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Abstract: Covalent Organic Frameworks (COFs) are a newly emerged class of porous materials
consisting of organic building blocks linked by strong covalent bonds. The physical and chemical
properties of COFs, i.e., modularity, porosity, well-developed specific surface area, crystallinity,
and chemical-thermal stability, make them a good application material, especially in the aspects
of adsorption and gas separation. The organic compositions of their building blocks also render
them with biocompatible properties; therefore, they also have potential in biomedical applications.
Depending on the symmetry of the building blocks, COF materials form two-dimensional (2D COF)
or three-dimensional (3D COF) crystal structures. 3D COF structures have a higher specific surface
area, they are much lighter due to their low density, and they have a larger volume than 2D COF
crystals, but, unlike the latter, 3D COF crystals are less frequently obtained and studied. Selecting
and obtaining suitable building blocks to form a stable 3D COF crystal structure is challenging and
therefore of interest to the chemical community. Triptycene, due to its 3D structure, is a versatile
building block for the synthesis of 3D COFs. Polymeric materials containing triptycene fragments
show good thermal stability parameters and have a very well-developed surface area. They often
tend to be characterized by more than one type of porosity and exhibit impressive gas adsorption
properties. The introduction of a triptycene backbone into the structure of 3D COFs is a relatively new
procedure, the results of which only began to be published in 2020. Triptycene-based 3D COFs show
interesting physicochemical properties, i.e., high physical stability and high specific surface area.
In addition, they have variable porosities with different pore diameters, capable of adsorbing both
gases and large biological molecules. These promising parameters, guaranteed by the addition of a
triptycene backbone to the 3D structure of COFs, may create new opportunities for the application of
such materials in many industrial and biomedical areas. This review aims to draw attention to the
symmetry of the building blocks used for COF synthesis. In particular, we discussed triptycene as a
building block for the synthesis of 3D COFs and we present the latest results in this area.

Keywords: 3D structures; COF; symmetrical structures; topology

1. Introduction

Covalent Organic Frameworks (COFs) are a new class of porous materials built from
building blocks composed of light elements, i.e., C, H, N, and B. The name of this class
of materials (Covalent Organic Frameworks) refers directly to the covalent bonds that
link the building blocks of these structures together. Covalent bonds in COF synthesis
are based on the Dynamic Covalent Chemistry (DCC) regulations. This means that the
formation of the crystalline covalent structure of COFs occurs under thermodynamic
control and depends only on the relative stabilities of the final products. The forming
bonds are subjected to “error checking” and “self-healing processes”; they are being created
and broken in reversible reactions between the building blocks until sufficiently strong
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and thermodynamically stable bonds and crystal architectures are obtained under given
conditions [1–3]. Examples of the covalent bonds most commonly used to synthesize COFs
are shown in Table 1. The strong covalent bonds in Covalent Organic Frameworks provide
them with high chemical stability; most COFs are insoluble in common organic solvents
and are resistant to strong acids and bases [1,2,4].

Table 1. COF linkage types.
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The construction and design of COF materials is based on the principles of reticular
chemistry. The selected building blocks for COF synthesis should be geometrically and
spatially compatible with each other to obtain a thermodynamically-stable crystal structure
with an optimal shape and spatial dimensions [5]. Examples of two-dimensional (2D) and
three-dimensional (3D) networks formed by COFs, as well as their symmetry, are shown in
Figure 1. However, thanks to computational chemistry, the appropriate building blocks
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for COF synthesis can be easily and more feasibly identified. Many recently discovered
COF structures, especially 3D COFs, have been simulated and successfully synthesized
with computational predictions, which include thermodynamical stability and even po-
tential application destinations [6,7]. To design and predict new COF structures and their
possible capacity for methane storage, Martin et al. [6] and Mercado et al. [8] used grand-
canonical Monte Carlo simulations. Other options for designing COF structures include the
materials–genomics-method-based QReaxAA (Quasi-Reactive Assembly Algorithms) for
structure generation, which mimics the natural growth processes of COFs [9]. In order
to categorize and catalogue already synthesized COFs, both 2D and 3D, as well as those
simulated and ready to be synthesized, certain approaches have been made to make a
proper database for these structures. Moreover, the currently developed libraries and the
aforementioned database, which is still being developed, not only collect constructive infor-
mation about the architecture of COFs, but also focus on their direct application. For example,
Ongari et al. prepared a library consisting of CURATED COFs (CURATED = Clean, Uniform,
and Refined with Automatic Tracking from Experimental Database) for characterizing and
investigating their CO2 adsorption properties [10]. The CoRe COF database, developed
by M. Tong et al., was established based on the structure–property relationships of COFs
and noble gases in order to investigate the COFs’ abilities in their separation [11]. One of
the most updated and newly published COF databases is ReDD-COFFEE (Ready-to-use
and Diverse Database of Covalent Organic Frameworks with Force field based Energy Evalu-
ation) [12]. This database has collected an enormous number of structures (268,687 COFs)
with a high diversity in terms of geometric CH4 storage properties.

Reticular synthesis makes it possible to obtain COFs in a modular manner, thus their
final crystal construction is strictly dependent on the structure of the selected building
blocks. This also means that the properties of their specific surface area and pore size can be
directly influenced [1,13]. COFs are characterized by a very well-developed specific surface
area and porosity, comparable to other classes of porous materials, such as MOFs and
zeolites. Nonetheless, with the increasing incidence of cancer and the often-presented side
effects of currently used cancer prophylaxes, together with the growing need for innovative
therapy, COFs have also begun to emerge with applications in this area. COF building
blocks are based on organic compounds with the rare use of heavy metals, allowing
them to provide both biocompatible and non-toxic matrix material as a drug delivery
vehicle [4]. In addition, the building blocks used to synthesize COFs are readily modifiable
and functionalized, both before and after material synthesis, making the material itself
adaptable to a wide range of applications. In addition, a significant part of the building
blocks are cyclic aromatic compounds, which, due to their flat structure and the presence of
p-electron conjugated systems, enrich the crystal structure with inductive interactions [2].
The unique properties of COFs make them mainly applicable in gas storage and selective
separation [14,15], dye adsorption [16,17], and also as catalysts [18–20]. Such properties
create potential applications of COFs for biomarkers, biosensors and photosensors [21–23].

3D COFs—Synthesis and Properties

COF-type materials, depending on the chosen building blocks, form crystal lattices in
two ways: two-dimensional (2D), yielding 2D COFs, and three-dimensional (3D), yield-
ing 3D COFs. A two-dimensional spatial network requires the use of planar building
blocks, rich in conjugated p-electron systems. In a single 2D layer, the building blocks
connect to each other through covalent bonds. The p-p electron interactions, produced by
the conjugated p-electron systems of the building blocks, connect successive overlapping
2D layers, forming a 2D COF crystalline spatial network stabilized by two types of inter-
actions. Through interlayer interactions, 1D modular channels are produced between the
layers [24,25]. In order to synthesize three-dimensional crystal materials (3D COFs), one of
two options for building block combination must be achieved. The first requires at least
one non-planar building block (tetrahedral or triangular-pyramid shaped).
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The second option is similar to the synthesis of 3D MOF materials; the chosen com-
bination of planar building blocks, e.g., 4-c and 3-c, must generate two types of vertices
and one type of edge, resulting in three 3D structures [26–28]. However, 3D COF synthesis
from planar building blocks is highly dependent on forming linkages of conformational
flexibility, because under different conditions, 3D COF material or 2D COFs can be obtained
from the same building blocks [26].

The interconnections that stabilize the significantly more developed crystal network
of 3D COFs rely solely on covalent interactions [29]. 3D COFs appear to have a better-
developed specific surface area than 2D COFs, due to their larger spatial dimension. The
higher porosity of 3D COFs makes them more volumetric and lighter than 2D COFs, which
should increase their application in areas such as gas storage and separation, or catalysis.
However, it is 2D COFs that enjoy more widespread identification and are much more
widely used, in contrast to 3D COFs. There are a number of reasons for this, the most
important of which is the lack of readily available building blocks with the right structures
to form a 3D network and the complex topology of the spatial network itself [24,25]. In
addition, obtaining 3D COFs in an interpretable crystalline form is a significant problem.
Most of the 3D COFs obtained are in amorphous form and have much lower stability
due to the lack of additional p-p interactions that stabilize the crystal structure (as in the
case of 2D COFs) [30]. As a result, since 2007, 3D COF materials have been obtained only
in one-element topologies, i.e., dia [31], ctn, bor [32], pts [33], ffc [9], rra [34], srs [35],
lon [36], stp [28], acs [37], tbo [27], bcu [38], and fjh [39]. Between 2020 and 2021, five
new topologies for 3D COF materials were documented. Li et al. [40] obtained a 3D
COF (3D-hea-COF) material exhibiting a hea-type topology through a reaction between the
precursor [2,3,6,7,14,15-hexakis(4-formylphenyl)] triptycene (HFPTP) and [tetrakis(4-amino
biphenyl)methane (TABPM)]. X. Xu et al. performed a reaction between 5,10,15,20-tetra(4-
aminophenyl)porphyrin (TAPP) and hexa(4-formylphenyl) benzene (HFPB), resulting in a
porphyrin-based 3D COF (TAPP-HFPB-COF) with an she-type topology [41]. A paper by
Xie et al. was also published, in which they obtained two highly crystalline 3D COF-type
materials (3D-TPB-COF-OMe and 3D-TPB-COF-Ph) from their sterically controlled synthe-
sis, designed using electron diffraction techniques. The latter, 3D-TPB-COF-Ph, exhibited
an ljh-type topology not previously documented in the ToposPro database [42]. Wang et al.,
through a stratigraphic strategy, obtained a 3D COF (SPB-COF-DBA), constructed from
flat square units of cobalt (II) phthalo cyanate (PcCo), which also exhibited an nbo-type
topology that was not yet documented [43]. The first 3D COF-type material based on
anionic titanium (Ti-COF-1) was also obtained [44]. A highly crystalline material with
remarkable stability, Ti-COF-1 was obtained from octahedral Ti (IV) complex units and
exhibited an soc-type topology. However, despite promising results and simulation cal-
culations, new topologies of three-dimensional covalent organic structures still remain a
synthetic challenge to realize, despite obtaining and designing them.

2. Triptycene in Polymeric Materials

Triptycene is an aromatic hydrocarbon, belonging to the iptycene group. It consists
of three aromatic rings condensed into a [2,2,2] bicyclooctatriene grouping resembling
a paddle wheel (Figure 2). Due to this unique form, the triptycene molecule exhibits
considerable rigidity and provides a good base for the synthesis of polymers.

The presence of triptycene in the structure of polymeric materials increases their
thermal strength. Triptycene polymers begin to degrade mostly at about 400 ◦C and retain
more than 50% of their weight even at 800 ◦C. R. Bera et al., obtained nanoporous azo-
polymers (NAPs) whose thermal degradation occurs between 528–531 ◦C. Moreover, at
800 ◦C, the char yield of these polymers was greater than 67%. The authors justify the
thermal stability of NAPs with the presence of triptycene fragments in the structure of azo-
polymers. [45] Nanoporous networks based on triptycene and amine bonds obtained by A.
Alam et al. (TBOSBLs), showed similar charring efficiency to NAPs at 800 ◦C (<50%), which
the authors also justify with the presence of triptycene units in the polymer structure [46].
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Triptycene-based microporous polymers (TMPs) degraded at a lower temperature range,
397–460 ◦C, but their carbon yield at 800 ◦C was in the 56–68% range. In the results of
measuring the thermal stability of TMPs, the authors explain both the triptycene molecules
embedded in the structure of the polymers and their crosslinking [47]. On the other hand,
T_COPs (covalent-organic polymers based on hydroxy-functionalized triptycene) had the
highest thermal stability compared to the previously mentioned triptycene-based polymeric
materials—thermal degradation occurred only at 600 ◦C, retaining a carbon yield of more
than 60% up to that point [48]. In all of the aforementioned examples of triptycene-based
polymeric materials, they were found to be mainly in amorphous form, although there are
reports of such materials in graphite-like form [49,50]. Polyphenylene networks containing
triptycene units (TPPs), obtained by S. Shetty et al., exhibited very high thermal stability,
as they began to degrade in the 558–604 ◦C range, losing only 10% of their weight [49].
Polymeric materials based on triptycene are characterized by a high specific surface area.
The presence of triptycene fragments contributes to the formation of meso- and micro-pores
in the spatial network of the polymer molecule, as triptycene units are characterized by
the phenomenon of so-called “internal molecular free volume” (IMFV) [51,52]. This means
that in addition to the spaces formed initially between the joined building blocks of the
polymer, the triptycene fragments present in the structure provide additional volume due
to their three-dimensional structure. A summary of the specific surface area values along
with the maximum pore volume of some polymeric materials containing triptycene is
shown in Table 2. The large specific surface areas as well as the presence of more than one
type of porosity in them, give tryptic polymer materials very good adsorption properties.
Hence, many of these types of materials perform well in gas storage (especially for CO2, H2,
and CH4) [45,46,49,53], selective gas separation, as well as in the adsorption of dyes [50].
A. Hassan et al. show that polymeric triptycene materials (T_COPs) can also be used to
absorb radioactive iodine from the environment [48].

Table 2. Properties of triptycene based materials.

Polymer SABET
(m2g−1)

SALANG
(m2g−1)

Vtotal
(cm3 g−1) Reference

NAP 1 1095 1622 1.060
[45]NAP 2 923 1353 0.690

TMP1 923 1211 0.490
[47]TMP2 1094 1457 0.700

TMP3 1372 1817 0.860
TAP1 474 736 0.740

[53]TAP2 772 1173 1.410
TAP3 729 1093 1.040

TBPAL1 775 1036 0.401

[54]
TBPAL2 729 945 0.369
TBPAL3 602 942 0.446
TBPAL4 620 1027 0.529
TBPAL5 815 1411 0.760
T_COP-1 206

-
0.218

[48]T_COP-2 259 0.320
T_COP-3 826 0.533

TPP1 380
-

0.250
[49]TPP2 468 0.290

TPP3 240 0.250
STP-2 541 736 0.320

[55]STP-3 378 515 0.340
TBOSBL1 649 1051 0.527

[46]TBOSBL2 570 810 0.384
TBOSBL3 493 817 0.467
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Triptycene in 3D COFs

The addition of triptycene fragments makes it possible to improve the stability and
strength parameters of polymeric materials. However, despite the reported use of triptycene
for the synthesis of polymeric materials, there are not many reports on the use of triptycene
for analogous purposes in the synthesis of COFs. The reason for this phenomenon is most
likely due to the fact that the class of porous COF-type materials was established relatively
recently (2005) [56] and is only beginning to develop. Moreover, of the COF structures
obtained so far, 2D structures predominate, while 3D COF structures are more difficult
to obtain. Based on publications on the addition of triptycene fragments to polymeric
materials, it can be expected that the introduction of these fragments into crystalline
structures increases the crystallinity of COF materials, enriches the specific surface area with
additional internal volume (IMFV), and the incorporation of a rigid triptycene backbone
guarantees the stability and resistance of the system to thermal and chemical effects.
Between 2020 and 2021, five articles were published in which the authors describe the
synthesis of 3D COFs based on triptycene. All of the published syntheses are based on the
same starting reagent: (six-connected) [2,3,6,7,14,15-hexakis(4-formylphenyl)Triptycene]
(HFPTP), whose spatial structure resembles a triangular prism. In 2020, H. Liu et al.
published the reaction between HFPTP and synergistic 4-connected 2D D2h monomer
1,3,6,8-tetrakis(4-aminophenyl)pyrene (TAPPy) which resulted in the first 3D COF material
based on triptycene with stp topology, JUC-564 (Figure 3) [57]. It is the only example of
such a material to date.

The material was characterized by high thermal stability (TGA: ~450 ◦C), very well-
developed specific surface area, and low density (0.108 g/cm3); BET analysis results
confirmed a surface area of 3383 m2/g, and N2 adsorption measurements showed the
presence of two types of porosity, with pore diameters of 15 Å and 41–43 Å. In the case of
the second value, it is the largest obtained so far for 3D COF-type materials (in comparison,
the previously largest values for 3D COFs were 15.4 Å for JUC-518 [58] and 28 Å for
DBA-3DCOF [29]). A material with such large pores provides an opportunity for the
development of 3D COF structures and increases the potential applicability in biomedicine,
among other fields, as the authors also found that large biologically active molecules,
such as proteins, can be adsorbed in the pores of the materials [57]. In 2021, four more
publications were published on newly-obtained triptycene-based 3D COF structures.

H. Liu et al. obtained two new 3D COF materials by reacting HFPTP sequentially with
6- and 1,3,5-tris(4-aminophenyl)triazine (TAPT) JUC-568 with a ceq topology (Figure 3)
connected 2,3,6,7,14,15-hexa(3′,5′-diisopropyl-4′-amino) Triptycene (HDIATP) JUC-569 with
an acs topology (Figure 4) [28]. JUC-569 exhibited good thermal stability (TGA: ~400 ◦C).
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BET analysis and measurement of N2 adsorption showed that the specific surface area
was equal to 1254 m2/g and was mainly rich in micropores with a diameter of about 13 Å
(1.27 nm). JUC-568 was obtained in an analogous manner to the material published in the
same year by Z. Liu et al. [3D-ceq-COF] [59], which showed similar structural parameters
and a ceq topology (Figure 5).
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Figure 3. The new COF (termed JUC-564) has a high specific surface area (up to 3300 m2g−1), the
largest pore size among 3D COFs (43 Å), and record-breaking low density among crystalline materials
reported to date (0.108 gcm−3) [56].

The material had a higher thermal stability than JUC-568 (TGA ~550 ◦C). Its specific
surface area was equal to 1148.6 m2/g, and it was also rich in micropores with diameters
between 10–16 Å. The obtained 3D COF materials [28,59] were investigated for adsorption
of gases such as CO2, CH4, and H2 (see Table 3). The adsorption levels of both 3D-ceq-COF
and its analogue JUC-568 for CO2 and CH4 at two different temperatures (273 and 298 K)
proved to be extremely high, especially for H2 adsorption (JUC-568—274 cm3/g at 77 K,
3D-ceq-COF—178.49 cm3/g at 77 K and 131.27 cm3/g at 87 K), which is significantly higher
than for other materials of this type such as PPN-3 (1.58 wt%) [60], PAF-1 (1.66 wt%) [61],
SPT-CMP1 (1.72 wt%) [62], and DL-COF-1 (2.09 wt%) [63]. The adsorption values of CO2,
CH4, and H2 also compare favorably to the results obtained for JUC-569: CO2 (98 cm3/g
at 273 K and 81 cm3/g at 298 K); CH4 (48 cm3/g at 273 K and 32 cm3/g at 298 K); and H2
(274 cm3/g at 77 K). In the same year, the team of Z. Li et al. published another new
structure in addition to 3D-ceq-COF. The 3D-hea-COF material was obtained using a
reaction between HFPTP and [tetrakis(4-amino-biphenyl)methane] (TABPM) and had an
hea topology not yet reported for 3D COF materials (Figure 5) [40].

Like the previously described structures, 3D-hea-COF exhibited good thermal stability
properties (TGA: ~480 ◦C) as well as specific surface area (BET: 1804.0 m2/g). Its surface
area, like that of JUC-568-569 and 3D-ceq-COF, was mainly rich in micropores with a
diameter of about 16 Å. The paper mentions that 3D-hea-COF was tested mainly for
H2 adsorption. The 3D COF material shows good hydrogen adsorption (193.48 cm3/g
at 77 K and 131.03 cm3/g at 87 K), which is comparable to the results obtained with
PAF-1 (186 cm3 g−1) [61], Trip-PIM (185 cm3 g−1) [64], and SPT-CMP1 (193 cm3 g−1) [62].
According to the authors, such a high adsorption value is due to the presence of triptycene
fragments and aromatic systems in the 3D-hea-COF structure, which, by forming an internal
microstructure in the material, cause greater gas adsorption [40]. The use of triptycene,
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as a building block that provides a stable framework for the crystal structure, was also
presented in an article published in 2021 by Y. Wang et al. Two different 3D COF materials
were obtained using an imine condensation reaction [6 + 4]: Trip-COF-1 and Trip-COF-2
with stp topologies [65]. Both materials had good crystalline properties, with each forming
a structure that resembled a honeycomb (Figures 6 and 7).

Symmetry 2023, 15, x FOR PEER REVIEW 11 of 17 
 

 

 

Figure 4. A 3D triptycene-based COF, JUC-569, with an acs topology [27]. 

The material had a higher thermal stability than JUC-568 (TGA ~550 °C). Its specific 

surface area was equal to 1148.6 m2/g, and it was also rich in micropores with diameters 

between 10–16 Å. The obtained 3D COF materials [28,59] were investigated for adsorption 

of gases such as CO2, CH4, and H2 (see Table 3). The adsorption levels of both 3D-ceq-COF 

and its analogue JUC-568 for CO2 and CH4 at two different temperatures (273 and 298 K) 

proved to be extremely high, especially for H2 adsorption (JUC-568—274 cm3/g at 77 K, 

3D-ceq-COF—178.49 cm3/g at 77 K and 131.27 cm3/g at 87 K), which is significantly higher 

than for other materials of this type such as PPN-3 (1.58 wt%) [60], PAF-1 (1.66 wt%) [61], 

SPT-CMP1 (1.72 wt%) [62], and DL-COF-1 (2.09 wt%) [63]. The adsorption values of CO2, 

CH4, and H2 also compare favorably to the results obtained for JUC-569: CO2 (98 cm3/g at 

273 K and 81 cm3/g at 298 K); CH4 (48 cm3/g at 273 K and 32 cm3/g at 298 K); and H2 (274 

cm3/g at 77 K). In the same year, the team of Z. Li et al. published another new structure 

in addition to 3D-ceq-COF. The 3D-hea-COF material was obtained using a reaction be-

tween HFPTP and [tetrakis(4-amino-biphenyl)methane] (TABPM) and had an hea topol-

ogy not yet reported for 3D COF materials (Figure 5) [40]. 

Figure 4. A 3D triptycene-based COF, JUC-569, with an acs topology [27].
Symmetry 2023, 15, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 5. A 3D-COF with a ceq topology utilizing a D3h-symmetric triangular prism vertex with a 

planar triangular linker [58]. 

Like the previously described structures, 3D-hea-COF exhibited good thermal stabil-

ity properties (TGA: ~480 °C) as well as specific surface area (BET: 1804.0 m2/g). Its surface 

area, like that of JUC-568-569 and 3D-ceq-COF, was mainly rich in micropores with a di-

ameter of about 16 Å. The paper mentions that 3D-hea-COF was tested mainly for H2 ad-

sorption. The 3D COF material shows good hydrogen adsorption (193.48 cm3/g at 77 K 

and 131.03 cm3/g at 87 K), which is comparable to the results obtained with PAF-1 (186 

cm3 g−1) [61], Trip-PIM (185 cm3 g−1) [64], and SPT-CMP1 (193 cm3 g−1) [62]. According to 

the authors, such a high adsorption value is due to the presence of triptycene fragments 

and aromatic systems in the 3D-hea-COF structure, which, by forming an internal micro-

structure in the material, cause greater gas adsorption [40]. The use of triptycene, as a 

building block that provides a stable framework for the crystal structure, was also pre-

sented in an article published in 2021 by Y. Wang et al. Two different 3D COF materials 

were obtained using an imine condensation reaction [6 + 4]: Trip-COF-1 and Trip-COF-2 

with stp topologies [65]. Both materials had good crystalline properties, with each forming 

a structure that resembled a honeycomb (Figures 6 and 7). 

 

Figure 6. A 3D COF with an hea topology [39]. 

Figure 5. A 3D-COF with a ceq topology utilizing a D3h-symmetric triangular prism vertex with a
planar triangular linker [58].



Symmetry 2023, 15, 1803 12 of 16

Symmetry 2023, 15, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 5. A 3D-COF with a ceq topology utilizing a D3h-symmetric triangular prism vertex with a 

planar triangular linker [58]. 

Like the previously described structures, 3D-hea-COF exhibited good thermal stabil-

ity properties (TGA: ~480 °C) as well as specific surface area (BET: 1804.0 m2/g). Its surface 

area, like that of JUC-568-569 and 3D-ceq-COF, was mainly rich in micropores with a di-

ameter of about 16 Å. The paper mentions that 3D-hea-COF was tested mainly for H2 ad-

sorption. The 3D COF material shows good hydrogen adsorption (193.48 cm3/g at 77 K 

and 131.03 cm3/g at 87 K), which is comparable to the results obtained with PAF-1 (186 

cm3 g−1) [61], Trip-PIM (185 cm3 g−1) [64], and SPT-CMP1 (193 cm3 g−1) [62]. According to 

the authors, such a high adsorption value is due to the presence of triptycene fragments 

and aromatic systems in the 3D-hea-COF structure, which, by forming an internal micro-

structure in the material, cause greater gas adsorption [40]. The use of triptycene, as a 

building block that provides a stable framework for the crystal structure, was also pre-

sented in an article published in 2021 by Y. Wang et al. Two different 3D COF materials 

were obtained using an imine condensation reaction [6 + 4]: Trip-COF-1 and Trip-COF-2 

with stp topologies [65]. Both materials had good crystalline properties, with each forming 

a structure that resembled a honeycomb (Figures 6 and 7). 

 

Figure 6. A 3D COF with an hea topology [39]. 
Figure 6. A 3D COF with an hea topology [39].

Symmetry 2023, 15, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 7. (a) TEM image of Trip-COF 1; (b) TEM image of Trip-COF 1 giving an enlarged view of 

the selected area in panel (a); (c) Fourier-filtered image of selected areas of Trip-COF 1; inset: fast 

Fourier transform (FFT) from the selected areas; for Trip-COF 2 see (d–f), respectively; (g) iDPC 

image of Trip-COF 1; (h,i) enlarged views of a selected area in panel (g) [65]. 

The surface areas for Trip-COF-1 and Trip-COF-2 were determined by measuring the 

adsorption of gaseous N2, obtaining values of 1474 m2/g and 1624 m2/g, respectively. For 

Trip-COF-1, BET analysis showed the presence of three types of porosity: micro-, meso- 

and macro-porosity. The pore values occurred in the ranges of about 13 Å, 30 Å, and 40 

Å. Trip-COF-2 had two types of porosity, with pore diameters of about 13 Å and 29 Å. 

The authors explain the differences in the BET analysis as due to the presence of the 2-fold 

interpenetrating structure in Trip-COF-1, which causes the phenomenon of interpenetra-

tion and, consequently, greater variation in porosity. This structural feature is missing in 

Trip-COF-2, resulting in the structure forming only two types of porosity [65]. In this way, 

the authors show how, by handling the size and interpenetration of each reactant and 

reaction conditions, the structural properties of 3D COF materials can be influenced, 

which can contribute to a be�er understanding of their complexity. In addition, materials 

in which it is possible to design and control the formation of pores of a specific size 

Figure 7. (a) TEM image of Trip-COF 1; (b) TEM image of Trip-COF 1 giving an enlarged view of the
selected area in panel (a); (c) Fourier-filtered image of selected areas of Trip-COF 1; inset: fast Fourier
transform (FFT) from the selected areas; for Trip-COF 2 see (d–f), respectively; (g) iDPC image of
Trip-COF 1; (h,i) enlarged views of a selected area in panel (g) [65].

The surface areas for Trip-COF-1 and Trip-COF-2 were determined by measuring the
adsorption of gaseous N2, obtaining values of 1474 m2/g and 1624 m2/g, respectively. For
Trip-COF-1, BET analysis showed the presence of three types of porosity: micro-, meso-
and macro-porosity. The pore values occurred in the ranges of about 13 Å, 30 Å, and 40 Å.
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Trip-COF-2 had two types of porosity, with pore diameters of about 13 Å and 29 Å. The
authors explain the differences in the BET analysis as due to the presence of the 2-fold
interpenetrating structure in Trip-COF-1, which causes the phenomenon of interpenetration
and, consequently, greater variation in porosity. This structural feature is missing in Trip-
COF-2, resulting in the structure forming only two types of porosity [65]. In this way, the
authors show how, by handling the size and interpenetration of each reactant and reaction
conditions, the structural properties of 3D COF materials can be influenced, which can
contribute to a better understanding of their complexity. In addition, materials in which it
is possible to design and control the formation of pores of a specific size represent a good
application potential in the catalysis, separation and adsorption of large molecules. The
authors also believe that the unusual honeycomb structure of Trip-COFs can be used for
optoelectronic applications, due to the delocalization of p-electrons along the wall of 1D
nanowires [65].

Table 3. Triptycene based 3D COF properties.

Name Topology TGA
(◦C)

SBET
(M−1 g−1)

Pore Size
Distribution (Å)

CO2
Uptake (cm3g−1)

CH4
Uptake (cm3g−1)

H2
Uptake (cm3g−1) Reference

Trip-COF 1 stp - 1473.00 12.6, 29.6, 39.9 - - - [65]Trip-COF 2 1624.00 12.6, 29.3

JUC-568
JUC-569 ceq/acs ~520

~400
1433.00
1254.00

~19.2
~18.7

98.00 (273 K),
81.00 (298 K)
47.00 (273 K),
31.00 (298 K)

48.00 (273 K),
32.00 (298 K)
19.00 (273 K),
11.00 (298 K)

274.00 (77 K)
167.00 (77 K) [28]

3D-ceq-COF ceq ~550 1148.6 10, 16 91.27 (273 K),
330.33 (298 K)

36.28 (273 K),
23.22(298 K)

178.49 (77 K),
131.27 (98 K) [59]

3D-hea-COF hea 1804.00 16 80.01 (273 K) 21.77 (273 K) 193.48 (77 K) [40]
JUC-564 stp 3383.00 15, 43 - - - [57]

3. Future Perspectives

3D COF materials, in which it is possible to design and control pore formation to a spe-
cific size, represent a good application potential in the catalysis, separation, and adsorption
of large molecules. The promising results of these structures in gas adsorption measure-
ments demonstrate the possible potential of using triptycene-based 3D COF materials for
environmental action in the adsorption of heating gases from the atmosphere [40,59] as well
as in the development of work on the acquisition and storage of hydrogen-based renewable
fuels [40]. In addition, obtained 3D COFs in the form of unusual structures, such as the
honeycomb structure of Trip-COFs, can be used for optoelectronic applications due to the
delocalization of p-electrons along the wall of 1D nanochannels [65]. Therefore, the field of
3D triptycene based COFs is an unexplored area and requires further studies in terms of
controlled synthesis of such structures. An important issue that has not arisen in the litera-
ture is the toxicity of triptycene based COFs, which is of high importance in the case of their
application in the medical, biological, and environmental fields. These studies are crucial to
understand the biological and environmental fates of these 3D structures and their impacts
on living organisms. In particular, the medical applications of triptycene-based structures
seem to be underappreciated and almost unexplored, but these materials might be used as
platforms for a drug delivery system with a high loading capacity, biocompatibility and
straightforward surface functionalization.

4. Conclusions

Covalent Organic Frameworks are a new class of crystalline porous materials showing
great application potential due to their physicochemical properties. Due to their high spe-
cific surface areas, porosities, crystallinities, chemical-thermal stabilities, and biocompatible
morphologies, COFs find applications not only in industrial areas, but also in biomedical
areas. 3D COFs are characterized by better physical parameters than 2D-COFs, but are less
frequently used, due to the difficulty of synthesizing them and finding suitable building
blocks for their construction.
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The triptycene skeleton addition to 3D COF structures enhances their chemical and
physical properties. The rigid, three-paddle-wheel triptycene form provides 3D COFs
with architectural stability, extra volume (IMFV), and lower density, which results in
high thermal stability (up to 500 ◦C) and good adsorption of gases such as CO2, H2,
and CH4. In addition, some of them have a specific surface area rich in pores of more
than one type, with some macro-scale CFOs able to adsorb not only gases but also large
biomolecules the size of proteins (JUC-564). Moreover, the addition of the triptycene
building block not only enriches the library of 3D COF building blocks, but also extends
new application possibilities for these materials. The impressive adsorption properties
of gases, including heating gases such as CO2 and CH4, allow these types of materials to
be used in environmental rescue applications. The presence of pores with a diameter of
more than 41 Å, capable of adsorbing large molecules, makes 3D COF materials a good
alternative in the design of nanocarriers with therapeutic applications. In order to develop
triptycene 3D COFs and explore their great application potential, further investigations and
analyses are required. Moreover, the development of COF databases and their theoretical
tailoring seems to be an area of high interest and importance for the development of 3D
COFs and 3D COFs based on triptycene.
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