading

Π̃2γ =
1

18π2

((
40S−92+9π2

)
n−2

(
164−9π2

)
S
)
+O(ε). (86)

Several remarks are in order here. First, the ε-scalars do not contribute here (the corre-
sponding tracking factor, E , is absent) because the two contributions, Π̃γ

2lm and Π̃γ
2n, cancel

each other. Second, the result is completely gauge-invariant, which provides a strong check
on our result. Lastly, the finiteness of the results ensures that the theory is still standing at
NLO, i.e., the coupling does not renormalize.

Since the NLO result is finite and has the same form as the LO one (48), we can write
the photon polarization in the form

Πγ(p2) =Π1γ(p2)

[
1+

Cγ

Nf
+O

(
1/N2

f
)]

, recalling Π1γ(p2) =−
(n+2S)Nf e2

16pE

, (87)

and where the interaction correction coefficient to the photon polarization reads

Cγ =
4n(92−9π2)

9(n+2S)2π2 +
8(164−20n−9π2)S

9(n+2)2π2 . (88)
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In the different cases of interest, i.e., SQED3 (S= 1, n= 2), fQED3 (S= 0, n= 2) and bQED3
(S= 1, n= 0), it yields the correction coefficients

CSQED3
γ =

12−π2

π2 , CfQED3
γ =

2(92−9π2)

9π2 , CbQED3
γ =

2(164−9π2)

9π2 . (89)

As advertised in the previous Section 3.3, it turns out that all the diagrams considered
are two-loop. Indeed, since we are in the large-Nf expansion, higher loop diagrams could
have contributions at the same order in 1/Nf . However, this is fortunately not the case. As
proof, we have explicitly checked that, up to NLO, no three-loop diagram contributes to the
photon polarization, either because they contain a vanishing contribution (see Section 3.3)
or because they are of order 1/N2

f or higher. This requires the check of 361 diagrams in an
automated way. This is conducted by generating the expressions for each diagram and then
computing only what is in the order of 1/Nf , as well detecting subdiagram expressions
that vanish because of the generalized Furry’s theorem.

3.4.2. ε-Scalar Polarization at NLO

We now consider the NLO correction to the ε-scalar polarization that consists of nine
Feynman diagrams labeled (a,b,. . .,i). Taking into account the fact that mirror conjugate
graphs take the same value, we are left with six distinct graphs to evaluate. This can be
conducted exactly for all the diagrams and reads

1
2
× 1 : Π̃(a)

2ε =−8SE
π2 +O(ε), (90a)

2× 1 : Π̃(bc)
2ε =

8SE
3π2 +O(ε), (90b)

1 : Π̃(d)
2ε =

8SE
π2

(
1
ε
+2
)
+O(ε), (90c)

2× 1 : Π̃(e f )
2ε =−4SE

3π2

(
2−3ξ

ε
+

20
3
−9ξ

)
+O(ε), (90d)

1 : Π̃(g)
2ε =−4SE

π2

(
2+ ξ

ε
+10−3ζ2+3ξ

)
+O(ε), (90e)

2× 1 : Π̃(hi)
2ε =

8SE
3π2

(
1
ε
+

16
3

)
+O(ε). (90f)

Summing all the contributions yields the complete result

Π̃2ε =−
2(12−π2)SE

π2 +O(ε), (91)
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which is, as expected, completely gauge-invariant and finite, providing a strong check on
our result. Similar to the photon case, we can rewrite the LO + NLO ε-scalar polarization as

Πε(p2) =Π1ε(p2)

[
1+

Cε

Nf
+O

(
1/N2

f
)]

, recalling Π1ε(p2) =−
ESNf e2

4pE

, (92)

and where the interaction correction coefficient to the ε-scalar polarization reads

Cε =
(12−π2)SE

π2 . (93)

Note that in the only case of interest here, SQED3 (S= 1, n= 2), this result trivially simplifies
as

CSQED3
ε =

12−π2

π2 , (94)

which is exactly the same result as the photon correction coefficient in the SQED3 case, as
shown in (89), as expected from such a supersymmetric gauge-invariant quantity.

Again, we also have explicitly checked that none of the 147 three-loop diagrams
contributes to the ε-scalar polarization thanks to the generalized Furry theorem and the
already resummed one-loop contributions.

3.4.3. Photino Polarization at NLO

The last polarization to consider is the NLO correction to the photino polarization
that consists of 14 Feynman diagrams labeled (a,b,. . .,n). Taking into account the fact that
mirror conjugate graphs take the same value, we are left with seven distinct graphs to
evaluate. This can be conducted exactly for all the diagrams and reads

2× 1 : Π̃(ab)
2λ =− 2S

3π2

(
8−3ξ

ε
+

80
3
−3ξ

)
+O(ε), (95a)

2× 1 : Π̃(cd)
2λ =− 2S

3π2

(
2−3ξ

ε
+

8
3
−3ξ

)
+O(ε), (95b)

2× 1 : Π̃(e f )
2λ =− 4S

π2

(
ξ

ε
+6−3ζ2+ ξ

)
+O(ε), (95c)

2× 1 : Π̃(gh)
2λ =

4SE
3π2 +O(ε), (95d)

2× 1 : Π̃(ij)
2λ =

4S
3π2

(
1
ε
+

13
3

)
+O(ε), (95e)
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2× 1 : Π̃(kl)
2λ =

4S
3π2

(
1
ε
+

10
3

)
+O(ε), (95f)

2× 1 : Π̃(mn)
2λ =

4S
π2

(
1
ε
+2
)
+O(ε). (95g)

Summing all the contributions yields the gauge-invariant and finite result

Π̃2λ =
2S(3π2−38+2E)

3π2 +O(ε). (96)

Note that this result depends non-trivially on the parameter E , which implies that the
ε-scalars are crucial here to ensure that the result is correct, as we will see in the following.
The LO + NLO result for the photino polarization can again be written in the form

Πλ(p2) =Π1λ(p2)

[
1+

Cλ

Nf
+O

(
1/N2

f
)]

, recalling Π1λ(p2) =−
SNf e2

4pE

, (97)

where the interaction coefficient to the photino polarization reads

Cλ =
(38−2E −3π2)S

3π2 . (98)

Note that this result is only of interest in the case of SQED3 (S= 1, n= 2), where it reduces to

CSQED3
λ =

12−π2

π2 , (99)

provided that we allow for the ε-scalars (E = 1). This is again exactly the same result as for
the photon and the ε-scalar correction coefficient in SQED3. Therefore, we have explicitly
checked that, up to NLO,

ΠSQED3
γ =ΠSQED3

ε =ΠSQED3
λ , (100)

meaning that all polarizations of the gauge multiplet are equal, as expected from super-
symmetry for such gauge-invariant and finite quantities.

Again, we also have explicitly checked that none of the 234 three-loop diagrams
contribute to the photino polarization thanks to the generalized Furry theorem and the
already resummed one-loop contributions.

3.4.4. IR-Softened Gauge Multiplet at NLO

We are now in a position to compute the NLO-softened propagators, i.e., of order
1/N2

f . Their expressions read

D̂µν
2AA(p) = 2

p
µ ν =

−16iCγ

(n+2S)N2
f e2

d̂µν(p)
pE

, (101a)

D̄µν
2AA(p) = 2

p
µ ν =

−4iESCε

N2
f e2

ḡµν

pE

, (101b)

D2λλ̄(p) = 2

p
=

4iSCλ

N2
f e2

/p
pE

, (101c)
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where we take the infra-red limit pE� e2Nf , as advertised in (8). Interestingly, we observe
the nice property that the LO (64) and NLO (101)-softened gauge-multiplet propagators
are simply related via their polarization correction coefficients, i.e.,

D̂µν
2AA(p) =−Cγ× D̂µν

1AA(p)/Nf , (102a)

D̄µν
2AA(p) =−Cε× D̄µν

1AA(p)/Nf , (102b)

D2λλ̄(p) =−Cλ×D1λλ̄(p)/Nf , (102c)

where the tensorial structure of the photon is still given by d̂µν(p) = ĝµν− (1− ξ)( p̂µ p̂ν/p2)
thanks to the use of the non-local gauge (see (28)).

3.5. Matter-Multiplet Self-Energies at NLO

In this section, we compute the NLO self-energies of the matter multiplet, i.e., for the
electron and the selectron at NLO in the 1/Nf expansion, i.e., at O(1/N2

f ) in gQED3. In the
following, we shall use shorthand notation for the self-energies

ΣX(y)
2z (p2) =

4
(n+2S)2N2

f

(
µ2

−4p2

)2ε

Σ̃X(y)
2z , ∀X ∈ {ψ,φ}, z∈ {p,m}. (103)

3.5.1. Electron Self-Energy at NLO

We first consider the NLO correction to the electron self-energy that consists of 15 two-
loop and 3 one-loop Feynman diagrams, altogether labeled (a,b,. . .,r). Indeed, contributions
of the same order in Nf with different loop orders are possible now that we have at our
disposal both the LO (64) and NLO (101)-softened propagators. Taking into account the
fact that mirror conjugate graphs take the same value, we are left with a total of 16 distinct
graphs to evaluate. For each one of them, we extract both the momentum and mass parts
using parametrization (30a). With all computations conducted, we obtain the results

2×

1

1

:


Σ̃ψ(ab)

2p =
16S
9π4

(
1−3ξ

ε2 +
13−60ξ

3ε

)
+O(ε0)

Σ̃ψ(ab)
2m =

8S
3π4

(
2+ ξ

ε2 +
50+31ξ

3ε

)
+O(ε0)

, (104a)

1

1

:


Σ̃ψ(c)

2p =−
4

9π4

(
(2−3ξ)2

ε2 +
64−3ξ(56−39ξ)

3ε

)
+O(ε0)

Σ̃ψ(c)
2m =−

4
3π4

(
(2+ ξ)(2−3ξ)

ε2 +
112− ξ(40+63ξ)

3ε

)
+O(ε0)

, (104b)

2×

1

1

:


Σ̃ψ(de)

2p =−
16SE(2+3ξ)

9π4ε
+O(ε0)

Σ̃ψ(de)
2m =

32SE(2+ ξ)

3π4ε
+O(ε0)

, (104c)

1

1

:


Σ̃ψ( f )

2p =
16SE
3π4ε

+O(ε0)

Σ̃ψ( f )
2m =−

16SE
π4ε

+O(ε0)

, (104d)

1

1

:


Σ̃ψ(g)

2p =
4S

3π4

(
2
ε2 +

17
ε

)
+O(ε0)

Σ̃ψ(g)
2m =−

4S
π4ε

+O(ε0)

, (104e)
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1

1

:


Σ̃ψ(h)

2p =
2

9π4

(
(2−3ξ)2

ε2 +
2(2−3ξ)(16−21ξ)

3ε

)
+O(ε0)

Σ̃ψ(h)
2m =

2
3π4

(
(2+ ξ)(10−3ξ)

ε2 +
2(232+86ξ−27ξ2)

3ε

)
+O(ε0)

, (104f)

1

1

:


Σ̃ψ(i)

2p =−
4SE(2−3ξ)

9π4ε
+O(ε0)

Σ̃ψ(i)
2m =

4SE(2+ ξ)

3π4ε
+O(ε0)

, (104g)

1

1

:


Σ̃ψ(j)

2p =−
4S

9π4

(
2−3ξ

ε2 +
44−63ξ

3ε

)
+O(ε0)

Σ̃ψ(j)
2m =−

8S
3π4

(
2+ ξ

ε2 +
56+31ξ

3ε

)
+O(ε0)

, (104h)

1

1

:


Σ̃ψ(k)

2p =−
4SE(2−3ξ)

9π4ε
+O(ε0)

Σ̃ψ(k)
2m =

4SE(10−3ξ)

3π4ε
+O(ε0)

, (104i)

1

1

:


Σ̃ψ(l)

2p =
8ES
9π4 +O(ε1)

Σ̃ψ(l)
2m =

8ES
3π4 +O(ε1)

, (104j)

1

1

:


Σ̃ψ(m)

2p =
8SE
9π4ε

+O(ε0)

Σ̃ψ(m)
2m =−

16SE
3π4ε

+O(ε0)

, (104k)

1

1

:

Σ̃ψ(n)
2p =−

4S
9π2

(
8−3ξ

ε2 +
7(32−9ξ)

3ε

)
+O(ε0)

Σ̃ψ(n)
2m = 0

, (104l)

1

1

:


Σ̃ψ(o)

2p =
8S

9π4

(
1
ε2 +

31
3ε

)
+O(ε0)

Σ̃ψ(o)
2m = 0

, (104m)

2

:


Σ̃ψ(p)

2p =−
2(2−3ξ)

π4ε
(n+2S)ζ2Cγ +O(ε0)

Σ̃ψ(p)
2m =−

6(2+ ξ)

π4ε
(n+2S)ζ2Cγ +O(ε0)

, (104n)

2

:


Σ̃ψ(q)

2p =
4ES
π4 ζ2Cε +O(ε1)

Σ̃ψ(q)
2m =−

12ES
π4 ζ2Cε +O(ε1)

, (104o)

2

:


Σ̃ψ(r)

2p =
4S
π4ε

ζ2Cλ +O(ε0)

Σ̃ψ(r)
2m = 0

. (104p)

Note that the computation of the three last diagrams leads to the trivial result that they
are simply their LO equivalents times their corresponding coefficient with a sign, −Cx/Nf ,
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thanks to the equality (102). Moreover, Cε will not contribute to anomalous dimensions
because the diagram (104o), Σ̃ψ(q)

p2 , is finite. Similarly, Cλ does not contribute to the mass

anomalous dimension because the diagram, Σ̃ψ(r)
m2 , is exactly zero. Again, we also have

explicitly checked that none of the 390 three-loop diagrams contributes to the electron
self-energy at NLO.

Summing all the NLO contributions (104), yields the following results

Σψ
p =−

2(S− ξ̄)

RNf ε
− 2(S− ξ̄)2

R2N2
f ε2
− 1

3R2N2
f ε

[
4+(77+6E)S+4

(
1− (19+3E)S+6ξ̄

)
ξ̄

−6R
(
SCλ− ξ̄Cγ

)]
+O(ε0), (105a)

Σψ
m =

3(2+ ξ)

RNf ε
+

9(2+ ξ)2

2R2N2
f ε2

+
1

R2N2
f ε

[
220−21S−4(29−4ξ̄)ξ̄

+3(2+ ξ)
(
6ES−RCγ

)]
+O(ε0), (105b)

where we introduced the useful notation

ξ̄ = (2−3ξ)/2, R= A(−4p2/µ̄2)ε , A= 3π2(n+2S)/4. (106)

We can now compute the renormalization functions up to NLO for the electron, reading

Zψ = 1− 2(S− ξ̄)

Aµ2εNf ε
+

2
(
S−2ξ̄S+ ξ̄2)
A2µ4εN2

f ε2
−

4+(29−6E)S−6Aµ2ε(SCλ− ξ̄Cγ)

3A2µ4εN2
f ε

+O(1/N3
f ), (107a)

Zmψ = 1− 2(4−S)
Aµ2εNf ε

+
2(16−7S)
A2µ4εN2

f ε2
−

2(16− (46−3E)S+3Aµ2ε(SCλ−4Cγ))

3A2µ4εN2
f ε

+O(1/N3
f ). (107b)

From these, the anomalous dimensions read

γψ =
4(S− ξ̄)

ANf
+

4
3A2N2

f

[
4+(29−6E)S−3A

(
SCλ− ξ̄Cγ

)]
+O

(
1/N3

f
)

, (108a)

γmψ =
4(4−S)

ANf
+

8
3A2N2

f

[
16− (46−3E)S+ 3

2 A(SCλ−4Cγ)

]
+O

(
1/N3

f
)

. (108b)

We will discuss these results once the anomalous dimensions of the superpartner are
computed.

3.5.2. Selectron Self-Energy at NLO

We next consider the NLO correction to the selectron self-energy that consist of 15 two-
loops and 2 one-loop Feynman diagrams labeled (a,b,. . .,p). Taking into account the fact
that mirror conjugate graphs take the same value, we are left with a total of 14 distinct
graphs to evaluate. For each of them, we extract both the momentum and mass parts using
parametrization (30b). With all computations conducted, we obtain the results

1
2
×

1

1

:


Σ̃φ(a)

2p =−
4S(4− ξ(4−3ξ))

3π4ε
+O(ε0)

Σ̃φ(a)
2m =−

4S(4− ξ(4−3ξ))

π4ε
+O(ε0)

, (109a)

1
2
×

1

1

:


Σ̃φ(b)

2p =−
8ES
3π4 +O(ε1)

Σ̃φ(b)
2m =−

8ES
π4 +O(ε1)

, (109b)
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2×

1

1

:


Σ̃φ(cd)

2p =−
16S
9π2

(
2(4−3ξ)

ε2 +
(4−3ξ)(32+9ξ)

3ε

)
+O(ε0)

Σ̃φ(cd)
2m =−

16S
3π4

(
2ξ

ε2 +
48+ ξ(32−9ξ)

3ε

)
+O(ε0)

, (109c)

1

1

:


Σ̃φ(e)

2p =−
128S
9π4

(
1
ε2+

14+9ξ

3ε

)
+O(ε)

Σ̃φ(e)
2m =−

256S(1− ξ)

3π4ε
+O(ε0)

, (109d)

1

1

:


Σ̃φ( f )

2p =
4S

3π4

(
8−3ξ

ε2 +
64+9ξ(80−17ξ)

18ε

)
+O(ε0)

Σ̃φ( f )
2m =

4ξS
π4

(
ξ

ε2+
32−13ξ

2ε

)
+O(ε0)

, (109e)

2×

1

1

:


Σ̃φ(gh)

2p =
8nS
9π4

(
4−3ξ

ε2 +
104−75ξ

6ε

)
+O(ε0)

Σ̃φ(gh)
2m =

4nS
3π4

(
4ξ

ε2 +
48+31ξ

3ε

)
+O(ε0)

, (109f)

1

1

:


Σ̃φ(i)

2p =
4nS
3π4

(
1
ε2+

15
2ε

)
+O(ε0)

Σ̃φ(i)
2m =−

4nS
π4

(
1
ε2+

17
2ε

)
+O(ε0)

, (109g)

1

1

:


Σ̃φ(j)

2p =
2S

9π4

(
(8−3ξ)2

ε2 +
(8−3ξ)(128+3ξ)

3ε

)
+O(ε0)

Σ̃φ(j)
2m =

2S
3π4

(
(16−3ξ)ξ

ε2 +
768−344ξ+45ξ2

3ε

)
+O(ε0)

, (109h)

1

1

:


Σ̃φ(k)

2p =−
2nS
9π4

(
8−3ξ

ε2 +
152−27ξ

3ε

)
+O(ε0)

Σ̃φ(k)
2m =

2nS
3π4

(
ξ

ε2+
48−17ξ

3ε

)
+O(ε0)

, (109i)

1

1

:


Σ̃φ(l)

2p =−
2nS
9π4

(
2−3ξ

ε2 +
44−63ξ

3ε

)
+O(ε0)

Σ̃φ(l)
2m =

2nS
π4

(
6− ξ

ε2 +
128−15ξ

3ε

)
+O(ε0)

, (109j)

1

1

:


Σ̃φ(m)

2p =
4nSE
9π4ε

+O(ε0)

Σ̃φ(m)
2m =

4nSE
π4ε

+O(ε0)

, (109k)

1

1

:


Σ̃φ(n)

2p =
4nS
9π4

(
1
ε2+

28
3ε

)
+O(ε0)

Σ̃φ(n)
2m =−

4nS
π4

(
1
ε2+

22
3ε

)
+O(ε0)

, (109l)

2

:


Σ̃φ(o)

2p =−
(2+n)(8−3ξ)

4π4ε
ζ2Cγ +O(ε0)

Σ̃φ(o)
2m =−

3(2+n)Sξ

4π4ε
ζ2Cγ +O(ε0)

, (109m)
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2

:


Σ̃φ(p)

2p =
nS
π4ε

ζ2Cλ +O(ε0)

Σ̃φ(p)
2m =−

3nS
π4ε

ζ2Cλ +O(ε0)

. (109n)

Again, note that the computation of the last two graph leads to the trivial results that they
are simply the one-loop diagram result times the corresponding interaction correction coef-
ficient with a sign −Cx thanks to the identities (101). Interestingly, Cε does not contribute
at all to the selectron self-energy since there is no one-loop diagram containing an ε-scalar
polarization at this order due to the absence of direct coupling between the selectron and
the ε-scalar. Again, we also have explicitly checked that none of the 297 three-loop diagrams
contributes to the electron self-energy at NLO.

Summing all the contributions (109) reads

Σφ
p =

(6−n+2ξ̄)S
RNf ε

− (6−n+2ξ̄)2S
2R2N2

f ε2
− S

6R2N2
f ε

[
8(85+28ξ̄)−n(163+40ξ̄)−12E

−6R
(
nCλ−2(3+ ξ̄)Cγ

)]
+O(ε0), (110a)

Σφ
m =

3(n+ ξ)S
RNf ε

+
9(n+ ξ)2S
2R2N2

f ε2
+

3S
2R2N2

f ε

[
81n+12E −8(2+ ξ̄)ξ̄

−2R
(
nCλ + ξCγ

)]
+O(ε0), (110b)

where we again use the useful notation

ξ̄ = (2−3ξ)/2, R= A(−4p2/µ̄2)ε , A= 3π2(n+2S)/4. (111)

We note that ε-scalars contribute to the self-energies, in part, from the polarization correction
Cλ (this time for the selectron only) but not from Cε (see (93)). We can now compute the
renormalization functions up to NLO for the selectron field and mass using defining
Equation (34), reading

Zφ = 1+
(6−n+2ξ̄)S

Aµ2εNf ε
+

(2(3+ ξ̄)2−n(5+2ξ̄))S
A2µ4εN2

f ε2

−
(8−12E+29n−6Aµ2ε(nCλ−2(3+ ξ̄)Cγ))S

6A2µ4εN2
f ε

+O(1/N3
f ), (112a)

Zmφ = 1− (4+n)S
Aµ2εNf ε

+
(8+5n)S

A2µ4εN2
f ε2

+
2(28−15E+7n+ 3

2 Aµ2ε(nCλ +2Cγ))S
3A2µ4εN2

f ε
+O(1/N3

f ). (112b)

The factors µ2ε are discussed under Equation (107). Using the definition of the anomalous
dimensions (35), we derive the anomalous dimensions for the selectron field and mass,
reading

γφ =
2(n−6−2ξ̄)S

ANf
+

2S
3A2N2

f

[
8+29n−12E −3A

(
nCλ− (8−3ξ)Cγ

)]
+O

(
1/N3

f
)

, (113a)

γmφ =
2(4+n)S

ANf
− 8S

3A2N2
f

[
28−15E+7n+ 3

4 A(nCλ +4Cγ)

]
+O

(
1/N3

f
)

. (113b)

We will discuss the results for the different cases in the next section.

4. Critical Exponents and Observables

In this section, we apply the general results obtained in the previous section to the
various QEDs of interest. In particular, we will present the critical exponents and discuss
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the observables arising from the computation of the polarization operators of the gauge
multiple. We will conclude with a study of the stability of the non-trivial IR fixed point at
which all physical quantities are computed.

4.1. Results for Fermionic QED3

As a check of our computations, we will first recover well-known results for large-Nf
fQED3. This can be achieved by considering our general results without supersymmetry
(S= 0, n= 2), which yields:

γ
fQED3
ψ =−4(2−3ξ)

3π2Nf
+

8(64−92ξ− (6−9ξ)π2)

9π4N2
f

+O
(

1/N3
f

)
,

γ
fQED3
mΨ =

32
3π2Nf

− 64(28−3π2)

9π4N2
f

+O
(

1/N3
f

)
,

ΠfQED3
γ =−

Nf e2

8pE

[
1+

CfQED3
γ

Nf
+O(1/N2

f )

]
,

CfQED3
γ =

2(92−9π2)

9π2 = 0.07146.

(114a)

(114b)

(114c)

(114d)

The field and mass anomalous dimensions correspond exactly to the expressions first found
by Gracey with a different method. In particular, the field anomalous dimension was first
derived in the Landau gauge in [35] and then in an arbitrary covariant gauge in [36]. The
mass anomalous dimension was derived in [36]. The interaction correction coefficient,
CfQED3

γ , was first explicitly computed in [68,76,112]. Hence, our results are in complete
agreement with those of the literature.

4.2. Results for N = 1 SQED3

We now consider the novel case of N = 1 SQED3, i.e., taking S= 1, n= 2. First, it is
interesting to consider the results with arbitrary E to study the effect of DRED. In this case,
our general results yield

γψ =
2ξ

π2Nf
+

2(2− (12−π2)ξ)

π4N2
f

+O
(

1/N3
f

)
, (115a)

γφ =−
2(2− ξ)

π2Nf
+

2(26− (2− ξ)π2−12ξ)

π4N2
f

+O
(

1/N3
f

)
, (115b)

γmψ =
4

π2Nf
− 4(14−π2)

π4N2
f

+O
(

1/N3
f

)
, (115c)

γmφ =
4

π2Nf
− 4(46−4E −3π2)

3π4N2
f

+O
(

1/N3
f

)
, (115d)

Cγ =
12−π2

π2 , Cε =
(12−π2)E

π2 , Cλ =
38−2E −3π2

3π2 . (115e)
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Interestingly, the effect of the ε-scalar is stiff but crucial. Indeed, the quantities γψ and γφ,
as well as γmψ and Cγ, are all E -independent up to NLO. Only Cλ and γmφ depend on E .
Taking E = 1 so that DRED is allowed, these results simplify as

γ
SQED3
ψ =

2ξ

π2Nf
+

2(2− (12−π2)ξ)

π4N2
f

+O
(

1/N3
f

)
,

γ
SQED3
φ =−2(2− ξ)

π2Nf
+

2(26− (2− ξ)π2−12ξ)

π4N2
f

+O
(

1/N3
f

)
,

γ
SQED3
mψ

=
4

π2Nf
− 4(14−π2)

π4N2
f

+O
(

1/N3
f

)
,

γ
SQED3
mφ

=
4

π2Nf
− 4(14−π2)

π4N2
f

+O
(

1/N3
f

)
,

ΠSQED3
x =−

Nf e2

4pE

[
1+

CSQED3
x
Nf

+O(1/N2
f )

]
, x = {γ,ε,λ},

CSQED3
x =

12−π2

π2 = 0.2159, x = {γ,ε,λ}.

(116a)

(116b)

(116c)

(116d)

(116e)

(116f)

Remarkably, the ε-scalars ensure the validity of identities for the polarization operators

ΠSQED3
γ (p2) =ΠSQED3

ε (p2) =ΠSQED3
λ (p2), (117)

as well as for the mass anomalous dimensions

γ
SQED3
mψ

= γ
SQED3
mφ

, (118)

both verified up to NLO in our calculations. This is a behavior expected from SUSY that
physical (gauge invariant) quantities are identical in the same multiplet [113,114]. On the
other hand, the field anomalous dimensions for the electron and the selectron are not equal,
neither at LO nor at NLO. This is indeed due to the use of a gauge-fixing term that breaks
supersymmetry (Wess–Zumino gauge). We recall here that this is expected and not an
issue since the breaking of SUSY occurs only for gauge-dependent quantities that are, by
definition, non-physical.

4.3. Results for Bosonic QED3

We now consider the second subcase of interest in this article, which is bosonic QED3,
i.e., taking S= 1, n= 0 and E = 0. In this case, our general results yield

γ
bQED3
φ =−4(8−3ξ)

3π2Nf
+

8(440−164ξ−3π2(8−3ξ))

9π4N2
f

+O(1/N3
f ),

γ
bQED3
mφ

=
16

3π2Nf
− 32(64−3π2)

9π4N2
f

+O(1/N3
f ),

ΠbQED3
γ =−

Nf e2

8pE

[
1+

CbQED3
γ

Nf
+O(1/N2

f )

]
,

CbQED3
γ =

2(164−9π2)

9π2 = 1.6926.

(119a)

(119b)

(119c)

(119d)

Note that the LO results are in accordance with those previously derived in [31–33], and to
our knowledge, the NLO results (first published in our short paper [95]) are new.
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4.4. Results for Reduced QED4,3 (Graphene)

From the above results, we are now in a position to study QED4,3. Let us recall that
this model is an effective description of graphene at its ultra-relativistic IR fixed point. We
access its properties from those of fQED3 with the help of mapping first proposed in [75].
Comparing the LO-softened photon propagator of fQED3 (64a) with the corresponding
bare photon propagator of QED4,3 (see, e.g., [115]),

DµνfQED3
1AA (p) =

8i
Nf e2 pE

(
gµν− (1− ξ)

pµ pν

p2

)
, DµνQED4,3

0 (p) =
i

2pE

(
gµν− 1− ξ

2
pµ pν

p2

)
, (120)

yields the following naive map

fQED3→QED4,3 =

{
1

π2Nf
→ ᾱ. ξ→ 1+ ξ

2

}
. (121)

This map is enough to recover the results for the polarization at one and two-loop for QED4,3
from the polarization of fQED3 and, therefore, the corresponding correction coefficient Cγ.
This map is also sufficient to recover the one-loop anomalous dimensions of the QED4,3
model from the LO result of the fQED3 model. However, it breaks at two-loop. Indeed,
these models, though very similar, have two major differences that manifest at NLO.

First, fQED3 at NLO is expressed in a non-local gauge, while the QED4,3 is not. To
compensate this effect, it is enough to consider that if the two-loop polarization of fQED3
is next to the gauge parameter, ξ, it should not be present in the QED4,3 case. Since the
two-loop polarization is proportional to Cγ, one can use the additional rule [75]

ξ×CfQED3
γ → 0, (122)

to recover the proper gauge dependence at two-loop in the anomalous dimensions of
QED4,3.

Secondly, in fQED3, we have softened the photon propagator at NLO and computed
additional (one loop but NLO) diagrams (see Equations (104n)–(104p), (109m) and (109n)).
These diagrams are not present in QED4,3 and are replaced by diagrams with a simple
fermion loop. To take this into account, we should replace the NLO-softened propagator in
fQED3 with the LO one times the regular factor for a fermion loop in QED4,3, i.e.,−Nf . Since

the factor between the two propagators is exactly −CfQED3
γ /Nf (see (102a)), the additional

needed rule reads [75]
CfQED3

γ →Nf , (123)

as to be applied on the anomalous dimensions only.
Performed carefully, this mapping yields the following results for QED4,3

γ
QED4,3
Ψ =−2ᾱ

1−3ξ

3
+16ᾱ2

(
Nf ζ2+

4
27

)
+O(ᾱ3),

γ
QED4,3
m =

32ᾱ

3
−64ᾱ2

(
Nf ζ2−

8
27

)
+O(ᾱ3),

ΠQED4,3
γ =−

πNf α

2pE

[
1+CQED4,3

γ α+O(α2)
]

,

CQED4,3
γ =

92−9π2

18π
= 0.05612,

(124a)

(124b)

(124c)

(124d)

which perfectly recover the results of [68,69,76,80,115]. Note that the use of α instead of ᾱ
for the polarization is on purpose.

Going further, following [68,76], we can use our results to compute the optical con-
ductivity of graphene at its IR fixed point. Indeed, the polarization of the photon Πµν,
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finite and gauge invariant for QED4,3 (hence, physical) can be related to the optical (AC)
conductivity of graphene with the Kubo formula

σg(p0) =− lim
~p→0

ip0

|~p|2 Π00(p0,~p), (125)

where pµ = (p0,~p). Since the parametrization for the photon polarization reads
Πµν = (p2gµν− pµ pν)Π and ΠQED4,3 ∼ 1/pE , Formula (125) simplifies as

σg =−pE ΠQED4,3 . (126)

After momentarily restoring the constants h̄, c and ε0 for clarity, it can be written as

σg = σ0g

(
1+CQED4,3

γ α+O(α2)

)
, σ0g =

Nf e2

8h̄
=

πNf e2

4h
, (127)

where σ0g is the well-known universal minimal AC conductivity of graphene. Moreover,
following [116], the optical conductivity of graphene is related to its transmittance (Tg) and
its absorbance (Ag) via the relation

Tg = 1−Ag =

(
1+

σg

2ε0c

)−2

≈ 1−
σ0g

ε0c
= 1−

πNf α

2
⇒ Ag =

πNf α

2
, (128)

where α= e2/(4πε0h̄c) is the usual QED fine structure constant. At first order, since Nf = 2
(i.e., 8 elementary spinors) and α= 1/137, we obtain an absorbance of

A0g =πα= 0.0229. (129)

Moreover, CQED4,3
γ is the interaction correction coefficient to this quantity so that we can

expand the leading order absorbance to compute corrections, reading

Ag =πα

[
1+
(

CQED4,3
γ − 3π

4

)
α+O(α2)

]
. (130)

From perturbation theory, we expect the next corrections to be even smaller so that the first
one can be taken as an error bar for the next ones, i.e., multiplying the NLO factor by ±1,
and since α= 1/137, we have numerically that pure standing relativistic graphene has an
optical absorbance of

Ag = (2.29±0.04)%. (131)

Surprisingly, this result is very close to the one found in the experiments, Aexp
g =

(2.3 ± 0.2)% [117,118], even though measurements are in the pseudo-relativistic limit
(vF ≈ c/300), while our value (131) is computed in the ultra-relativistic limit (with electrons
traveling at the speed of light, vF = c) (see related discussions in [30]).

4.5. Results for Reduced N = 1 SQED4,3 (Super-Graphene)

As a non-trivial application, we will map our results for SQED3 to a model of super-
graphene, i.e., for SQED4,3 (see the action (5)). We recall that this model is an effective
description of an eventual pure suspended super-graphene material at its ultra-relativistic
fixed point. Following the non-SUSY case, the mapping arises from comparing the LO
IR-softened gauge propagators of SQED3 (64) with the propagators of SQED4,3 derived
from, e.g., [93]. These propagators read

D̂µνSQED3
1AA (p) =

4i
Nf e2 pE

(
ĝµν +(1− ξ)

p̂µ p̂ν

p2

)
, D̂µνSQED4,3

0AA (p) =
i

2pE

(
ĝµν +

1− ξ

2
p̂µ p̂ν

p2

)
, (132a)
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D̄µνSQED3
1AA (p) =

4i
Nf e2 pE

ḡµν , D̄µνSQED4,3
0AA (p) =

i
2pE

ḡµν, (132b)

DµνSQED3
1λλ̄

(p) =− 4i6 p
Nf e2 pE

, DµνSQED4,3
0λλ̄

(p) =− i6 p
2pE

. (132c)

It is then straightforward to deduce the following naive mapping

SQED3→ SQED4,3 =

{
1

π22Nf
→ ᾱ, ξ→ 1+ ξ

2

}
, (133)

which is the same as the non-SUSY case up to a factor of two. This allows for accessing
the polarization of SQED4,3 up to two loops and also the anomalous dimensions up to one
loop. In order to access the correct two-loop contribution to the anomalous dimensions for
this model, as in the non-SUSY case, we first have to cancel the effect of the non-local gauge
by using

ξ×CSQED3
γ = 0, (134)

and then cancel the effect of the NLO softening of the gauge propagators by taking

Cx→Nf ∀x = {γ,ε,λ}, (135)

in the anomalous dimensions. Performed carefully, this mapping yields the following
results

γ
SQED4,3
ψ = 2(1+ ξ)ᾱ+16ᾱ2+O(ᾱ3),

γ
SQED4,3
φ =−2(3− ξ)ᾱ+16(1+6Nf ζ2)ᾱ

2+O(ᾱ3),

γ
SQED4,3
mψ

= 8ᾱ−32(1+3Nf ζ2)ᾱ
2+O(ᾱ3),

γ
SQED4,3
mφ

= 8ᾱ−32(1+3Nf ζ2)ᾱ
2+O(ᾱ3),

ΠSQED4,3
γ =−

πNf α

pE

[
1+CSQED4,3

γ α+O(α2)
]

,

CSQED4,3
γ =

12−π2

2π
= 0.3391.

(136a)

(136b)

(136c)

(136d)

(136e)

(136f)

Note that use of α instead of ᾱ for polarization is on purpose. These results are in accordance
with [93] at one loop. To our knowledge, the two-loop contributions are a new result. Note
that [93] considered a super-graphene model on the boundary (on a substrate) such that
the coupling αbdry is twice as small than in our case, i.e., αbdry = α/2.

Similar to the non-supersymmetric case, we can derive the optical conductivity of
the hypothetical super-graphene. Using the same Kubo formula, as in (125), yields the
following minimal AC conductivity of super-graphene

σsg = σ0sg

(
1+CSQED4,3

γ ᾱ+O(ᾱ2)

)
, σ0sg =

Nf e2

4h̄
=

πNf e2

2h
, (137)

which is twice as big than the non-SUSY one (127). From here, a procedure similar to the
non-SUSY case yields the following optical absorbance

Aexp
sg = (4.59±0.15)%. (138)

Therefore, the absorbance of ultra-relativistic freestanding super-graphene is twice the
value of normal graphene in the same conditions. Amusingly, this result is exactly the
same as for bilayer (non-SUSY) graphene, which is experimentally twice the absorbance of
non-SUSY graphene, i.e., Ag≈ 4.6% [116,119].
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4.6. Stability of the IR Fixed Point

An important question is related to the stability of the non-trivial IR fixed point with
respect to radiative corrections. As we have discussed in the Introduction, for all variants of
QED3 that we have studied, this fixed point arises in the large-Nf limit and, more precisely,
in the limit pE� e2Nf . As Nf decreases, corrections in 1/Nf increase, which calls for an
examination of how the fixed point is affected.

Following the bQED3 and fQED3 cases (see [2,5], respectively), for all the QED3 models
studied in this article, one can define a dimensionless effective charge

gr(pE) =
g

pE (1−Πγ(pE))
, g= e2Nf . (139)

In the case of our general (gQED3) model, the photon polarization operator takes the
following form

Πγ(pE) = X
g
pE

with X =−n+2S
16

(
1+

Cγ

Nf
+O(1/N2

f )

)
, (140)

where Cγ encodes the effects of interactions. From (139) and (140), one can define the beta
function associated with the effective coupling, gr. Its expression is given by:

β(gr) =
dgr

dlogpE

=−gr(1+Xgr), (141)

and displays two fixed points. One of them is the (trivial) asymptotically free UV fixed
point, g∗r→0. The second one is the (non-trivial) interacting IR fixed point that we are
interested in, g∗r→−1/X (see [1,2,4], as well as the more recent [43]). Summarizing

g∗r =

{
0 asymptotic UV fixed point,
−1/X interacting IR fixed point.

(142)

By combining the above results, the non-trivial IR fixed point of the various cases of interest
read

g∗r =
16

n+2S

(
1−

Cγ

Nf
+O(1/N2

f )

)
=


SQED3 : 4(1−0.216/Nf +O(1/N2

f ))

fQED3 : 8(1−0.071/Nf +O(1/N2
f ))

bQED3 : 8(1−1.693/Nf +O(1/N2
f ))

(143)

where the results are accurate up to the NLO in the 1/Nf expansion. We see that fQED3
is the least affected by radiative corrections and that the latter also weakly affects SQED3
(though three times more than fQED3). In the case of bQED3, however, the correction is of
the order of 1. A resummation yields

g∗r
∣∣
bQED3

=
8

1+1.693/Nf +O(1/N2
f )

, (144)

so that, despite being shifted by an amount in the order of 1/Nf , the fixed point still exists.
It would be interesting to have an all-order proof of the existence of the fixed point, but this
goes beyond the scope of the present paper.
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5. Dynamical (Matter) Mass Generation

As an application of our results, we now turn to an estimate of Nc, the critical number
of (s)electron flavors, which is such that for Nf > Nc, the (s)electron is massless, while for
Nf < Nc, a dynamical mass, with a Miransky scaling [5], is generated, reading

|| Nf

Nc0

mdyn 6= 0 mdyn = 0
, mdyn ∝ exp

 −2π√
Nc/Nf −1

. (145)

As discussed in the model section, at the level of the action, the potentially generated
parity-even mass terms (parity-odd masses cannot be dynamically generated [120]) are
of the form (7). Let us remark that only the electron mass term breaks the global flavor
symmetry. From SUSY, we also expect that mdynψ

=mdynφ
, which we will simply call mdyn.

5.1. The (Semi-Phenomenological) Gap Equation

In principle, the critical number of fermion flavors should be derived via the self-
consistent resolution of properly truncated (coupled) Schwinger–Dyson (SD) equations.
Due to the complexity of the calculations, for decades, this task has been carried out only
at the LO, which has resulted in several inconsistencies, such as severe gauge depen-
dence [121,122] and/or broken Ward identities (see also the thesis in [123]). In the case
of fQED3, following early multiloop works of Nash [6] and Kotikov [9,10], a complete
gauge-invariant prescription up to the NLO of the 1/Nf -expansion appeared only rather
recently in [15–17] (see also [19] for a recent review). In [75], the results were then mapped
to QED4,3, thereby extending the LO results of [67] to the NLO in α.

The systematic approach reviewed in [19] alleviates doubts about the validity of the
SD equation approach to access the non-perturbative regime of dynamical mass generation.
Nevertheless, it is very technical and difficult to apply to, e.g., SQED3 where SUSY leads to
a dramatic increase in the number of graphs with respect to fQED3 and is also responsible
for a coupled gap equation for the electron and selectron. Moreover, the complexity of
intermediate steps contrasts with the very simple final form of the gap equation that reads

b(de−2−b) = (de−2)
(
γm1+ ···

)
. (146)

where γm = γm1+γm2+ ··· expanded either in loop or large-Nf . In (146), the electron
dynamical mass scaling is mdyn∼ p−b

E
, and dynamical generation occurs when b becomes

complex. Actually, as was already noted in the early literature on four-dimensional models
(see, e.g., [124–128]) and reconsidered recently [15,115], the form of this gap equation can
be deduced from the UV asymptotic behavior of the fermion propagator. In [115], it was
argued by the present authors that the gap equation may be quadratic in b at all loop orders
and, therefore, semi-phenomenologically written non-pertubatively in the form

b(de−2−b) = γm(de−2−γm), (147)

with the gauge-invariant γm as the only input. In this case, b becomes complex for
(b− (de−2)/2)2 < 0, yielding the criterion

K(Nc) = 0 where K(Nf ) =

(
γm(Nf )−

de−2
2

)2
, (148)

from which the corresponding critical number of fermion Nc (and possibly the critical
coupling αc) can be computed. Note that, if γm would be known exactly, the gap equation
would then simply yield γm(Nc) = (de−2)/2. However, when the mass anomalous dimen-
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sion is known only perturbatively up to a certain order, the gap Equation (148) accordingly
needs to be properly truncated, i.e., where γm = γ1m +γ2m + ···. Hence, we should use

K(Nf ) =
(de−2)2

4
−(de−2)γ1m +

(
γ2

1m−(de−2)γ2m

)
+ ··· , (149)

and then solve K(Nc) = 0 (or possibly K(αc) = 0). Since γm is gauge-invariant by construc-
tion, the resulting Nc will automatically be gauge-invariant too. Moreover, as it is built from
the SD formalism, it can be truncated to the accuracy at which γm is known (Equation (147)
reduces to (146) at the LO in 1/Nf ). From this polynomial equation, we will obtain multiple
solutions for Nc. The physical Nc will be taken as the largest real solution that is found,
which is in accordance with perturbation theory. Though semi-phenomenological, such an
approach is straightforward and completely gauge invariant.

For completeness, we provide numerically the mass anomalous dimensions that we
obtained in Table 2.

Table 2. Numerical mass anomalous dimensions.

fQED3 γmψ = 1.0808/Nf +0.1174/N2
f +O(1/N3

f )

SQED3 γmψ = 0.4053/Nf −0.1696/N2
f +O(1/N3

f )

bQED3 γmφ = 0.5404/Nf −1.2553/N2
f +O(1/N3

f )

5.2. Results for (S)QED3

In the following, we shall only focus on the electron mass generation and not its
superpartner. Indeed, in the case of bQED3 with Nf scalars, we did not find any evidence
for dynamical scalar mass generation in bQED3, suggesting that

NbQED3
c = 0, (all-order) (150)

for that model, either via the SD method or via the effective gap equation method. Note
that the picture seems different if one allows a non-zero quartic coupling λ(|φ|2)2 in three
dimensions (see, e.g., [129]), where they obtained NbQED3

c (λ 6= 0) = 6.1±1.95 from fixed-
point collision in a four-loop expansion combined with advanced resummation techniques.
The situation seems to be also different in four dimensions (see [130]).

On the other hand, for SQED3 (similar to the four-dimensional case (see [131,132])),
we find a possibility that a selectron mass can be induced by the electron condensate, if
the latter exists. As we will see in the following, our results suggest that electrons do not
condense in SQED3.

Truncating the gap equation at the LO of the 1/Nf expansion yields the gauge-
invariant value

NSQED3
c =

16
π2 = 1.6211, (LO) (151)

coinciding with the Landau gauge result of [46], which is indeed the good gauge for SQED3.
The LO result suggests that an electron mass is generated for Nf = 1, thus seemingly break-
ing both flavor and SUSY symmetries. We find that higher-order corrections dramatically
change this picture. Indeed, truncating the gap equation at the NLO of the 1/Nf expansion,
we find that

NSQED3
c =

4
π2

(
2± i

√
14−π2

)
= 0.8106(1±1.02i). (152)

Such a complex value arises because of the negative NLO contribution (due to the selectron)
to the mass anomalous dimension (116c), as shown in Table 2, which prevents the gap
equation from having any real valued solution. This calls for a 1/N3

f computation that is
clearly outside the scope of this article. So, in order to overcome this difficulty, we shall
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proceed with a resummation of the seemingly alternating asymptotic series. A simple Padé
approximant [1/1] of (116c) leads to

γ
SQED3
mψ

= γ
SQED3
mφ

=
4

14+(Nf −1)π2 , (NLO [1/1]), (NLO). (153)

Using this new improved value as an input to solve the gap equation non-perturbatively,
i.e., γmψ(Nc) = 1/2, yields

NSQED3
c =

π2−6
π2 = 0.3921, (NLO [1/1]). (154)

This result is strong evidence that beyond the LO of the 1/Nf expansion, no dynamical
(parity-even) mass is generated for the electron in N = 1 SQED3. Though a dynamical
breaking of SUSY may take place in SQED3 (the Witten index is not well defined with
massless matter fields; see, e.g., ref. [133] and references therein), the absence of any
electron condensate suggests that SUSY is preserved, in accordance with our perturbative
result γmψ = γmφ up to NLO.

We then focus on the case of fQED3 (S= 0, n= 2), for which the gap equation is known
exactly up to NLO [15,17,19]. The same procedure, this time using (114b) for the mass
anomalous dimension, leads at LO to

NfQED3
c =

128
3π2 = 4.32, (LO) (155)

and at NLO to

NfQED3
c =

16
3π2

(
4+
√

3π2−28
)
= 2.85, (NLO) (156)

which is in accordance with [15,17,19]. Although the problem of a complex Nc is not
encountered in this case (because the NLO term in (114b) is positive, as shown in Table 2),
we still provide for completeness the improved Nc value obtained with resummation, i.e.,

NfQED3
c =

2(4+3π2)

3π2 = 2.27, (NLO [1/1]). (157)

As expected from the effect of radiative corrections, this value is smaller than the exact NLO
one but still quite close, in accordance with the stability of the critical point. In striking
contrast with both SQED3 and bQED3, this suggests that a dynamical (flavor-breaking
and parity-even) mass is radiatively generated for the electron in fQED3 for small values
of Nf , i.e., for Nf = 1 and 2. This new improved value, NfQED3

c = 2.27, is to compare with
the extensive literature related to DχSB in fQED3, see Table 3, where seemingly all values
between 0 and 4 (even infinite in some early studies) have been obtained over four decades.
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Table 3. Reproduced from [30] and updated. DχSB in fQED3: some values of Nc obtained over
the years with different methods. The value obtained with our method is grayed. Note that recent
analytical methods (including ours) converge to a value of Nc in the range ]2,3[ such that a dynamical
mass is generated for Nf ≤ 2. On the other hand, results from lattice simulations are inconsistent.
This may partly be due to the fact that, as Nf = 2 is close to Nc, the dynamically generated mass is so
small (see estimate and discussion in [15]) that it is difficult to extract from lattice simulations.

Nc in fQED3 Method Year

∞ Schwinger–Dyson (LO) 1984 [3]

∞ Schwinger–Dyson (non-pert., Landau gauge) 1990, 1992 [8,134]

∞ RG study 1991 [135]

∞ Lattice simulations 1993, 1996 [136,137]

< 4.4 F-theorem 2015 [138]

(4/3)(32/π2) = 4.32 Schwinger–Dyson (LO, resum.) 1989 [6]

4.422 RG study (one loop) (Nconf
c ≈ 6.24) 2016 [139]

4 Functional RG (4.1< Nconf
c < 10.0) 2014 [140]

3< Nc < 4 RG study 2001 [141]

3.5±0.5 Lattice simulations 1988, 1989 [142,143]

3.31 Schwinger–Dyson (NLO, Landau gauge) 1993 [9,10]

3.29 Schwinger–Dyson (NLO, Landau gauge) 2016 [16]

32/π2≈ 3.24 Schwinger–Dyson (LO, Landau gauge) 1988 [5]

3.0084–3.0844 Schwinger–Dyson (NLO, resum.) 2016 [17]

2.89 RG study (one loop) 2016 [144]

2.85 Schwinger–Dyson (NLO, resummation, ∀ξ) 2016 [15,17]

1+
√

2= 2.41 F-theorem 2016 [145]

2.27 Effective gap equation (NLO, ∀ξ, double resum.) 2022 [115]

< 9/4= 2.25 RG study (one loop) 2015 [146]

< 3/2 Free energy constraint 1999 [147]

1< Nc < 4 Lattice simulations 2004, 2008 [148,149]

0 Schwinger–Dyson (non-pert., Landau gauge) 1990 [7]

0 Lattice simulations 2015, 2016 [150,151]

5.3. Results for (S)QED4,3 (Graphene and Super-Graphene)

From the results, we have obtained for QED4,3, in particular, the mass anomalous
dimension at two loops (124b), we may apply our semi-phenomenological gap equation
formalism and derive the critical coupling constant and critical fermion flavor number.
This was conducted in [115] with results that are in complete agreement with those derived
from the SD equation formalism [75]. We review them in the following and then carry on
with the supersymmetric case.

The computations require the use of an RPA-like procedure, which consist of resum-
ming the two-loop Nf dependency (see [75,115] for more details), yielding

α
QED4,3
c (Nf ) =

12π

128−3π2Nf
, NQED4,3

c =
128
3π2 = 4.3230, (1-loop), (158)

which, for the range of allowed non-zero values of Nf , (158) yield

αc(Nf = 0) = 0.2945, αc(Nf = 1) = 0.3832, αc(Nf = 2) = 0.5481,

αc(Nf = 3) = 0.9624, αc(Nf = 4) = 3.9415. (159)
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Similarly, at two loops, the following can be obtained

α
QED4,3
c (Nf ) =

36π

32(6+
√

6)−9π2Nf
, NQED4,3

c =
32

9π2

(
6+
√

6
)
= 3.0440, (2-loop), (160)

which, for the range of allowed non-zero values of Nf , (160) yield

αc(Nf = 0) = 0.4183, αc(Nf = 1) = 0.6230,

αc(Nf = 2) = 1.2196, αc(Nf = 3) = 28.967. (161)

We recall that, in the case of graphene, we are interested in Nf = 2 because graphene
has a total of eight spinors (two cones/sub-lattices × two valley/chirality × two spins).
Moreover, in the ultra-relativistic limit we are interested in, graphene has a weak coupling
constant, α∼ 1/137. The result NQED4,3

c = 3 is unreachable because it is valid in the limit
α→∞. Moreover, the critical coupling αc(Nf = 2)≈ 1.2 is much larger than α∼ 1/137.
Hence, graphene remains (semi-)metallic in the ultra-relativistic limit. This agrees with the
results originally derived in [75,115]. It is also compatible with experiments on graphene
that do not find any evidence for a metal-to-insulator transition.

Similarly, we derive the results for the SQED4,3 critical coupling and fermion flavor
number, corresponding to a phase transition in the ultra-relativistic limit of freestanding
super-graphene. Following the RPA-like procedure introduced in [75,115], we obtain

α
SQED4,3
c (Nf ) =

2π

16−π2Nf
, NSQED4,3

c =
16
π2 = 1.6211, (1-loop). (162)

For the range of allowed values of Nf , it leads numerically to

α
SQED4,3
c (Nf = 0) = 0.3927, α

SQED4,3
c (Nf = 1) = 1.0249. (163)

Unfortunately, at two loops, the result is non-physical, despite trying RPA-like or Padé
resummations. This is probably a parity effect (like the four-loop approach in QED4,
see [115]), we then settle for the one-loop approach. Since the relevant value for super-
graphene is also Nf = 2, and that NSQED4,3

c = 1.6211 at one loop, and that we expect higher-
order corrections to lower Nc, we expect that Nf = 2 will always be above Nc in SQED4,3.
Hence, super-graphene is even further away from the insulating phase than graphene. For
completeness, we provide in Figure 3 the phase diagram of (super-)graphene.

0 1 2 3 4 5

1

10 mdyn 6= 0
(insulator)

mdyn = 0
(metal)

mdyn = 0
(metal)

Nf

αr(Nf )

(a)
0 1 2 3 4 5

1

10 mdyn 6= 0
(insulator)

mdyn = 0
(metal)

mdyn = 0
Nf

αr(Nf )

(b)
Figure 3. Phase diagrams for dynamical mass generation in: (a) Graphene (QED4,3) from (160) and
(b) super-graphene (SQED4,3) from (162). Note that the relevant case for (super-)graphene is Nf = 2.
Insulator refers to an excitonic insulating phase, while metal refers to a semimetallic phase.
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5.4. Meta-Analysis of the Results

For completeness and ease of comparison, we provide in Figure 4 a comparative plot
of all the Nc values found for all the QED models studied in this article. It shows that, on the
one hand, dynamical mass generation is likely to be possible in fQED3, while, on the other
hand, bQED3 does not show any sign of boson condensation. Therefore, in N = 1 SQED3,
the fermionic part attempts to condense, while the bosonic part tries to prevent it from
doing so. Ultimately, the selectronic part seems to overcome the electronic part such that no
mass is radiatively generated in SQED3, thereby staying in a conformal phase. As for the
reduced QED models, the QED4,3 theory seems to allow mass generation for small values
of the fermion number, Nf = 3, which would be enough for a metal-to-insulating phase
transition to occur, provided that the system is in a strongly coupled regime (high fine
structure constant). Adding SUSY, that is, considering N = 1 SQED4,3, further reduces the
critical number of fermion flavors to 1. In the case of graphene in the ultra-relativistic limit,
the coupling is small, α∼ 1/137, and the insulating phase is unreachable (both with and
without supersymmetry). In all cases, our results indicate that the addition of SUSY to an
Abelian gauge theory seems to suppress (rather than enhance) dynamical mass generation.

Nf

Model

|

0

|

1

|

2

|

3

|

4

bQED3 |
NAll-order

c

0

SQED3 |
NLO

c

1.62
|

N[1/1]
c

0.39

SQED4,3 |
N1L

c

1.62

fQED3 |
NLO

c

4.32
|
NNLO

c

2.85
|

N[1/1]
c

2.27

QED4,3 |
N1L

c

4.32
|

N2L
c

3.04

Figure 4. All results obtained in this article for the critical number of fermion flavors below which a
dynamical mass is generated in various QED models. The darker it is, the more likely the correspond-
ing model is massive for a given Nf . Note that the case of interest is generally Nf = 1 for all the QED3

variants. For graphene (QED4,3) and super-graphene (SQED4,3), the case of interest is usually Nf = 2.

6. Conclusions

In this article, we have reviewed the critical properties of several variants of three-
dimensional QED with fermionic (fQED3), bosonic (bQED3) and minimally supersymmetric
(SQED3) charged matter. All these cases were considered in a unified way with the help of
a general gQED3 model. Reduced QED models and their supersymmetric extension were
also studied in relation to graphene (QED4,3) and super-graphene (SQED4,3).

In the general framework provided by the gQED3 model, we performed a complete
analytical perturbative computation of matter and gauge field anomalous dimensions at the
LO and the NLO in the large-Nf expansion, in the DRED scheme and for arbitrary covariant
gauge fixing. All these quantities correspond to the critical exponents of the considered
models at the non-trivial IR fixed point that arises in the large-Nf limit. Expanding on our
previous (short) paper [95], all calculation details were provided. Along the way, we added
perturbative proof of the Furry theorem, generalized for these models. We also studied
thoroughly the effect of DRED and showed its crucial importance in ensuring that the
theory remains SUSY invariant.
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All of our results have a transcendental structure that is similar to that known in
the case of fQED3. There are, however, noticeable quantitative differences, with radiative
corrections having a tendency to increase vacuum polarization in bQED3 with respect to
fQED3 while acting oppositely on the mass anomalous dimension. The case of SQED3
is, somehow, intermediate between fQED3 and bQED3 with, in particular, a tendency
of the bosonic contribution from the selectron to, on the one hand, increase the overall
photon polarization and, on the other hand, decrease the overall electron mass anomalous
dimension.

As a first application of our results, we computed the optical conductivity of super-
graphene (SQED4,3) and showed that it leads to an optical absorbance of ∼ 4.6%. This
result is exactly twice the absorbance of usual (non-SUSY) graphene (QED4,3) and is a direct
consequence of the enhanced effect of interactions that, if ever realized, SUSY would bring
on the optical absorbance. Another application was devoted to the study of a potential
dynamical (matter) mass generation. This non-perturbative phenomenon again revealed a
marked difference between fQED3 and bQED3. In fQED3, a flavor-breaking parity-invariant
mass is generated for Nf ≤ 2 (in terms of four-component spinors), while in bQED3, we
did not find any evidence for a dynamically generated scalar mass. In all cases, our results
indicate that the addition of SUSY to an Abelian gauge theory seems to suppress (rather
than enhance) dynamical mass generation. In the case of SQED3, the value found for the
critical electron flavor number, Nc, that is such that for Nf < Nc a dynamical mass for the
electron would be generated, is given by Nc = 0.39 (in terms of four-component spinors).
Contrary to fQED3, this strongly suggests that N = 1 SQED3 remains in an interacting
conformal phase for all values of Nf . In the case of SQED4,3, we found Nc = 1.62, which is
indeed lower than the corresponding value for QED4,3, Nc = 3.04. Note that these results
hold only at strong coupling. Graphene at its IR fixed point is weakly coupled (α∼ 1/137)
and, thus, is deep in a semimetallic phase, which is in qualitative agreement with the
experiments in actual samples.
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Appendix A. Appendix on Multiloop Massless Techniques

This Appendix provides the necessary multiloop massless techniques for the compu-
tation of two-point massless integrals encountered in this review.

Appendix A.1. One Loop

We consider a Euclidean space of dimension d and follow the notations of the review
in [101]. The one-loop massless propagator-type master topology is given by the so-called
bubble integral

J(d,~p,α,β) =

α

β

=
∫

[ddk]
k2α(~p−~k)2β

=
(p2)d/2−α−β

(4π)d/2 G(d,α,β), (A1)
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where [ddk] =ddk/(2π)d and α, β are the so-called indices of the propagators. For the
diagrammatic representation of the integral, we used the propagator line with a generalized
index

α
=

1
(p2)α

. (A2)

In (A1), G is the dimensionless function left after factorization of the trivial dependence in
p of the integral. At one loop, G is known exactly and has a simple expression in terms of
Euler Γ-functions

G(d,α,β) =
a(d,α)a(d,β)

a(d,α+β−d/2)
, a(d,α) =

Γ(d/2−α)

Γ(α)
. (A3)

To fix notations, we recall the usual analytic continuation of Γ(x) = (x−1)!, reading

Γ(1− ε) = exp

(
γEε+

∞

∑
n=2

εn

n
ζn

)
= eγEε

(
1+

ζ2

2
ε2+

ζ3

3
ε3+O(ε4)

)
, (A4)

where γE = 0.577 is the Euler–Mascheroni constant and ζn is the Riemann zeta function,
where ζ2 =π2/6, and ζ3 = 1.202 is the Apéry constant. Note that, at one loop, by construc-
tion and in any dimension, G vanishes exactly if one index is negative or zero, as well as
being symmetrical under index exchange, i.e.,

G(d,α,β) = 0, if α≤ 0 or β≤ 0, and G(d,α,β) = G(d,β,α). (A5)

In our dimension of interest, d= 3−2ε; there are two important examples of the evaluation
of this function, reading

G(3−2ε,1,1) = 4επ3/2e−γEε

(
1+

5
2

ζ2ε2− 1
3

ζ3ε3+O(ε4)

)
, (A6a)

G(3−2ε,1,1/2) = 4−επ−1/2e−γEε

(
2
ε
+8+(32−7ζ2)ε+O(ε2)

)
. (A6b)

Appendix A.2. Two Loop

At two loops, one can encounter various massless propagator-type topologies. Nev-
ertheless, all two-loop topologies can be encompassed by a general topology, the diamond
diagram. This is the two-loop massless propagator-type master-topology integral and is
given by

J(d,~p,αi) =

α1

α4

α2

α3

α5 =
∫

[ddk1][ddk2]

k2α1
1 k2α2

2 (~p−~k2)2α3 (~p−~k1)2α4 (~k12)2α5
=

(p2)d−∑αi

(4π)d G(d,αi), (A7)

where~k12 =~k1−~k2 and G(d,α1,. . .,α5) is dimensionless and unknown for arbitrary indices
{αi}i=1−5. This integral has two kinds of symmetries: first under the exchange k1↔ k2 and
second under the shifts k1→ k1− p and k2→ k2− p. This generates the following relations

J(d,~p,α1,α2,α3,α4,α5) = J(d,~p,α2,α1,α4,α3,α5) (k1↔ k2), (A8a)

J(d,~p,α1,α2,α3,α4,α5) = J(d,~p,α4,α3,α2,α1,α5) (k1→ k1− p and k2→ k2− p), (A8b)

The first relation is then a mirror reflection along the vertical axis, i.e., it exchanges α1↔ α2
and α3↔ α4, while the second one is the mirror reflection along the horizontal axis, i.e., it
exchanges α1↔ α4 and α2↔ α3.
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This diamond integral is the only one we have to consider at two loops for two-point
massless diagrams as it encompasses all the other two-loop topologies. Indeed, since lines
with zero index contract like

α 0 β
=

α β
=

α+β
, (A9)

we have that all possible two-loop sub-topologies can be written using the diamond
diagram with well-chosen zero indices, reading

α1

α4

α2

α3

0 = J(d,~p,α1,α2,α3,α4,0) =

α1

α4

α2

α3

=
(p2)d−∑αi

(4π)d G(d,α1,α4)G(d,α2,α3),

(A10a)

0

α3

α1

α2

α4 = J(d,~p,0,α1,α2,α3,α4) =

α1

α3 α2

α4 =
(p2)d−∑αi

(4π)d G(d,α1,α2+α3+α4−d/2)

×G(d,α3,α4), (A10b)

0

α2

α1

0

α3 = J(d,~p,0,α1,0,α2,α3) =

α1

α3

α2

=
(p2)d−∑αi

(4π)d G(d,α1,α2+α3−d/2)

×G(d,α2,α3), (A10c)

where these three sub-topologies have been reduced to the exactly known one-loop master
topology, G(d,α,β). Indeed, the first one (double bubble) is obviously the multiplications
of two one-loop bubbles, and upon closer inspection, the two others (eye and sunset) are
convolutions of one-loop bubbles.

We are then left with the case where all αi are non-zero, like, for example, J(d,~p,1,1,1,1,1).
In this case, IBP techniques can be used [152–154] and allow the derivation of identities of
the form

α1

α4

α2

α3

α5 =
1

2α1+α4+α5−d

p2α4×

α1

α+4

α2

α3

α5 − α4×

α−1

α+4

α2

α3

α5

+ α5×

α1

α4

α−2

α3

α+5 − α5×

α−1

α4

α2

α3

α+5

 (A11)

where α±i = αi±1. Several similar IBP identities can be derived, and altogether, they form
a powerful reduction algorithm. One can show that, ultimately, every two-loop integral
J(d,~p,α1,α2,α3,α4,α5), with integer indices αi, can be reduced as a linear combination of a
small set of master integrals. The implementation of the IBP identities and the reduction
process can be conveniently automated with the MATHEMATICA versatile package LITERED

by Roman Lee [155,156].
Using IBP reduction techniques allows us to reduce any two-loop integral into masters

that can be expressed with the trivial one-loop function, G(d,α,β), together with two non-
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trivial two-loop masters

1
2 =

(p2)d−9/2

(4π)d G(d,1,1,1,1,1/2), (A12a)

1
2

1
2

=
(p2)d−4

(4π)d G(d,1,1/2,1,1/2,1). (A12b)

The first one (A12a) is computed from the more general integral, G(d,1,1,1,1,α), which was
evaluated exactly in [111] and reads

G(d,1,1,1,1,α) =−2Γ(λ)Γ(λ−α)Γ(1−2λ+α) (A13)

×
[

Γ(λ)
Γ(2λ)Γ(3λ−α−1)

∞

∑
n=0

Γ(n+2λ)Γ(n+1)
n!Γ(n+1+α)

1
n+1−λ+α

+
πcotπ(2λ−α)

Γ(2λ)

]
,

where λ= (d−2)/2= (1−2ε)/2. Note that (A13) may be written with a generalized
hypergeometric function, 3F2, of argument 1, as

3F2

(
1 α−λ+1 2λ
α+1 α−λ+2

∣∣∣∣1)=
(α−λ+1)Γ(α+1)

Γ(2λ)

∞

∑
n=0

Γ(n+2λ)Γ(n+1)
n!Γ(n+α+1)

1
n+1−λ+α

. (A14)

There is also an equivalent representation with a 3F2 of argument−1 in an earlier work [110],
see [101] for a review. Therefore, in our case of interest, α= 1/2 and d= 3−2ε, it can be
expanded in ε-series. This step is non-trivial since expanding generalized hypergeometric
functions in a series is, in general, very hard. For our case, it can be achieved in an
automated way using the MATHEMATICA package HYPEXP [157,158], and we obtain

G(3−2ε,1,1,1,1,1/2) = 3π4−εe−2γEε
(

2ζ2+21ζ3ε+O(ε2)
)

. (A15)

The second master integral (A12b) is highly non-trivial and can, in principle, be com-
puted from the results of Appendix B in [69] (based on the Gegenbauer polynomial
technique [111]), where the general integral G(d,1,α,1,β,1) was derived exactly as a combi-
nation of two generalized hypergeometric functions, 3F2, of argument 1, reading

G(d,1,α,1,β,1) =

Γ(λ)Γ(−α+λ+1)Γ(−β+λ+1)
α(α−2λ)(α−λ)Γ(α)(β−λ)Γ(β+1)Γ(2λ)Γ(2λ−α)Γ(α+β−λ+1)Γ(−α−β+3λ)

[
αΓ(2λ)Γ(2λ−α)Γ(α+β−2λ+1)Γ(α+β−λ+1)3F2

(
1,2λ,2λ−α;β+1,−α+2λ+1;1

)
− (α−2λ)Γ(β+1)sin(π(β−2λ))csc(π(α+β−3λ−1))

(
Γ(λ)Γ(2λ)Γ(α−λ+1)Γ(β−λ+1)3F2

(
α,α−λ+1,2λ;α+1,α+β−λ+1;1

)
+παΓ(α)sin(π(−α+λ+1))Γ(2λ−α)csc2(π(β−2λ))Γ(α+β−λ+1)

)]
, (A16)

where λ= (d−2)/2. However, even for our special case of interest, i.e., d= 3−2ε and
α= β= 1/2, this result is extremely hard to expand in a series of ε due to the presence of
half integer indices, implying branch-cuts. The MATHEMATICA package HYPEXP [157,158]
is not able to expand it in a series. Upon studying the result with very high numerical
precision and cross-checking our results with the numerical (Monte Carlo) sector decompo-
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sition MATHEMATICA package FIESTA [159–161] and the study in [44] (which used PSLQ
techniques [162]), we were able to (re-)derive the needed result, reading

G(3−2ε,1,1/2,1,1/2,1) =
8

3π

(
π2C+24Cl4(π/2)+O(ε)

)
, (A17)

where Clz(θ) is the Clausen function, defined for an even z index as

Clz(θ) =
∞

∑
n=1

sin(nθ)

nz , Cl2(π/2) =C = 0.9160, Cl4(π/2) = 0.9889, (A18)

where C is the Catalan number. From our computation, the result (A17) is correct numeri-
cally at least up to 100-digit precision, and we, therefore, consider it exact.
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