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Abstract: Sample range and the associated functions such as survival function and mean residual life
function have found many important applications in the reliability field. In this work, we establish
some results that are in two different directions. In the first part, we establish some conditions for
comparing the largest-order statistics (in the sense of mean residual life order) arising from bivariate
Marshall–Olkin exponential distribution. Then, in the second part, we present some sufficient
conditions for comparing sample ranges (in the sense of usual stochastic order and reversed hazard
rate order) arising from independent exponential random variables.

Keywords: usual stochastic order; mean residual life order; reversed hazard rate order; parallel
systems; sample ranges; majorization orders

1. Introduction

An r-out-of-n system, which functions if r out of n components in the system function,
has found a lot of applications in practice. Well-known systems such as series-parallel and
fail-safe are all its special cases. If X1, · · · , Xn denote the lifetimes of the n components
of the system and X1:n ≤ · · · ≤ Xn:n denote corresponding ordered lifetimes, Xn−r+1:n
is evidently the lifetime of an r-out-of-n system. For this reason, the theory of order
statistics plays a critical role in studying (n− r+ 1)-out-of-n systems and their distributional
characteristics and properties.

In reliability theory, comparisons of lifetimes of technical systems are important as
they may facilitate approximating a complex system using a simpler one. This in turn
would enable one to obtain simpler bounds on some reliability characteristics of complex
systems. Stochastic ordering theory is particularly useful in this context.

Comparisons of lifetimes of technical systems are a problem of interest in reliability
theory as it would enable one to approximate complex systems with simpler ones and
further to obtain bounds for some ageing characteristics of the complex system in terms of
simpler ones. The theory of stochastic orderings is especially useful for this purpose.

As a parallel system is a commonly used system in practice, it is of interest to evaluate
its performance based on the lifetimes of its components. Then, one is naturally interested
in the survival function or the hazard rate of the system as a characteristic. Here, we focus
especially on parallel systems consisting of two dependent components.

Much of the exiting research has focused on parallel systems with independent com-
ponent; see [1–3] and the references therein. However, the independence assumption may
not be realistic in common shock models, load-sharing models, stress-strength models, and
many other practical problems, as the component lifetimes may be dependent. In the past
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two decades, some authors have discussed stochastic comparisons of parallel systems with
dependent component lifetimes; see for example, [4–8]. In particular, [6] discussed the
hazard rate order when the two components are jointly distributed as a Marshall–Olkin
exponential distribution.

The Marshall–Olkin exponential (MOE) distribution has its joint survival distribution
as (see [9,10])

F̄(x1, x2) = e−λ1x1−λ2x2−λ3 max {x1,x2},

where x1, x2 > 0 and λ1, λ2, λ3 > 0, and it is usually denoted byMOE(λ1, λ2, λ3).
Some authors have also discussed the stochastic comparison of the maximum of two

random variables following jointly having an MOE distribution. In particular, the hazard
rate order of a parallel system with two components having MOE has been studied in [6].
The MOE distribution has been generalized in different ways due to its practical use; one
may refer to the monograph by Bernhart [11].

Two prominent generalized forms are as follows:

(i) Marshall–Olkin-type (MOT) distribution (see [12]):

F̄(x1, x2) = e−λ1 H(x1)−λ2 H(x2)−λ3 H(max {x1,x2}), x1, x2 ≥ 0,

where λ1 > 0, i = 1, 2, 3, and H increases with H(0) = 0 and H(+∞) = +∞;
(ii) Generalized Marshall–Olkin (GMO) distribution (see [13]):

F̄(x1, x2) = e−H1(x1)−H2(x2)−H3(max {x1,x2}), x1, x2 ≥ 0,

where Hi increases with Hi(0) = 0 and Hi(+∞) = +∞, i = 1, 2, 3.

Hu and Li [14] discussed two-component parallel systems with the two component
lifetimes following a general MOT distribution, instead of a particular model with exponen-
tial marginal components. They presented sufficient conditions for the hazard rate order of
such parallel systems, which are generalizations of the results of Joo and Mi [6] and Cai
and Xu [15] for the particular case of a model with an exponential marginal component.

Suppose a random variable X, with finite first moment and survival function F̄, is
the lifetime of an item. If the item functions at time t, its residual lifetime is given by the
random variable Xt = [X − t|X > t] with its survival function as F̄t(u) = F̄(u + t)/F̄(t),
u ≥ 0. The mean residual life function of the item at time t is then given by

µ(t) = E[X− t|X > t] =
∫ ∞

0

F̄(u + t)
F̄(t)

du.

This mean residual function has found many key applications in reliability analysis,
survival analyses, and many other areas. For example, in a stop-loss agreement in the
actuarial setting, the mean residual life function represents the expected amount paid by a
reinsurer, provided that the retention t is reached. For this reason, the mean residual life
function is referred to as the mean excess function in an actuarial field. In addition, the
mean residual life function is a suitable measure for evaluating the thickness of tails of
distributions; see [16]. In renewal theory, the hazard rate function of the stationary renewal
distribution is the reciprocal of the mean residual life function. Some more interesting
applications of mean residual life function in other areas such as extreme value theory,
economics, and demography can be seen in [17–19].

The mean residual life order of largest-order statistics, unlike other orderings such
as hazard rate order, usual stochastic order, reversed hazard rate order, and likelihood
ratio order, has not been studied in detail. To the best of our knowledge, few results in
this direction have focused on the exponential case. We now briefly describe these ex-
isting results. Let (X1, . . . , Xm) and (Y1, . . . , Ym) be two random vectors of independent
exponential random variables with scale vectors (δ1, . . . , δm) and (λ1, . . . , λm), respec-
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tively. For the case of m = 2, Zhao and Balakrishnan [20] showed under the assumption
δ1 ≤ λ1 ≤ λ2 ≤ δ2 that

(δ1, δ2)
rm
� (λ1, λ2) =⇒ X2:2 ≥mrl Y2:2. (1)

Generalization of (1) to an arbitrary m could be achieved in two ways. In the first
one discussed by Cheng and Wang [21], the complete heterogeneity of scale parameters
is maintained with some restrictions on them. Specifically, when λ1 ≥ δ1 and δk ≥ λk for
k = 2, . . . , m, Cheng and Wang [21] proved that

(δ1, . . . , δm)
rm
� (λ1, . . . , λm) =⇒ Xm:m ≥mrl Ym:m. (2)

Another method is by reducing the heterogeneity of scale parameters to the case
of multiple-outlier exponential models, wherein δ1 = · · · = δn, δn+1 = · · · = δm,
λ1 = · · · = λn and λn+1 = · · · = λm with n ∈ {1, . . . , m− 1} and δ1 ≤ λ1 ≤ λm ≤ δm. In
this setting, Cheng and Wang [21] have shown that

(δ1, . . . , δ1︸ ︷︷ ︸
n

, δm, . . . , δm︸ ︷︷ ︸
m−n

)
rm
� (λ1, . . . , λ1︸ ︷︷ ︸

n

, λm, . . . , λm︸ ︷︷ ︸
m−n

) =⇒ Xm:m ≥mrl Ym:m. (3)

A refinement of (1) has been obtained by [21], in which they have shown that the
restriction δ1 ≤ λ1 ≤ λm ≤ δm is not necessary for establishing X2:2 ≥mrl Y2:2. More
recently, Haidari et al. [22] investigated mean residual life ordering between the largest-
order statistics in multiple-outlier-scale models in the following form. Let (X1, . . . , Xm)
and (Y1, . . . , Ym) be two vectors of independent non-negative random variables such that
Xi ∼ S(G; δ1), Xj ∼ S(G; δ2), Yi ∼ S(G; λ1), Yj ∼ S(G; λ2), for i = 1, . . . , n and
j = n + 1, . . . , m, with δ1 ≤ λ1 ≤ λ2 ≤ δ2. The survival, density, hazard rate, and
reversed hazard rate functions corresponding to G are denoted by Ḡ, g, h = g/Ḡ and
r = g/G, respectively. Suppose that the following conditions hold:

(i) th(t) is increasing in t ∈ R+;
(ii) h(t) is increasing in t ∈ R+;
(iii) (tr(t))/Ḡ(t) is increasing in t ∈ R+;
(iv) (tr′(t))/r(t) is decreasing in t ∈ R+.

Then, under Conditions (ii)–(iv), Haidari et al. [22] established that

(δ1, . . . , δ1︸ ︷︷ ︸
n

, δ2, . . . , δ2︸ ︷︷ ︸
m−n

)
rm
� (λ1, . . . , λ1︸ ︷︷ ︸

n

, λ2, . . . , λ2︸ ︷︷ ︸
m−n

) =⇒ Xm:m ≥mrl Ym:m. (4)

These authors also studied mean residual life order between the largest-order statistics
from independent heterogeneous scale variables. Suppose that n1, . . . , nr are integer values
such that n1 + · · ·+ nr = m. Let (X1, . . . , Xm) and (Y1, . . . , Ym) be two vectors of indepen-
dent non-negative random variables following the scale models with common baseline
distribution G and scale parameter vectors

(δ1, . . . , δ1︸ ︷︷ ︸
n1

, . . . , δr, . . . , δr︸ ︷︷ ︸
nr

) and (λ1, . . . , λ1︸ ︷︷ ︸
n1

, . . . , λr, . . . , λr︸ ︷︷ ︸
nr

),

respectively. If δ1 ≤ . . . ≤ δr, λ1 ≤ . . . ≤ λr and δk ≥ λk for k = 2, . . . , m, then under
Condition (i) and (iv), they have established that

(δ1, . . . , δ1︸ ︷︷ ︸
n1

, . . . , δr, . . . , δr︸ ︷︷ ︸
nr

)
rm
� (λ1, . . . , λ1︸ ︷︷ ︸

n1

, . . . , λr, . . . , λr︸ ︷︷ ︸
nr

) =⇒ Xm:m ≥mrl Ym:m. (5)
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Further, for the case when n1 = · · · = nr = 1 and λ1 = . . . , λr = λ, they have shown
that, under Conditions (i) and (iv),

λ ≥
(

∑m
i=1 δ−1

i
m

)−1

=⇒ Xm:m ≥mrl Ym:m. (6)

In this work, we identify some conditions to compare the largest-order statistics
from Marshall–Olkin bivariate exponential distribution in the sense of mean residual life
order. More precisely, for two parallel systems with component lifetimes being distributed
as (X1, X2) ∼ MOE(λ1, λ2, λ3) and (Y1, Y2) ∼ MOE(µ1, µ2, λ3), we establish that the
following implication holds:

((λ1 + λ3)
−1, (λ2 + λ3)

−1)
m
� ((µ1 + λ3)

−1, (µ2 + λ3)
−1)⇒ X2:2 ≥mrl Y2:2.

In addition to order statistics, the sample range defined as R(X, n) = Xn:n − X1:n,
where X1:n and Xn:n are, respectively, the smallest- and largest-order statistics arising
from the set of random variables X1, · · · , Xn, has also been studied in detail. The sample
range can be interpreted in the reliability as follows. Let n independent and identically
distributed random variables X1, · · · , Xn represent the lifetimes of components of a series
system. When the system fails, that is, after the first failure, there exists n− 1 live com-
ponents that can be used in some other systems. If the live components are placed in a
parallel structure, then the lifetime of the new system can be described by R(X, n). In this
regard, stochastic comparisons of sample ranges have been discussed a lot in the case of
independent exponential random variables; for example, one may refer to [23–29].

Let X1, · · · , Xn be independent exponential random variables with respective hazard
rates θ1, · · · , θn, and the sample range of X = (X1, · · · , Xn) be R(X, n) = Xn:n − X1:n,
where X1:n and Xn:n are the smallest- and largest-order statistics. The distribution function
of R(X, n) is then given by

FR(X ,n)(x) =
∑n

i=1 θi ∏j 6=i(1− e−θjx)

∑n
i=1 θi

, x ≥ 0.

If θis are replaced by ηis, then the distribution function of R(Y , n) = Yn:n − Y1:n is
obtained, where Y1, · · · , Yn are independent exponential random variables with respective
hazard rates η1, · · · , ηn. Ding et al. [28] proved the following results concerning the
comparison of R(X, n) and R(Y , n):

(log θ1, · · · , log θn)
m
� (log η1, · · · , log ηn) =⇒ R(X, n) ≥st R(Y , n) (7)

and

(θ1, · · · , θn)
m
� (η1, · · · , ηn) =⇒ R(X, n) ≥rh R(Y , n). (8)

These authors also showed, by means of a counterexample, that the result in (7)
cannot generalize when the majorization order is replaced with the weak majorization
order. In other words, the result in (7) does not hold under the p-larger order between
θ = (θ1, · · · , θn) and η = (η1, · · · , ηn). Two questions arise naturally here. Does the result
in (7) hold under p-larger order between θ and η under more restrictions on their involved
parameters? How can we reinforce the result in (8) by considering a version of weak
majorization order between θ and η? In what follows, we try to answer these two questions.
To be specific, we find some sufficient conditions for comparing sample ranges arising from
exponential random variables in terms of usual stochastic order and reversed hazard rate
order. More precisely, under

E+n = {(x1, . . . , xn) ∈ Rn : 0 < x1 ≤ . . . ≤ xn},
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and

Θn(θ) =

{
η = (η1, · · · , ηn) ∈ E+n : θ

p
� η and θk ≥ ηk f or k = 2, · · · , n

}
and

Ωn(θ) =

{
η = (η1, · · · , ηn) ∈ E+n : θ

w
� η and θk ≥ ηk f or k = 2, · · · , n

}
,

we establish that the following implication holds:

(i) For η ∈ Θn(θ), we have R(X, n) ≥st R(Y , n);
(ii) For η ∈ Ωn(θ), we have R(X, n) ≥rh R(Y , n).

The remainder of this paper proceeds as follows. In Section 2, some essential concepts
and definitions are introduced. Next, in Section 3, for the case of Marshall–Olkin bivariate
exponential distribution, MRL orderings of largest-order statistics are established. In
Section 4, the usual stochastic ordering and reversed hazard rate ordering of ranges from
independent exponential random variables are established. Finally, in Section 5, some
concluding remarks are presented.

2. Definitions and Notation

Some key stochastic ordering notions that are most relevant to this work are introduced
here. For pertinent details, one may refer to [30–32].

Definition 1. For i = 1, 2, let Xi be a non-negative random variables with distribution function Fi,
survival function F̄i = 1− Fi, reversed hazard function ri = fi/Fi, and mean residual life function
µi. Then, we say X1 is larger than X2

(i) In mean residual life order, written as X1 ≥mrl X2, if µ1(t) ≥ µ2(t) for all t ≥ 0;
(ii) In reversed hazard rate order, written as X1 ≥rh X2, if r1(t) ≥ r2(t) for all t ≥ 0;
(iii) In usual stochastic order, written as X1 ≥st X2, if F̄1(t) ≥ F̄2(t) for all t ≥ 0.

The following majorization notions are useful for comparing dispersion between two
positive vectors.

Definition 2. Let a = (a1, · · · , an) and b = (b1, · · · , bn) be two vectors with corresponding
increasing arrangements a(1) ≤ · · · ≤ a(n) and b(1) ≤ · · · ≤ b(n). Then,

(i) a is said to majorize b, denoted by a
m
� b, if ∑i

j=1 a(j) ≤ ∑i
j=1 b(j), for i = 1, · · · , n− 1, and

∑n
j=1 a(j) = ∑n

j=1 b(j);

(ii) a is said to weakly majorize b, denoted by a
w
� b, if ∑i

j=1 a(j) ≤ ∑i
j=1 b(j), for i = 1, · · · , n;

(iii) a ∈ R+n is said to p-majorize b ∈ R+n, denoted by a
p
� b, if ∏i

j=1 a(j) ≤ ∏i
j=1 b(j), for

i = 1, · · · , n.

It is easy to observe that a
m
� b implies a

w
� b. Further, when a, b ∈ R+n, a

w
� b

implies a
p
� b. The converse is, however, not true. For example, (3, 4)

p
� (2, 2.5), but

clearly, the weak majorization order does not hold between these two vectors. The book by
Marshall et al. [33] provides a detailed discussion on the theory of majorization.

Definition 3 ([33], Marshall et al.). Suppose that A ⊆ Rn. Then, a function φ : A −→ R is said
to be Schur-convex on A if

u
m
� v⇒ φ(u) ≥ φ(v) f or any u, v ∈ A.

φ is said to be Schur-concave function on A if −φ is Schur-convex on A.
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Some conditions for the characterization of Schur-convex and Schur-concave functions
are presented in the following lemma:

Lemma 1 ([33], Marshall et al., p. 84). If J ⊂ R is an open interval and φ : Jn → R is a
continuously differentiable function, then φ is Schur-convex (Schur-concave) on Jn if and only if

(i) φ is symmetric on Jn;
(ii) for all i 6= j and all z ∈ Jn,

(zi − zj)

(
∂φ(z)

∂zi
− ∂φ(z)

∂zj

)
≥ 0 (≤ 0),

where ∂φ(z)/∂zi denotes the partial derivative of φ with respect to its i-th argument.

3. Mean Residual Life Order of Largest-Order Statistics

In this section, we first establish some basic lemmas that are used subsequently in
proving and establishing the main results on mean residual life order of the largest-order
statistics from bivariate exponential random variables. Please see Appendix A for proof.

Lemma 2. For c > 0, let ϕ : (0, c)× (0, c)→ R+ be defined as

ϕ(x1, x2) =

x1e−x−1
1 + x2e−x−1

2 − e−(x−1
1 +x−1

2 −c)

x−1
1 + x−1

2 − c

e−x−1
1 + e−x−1

2 − e−(x−1
1 +x−1

2 −c−1)
.

Then, ϕ is Schur-convex on (0, c)× (0, c).

Lemma 3. For c > 0, let φ : (0, c]× (0, c]→ R+ be defined as

ϕ(x1, x2) = x1 + x2 −
1

x−1
1 + x−1

2 − c−1 .

If (x1, x2)
m
� (y1, y2) on (0, c]× (0, c], then φ(x1, x2) ≥ φ(y1, y2).

The random vector (X1, X2) has bivariate Marshall–Olkin exponential distribution
with parameters (λ1, λ2, λ3), written as (X1, X2) ∼MOE(λ1, λ2, λ3), if the joint survival
function is given by

F̄X1,X2(x1, x2) = exp{−(λ1x1 + λ2x2 + λ3(x1 ∨ x2))}, x1 ≥ 0, x2 ≥ 0,

where λ1 > 0, λ2 > 0, λ3 ≥ 0, and x1 ∨ x2 = max{x1, x2}. The marginal survival functions
of X1 and X2 are, respectively, given by

F̄X1(x) = exp{−(λ1 + λ3)x} and F̄X2(x) = exp{−(λ2 + λ3)x}, x ≥ 0.

Moreover, the survival function of X2:2 = max{X1, X2}, for x ≥ 0, is given by

F̄X2:2(x) = P(X1 > x) + P(X2 > x)− P(X1 > x, X2 > x)

= exp{−(λ1 + λ3)x}+ exp{−(λ2 + λ3)x} − exp{−(λ1 + λ2 + λ3)x}.

Theorem 1. For two parallel systems with component lifetimes being distributed as (X1, X2) ∼
MOE(λ1, λ2, λ3) and (Y1, Y2) ∼MOE(µ1, µ2, λ3), the following implication holds:

((λ1 + λ3)
−1, (λ2 + λ3)

−1)
m
� ((µ1 + λ3)

−1, (µ2 + λ3)
−1)⇒ X2:2 ≥mrl Y2:2.
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4. Usual Stochastic and Reversed Hazard Rate Orders of Sample Ranges

In this section, we establish the usual stochastic order and reversed hazard rate order
of sample ranges for the case of independent exponential random variables.

Let X1, · · · , Xn be independent exponential random variables with respective hazard
rates θ1, · · · , θn. The sample range of X = (X1, · · · , Xn) is R(X, n) = Xn:n − X1:n, where
X1:n and Xn:n are the smallest- and largest-order statistics from the n underlying variables.
Then, the distribution function of R(X, n) is given by

FR(X ,n)(x) =
∑n

i=1 θi ∏j 6=i(1− e−θjx)

∑n
i=1 θi

, x ≥ 0.

Let us now define

E+n = {(x1, . . . , xn) ∈ Rn : 0 < x1 ≤ . . . ≤ xn}.

For θ = (θ1, · · · , θn) ∈ E+n , let us set

Θn(θ) =

{
η = (η1, · · · , ηn) ∈ E+n : θ

p
� η and θk ≥ ηk f or k = 2, · · · , n

}
and

Ωn(θ) =

{
η = (η1, · · · , ηn) ∈ E+n : θ

w
� η and θk ≥ ηk f or k = 2, · · · , n

}
.

Then, following two lemmas help us to examine the extrema of real-valued functions
over the spaces Θn(θ) and Ωn(θ).

Lemma 4 ([21], Cheng and Wang, Theorem 3.2). The function φ : E+n −→ R satisfies

η ∈ Θn(θ) =⇒ φ(θ) ≥ (resp. ≤)φ(η)

if it is decreasing (resp. increasing) along with the vectors α1 = (1, 0, . . . , 0︸ ︷︷ ︸
n−1

) and

α2 = (θ1,−β2θ2, · · · ,−βnθn) wherein β2, · · · , βn are non-negative values such that ∑n
i=2 βi = 1.

Lemma 5 ([34], Wang). The inequality φ(θ) ≥ φ(η) holds for any function φ : E+n −→ R, when
η ∈ Θn(θ), if φ(θ) is decreasing along the vectors α1 = (1, 0, . . . , 0︸ ︷︷ ︸

n−1

) and

α3 = (1,−β2, · · · ,−βn), where β2, · · · , βn are non-negative values such that ∑n
i=2 βi = 1.

Then, with the use of the above two lemmas, we establish the following theorem.

Theorem 2. For η ∈ Θn(θ), we have R(X, n) ≥st R(Y , n).

Theorem 3. For η ∈ Ωn(θ), we have R(X, n) ≥rh R(Y , n).

5. Concluding Remarks

The comparison of important characteristics associated with lifetimes of technical
systems is an important problem in reliability theory since it would enable one to approxi-
mate complex systems with simpler ones and subsequently enable one to obtain bounds
for important ageing characteristics of the complex system in terms of simpler ones. A
technique that is useful for this purpose is the theory of stochastic orderings.

A parallel system can be found most commonly in industrial engineering, and so, it is
of interest to evaluate the performance of a parallel system based on component lifetimes.
Naturally, one is often interested in the system survival function or the system hazard
rate function.
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The mean residual life function of largest-order statistics and survival function of the
sample range have found important uses in reliability, life testing, and survival analysis.
The mean residual life order of largest-order statistics, unlike other orderings such as
hazard rate order, usual stochastic order, reversed hazard rate order, and likelihood ratio
order, has not been studied in detail. To the best of our knowledge, few results in this
direction have focused on the exponential case.

The sample range defined as R(X, n) = Xn:n − X1:n, where X1:n and Xn:n are, respec-
tively, the smallest and largest-order statistics arising from the set of random variables
X1, · · · , Xn, has also been studied in detail. The sample range can be interpreted in terms
of reliability as follows. Let n independent and identically distributed random variables
X1, · · · , Xn represent the lifetimes of components of a series system. When the system fails,
that is, after the first failure, there exists n− 1 live components that can be used in some
other systems. If the live components are placed in a parallel structure, then the lifetime of
the new system can be described by R(X, n).

In this work, results were established in two different directions. In the first part,
MRL orderings of the largest-order statistics from Marshall–Olkin bivariate exponential
distribution were established. In the second part, the usual stochastic ordering and reversed
hazard rate ordering of ranges from independent exponential random variables were
discussed.

Proceeding along these lines, it will be of interest to see whether the results for ranges
established here can be extended to the case of Marshall–Olkin bivariate exponential distri-
bution. It will also be of interest to check whether the results established for largest-order
statistics from bivariate Marshall–Olkin distribution can be extended to the multivariate
distribution. As present, we are working in the these directions and hope to present the
results in a future paper.
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Appendix A

Proof of Lemma 2. First, observe that ϕ is a symmetric function. Then, upon taking the
derivative of ϕ(x1, x2) with respect to x1, we find

∂ϕ(x1, x2)

∂x1

sgn
=
[
e−x−1

1 + e−x−1
2 − e−(x−1

1 +x−1
2 −c−1)

]
×
[

e−x−1
1 + x−1

1 e−x−1
1 −

x−2
1 e−(x−1

1 +x−1
2 −c−1)

x−1
1 + x−1

2 − c−1
−

x−2
1 e−(x−1

1 +x−1
2 −c−1)

(x−1
1 + x−1

2 − c−1)2

]

−
[

x−2
1 e−x−1

1 − x−2
1 e−(x−1

1 +x−1
2 −c−1)

][
x1e−x−1

1 + x2e−x−1
2 − e−(x−1

1 +x−1
2 −c−1)

x−1
1 + x−1

2 − c−1

]

=
[
e−x−1

1 + e−x−1
2 − e−(x−1

1 +x−1
2 −c−1)

][
e−x−1

1 −
x−2

1 e−(x−1
1 +x−1

2 −c−1)

(x−1
1 + x−1

2 − c−1)2

]

+
[
e−x−1

1 + e−x−1
2 − e−(x−1

1 +x−1
2 −c−1)

][
x−1

1 e−x−1
1 −

x−2
1 e−(x−1

1 +x−1
2 −c−1)

x−1
1 + x−1

2 − c−1

]

−
[

x−2
1 e−x−1

1 − x−2
1 e−(x−1

1 +x−1
2 −c−1)

][
x1e−x−1

1 + x2e−x−1
2 − e−(x−1

1 +x−1
2 −c−1)

x−1
1 +x−1

2 −c−1

]
=
[
e−x−1

1 + e−x−1 − e−(x−1
1 +x−1

2 −c−1)
][

e−x−1
1 − x−2

1 e−(x−1
1 +x−1

2 −c−1)

(x−1
1 +x−1

2 −c−1)2

]

+x−1
1 e−(x−1

1 +x−1
2 ) − x−2

1 e−(x−1
1 +x−1

2 −c−1)

x−1
1 +x−1

2 −c−1 − x2
x2

1
e−(x−1

1 +x−1
2 )

+ x2
x2

1
e−(x−1

1 +2x−1
2 −c−1)

=
[
e−x−1

1 + e−x−1
2 − e−(x−1

1 +x−1
2 −c−1)

][
e−x−1

1 − x−2
1 e−(x−1

1 +x−1
2 −c−1)

(x−1
1 +x−1

2 −c−1)2

]

+
e−(x−1

1 +x−1
2 )

x1 + x2 − c−1x1x2

[
1− c−1x2 −

x2
2

x2
1
(1− c−1x1)(1− e−(x−1

2 −c−1))

]
,

where a
sgn
= b means that both sides of an equality have the same sign. Similarly, the partial

derivative of ϕ(x1, x2) with respect to x2 can be found to be

∂ϕ(x1, x2)

∂x2

sgn
=
[
e−x−1

2 + e−x−1
2 − e−(x−1

1 +x−1
2 −c−1)

][
e−x−1

2 −
x−2

2 e−(x−1
1 +x−1

2 −c−1)

(x−1
1 + x−1

2 − c−1)2

]

+
e−(x−1

1 +x−1
2 )

x1 + x2 − c−1x1x2

[
1− c−1x1 −

x2
1

x2
2
(1− c−1x2)(1− e−(x−1

1 −c−1))

]
.

Based on the above two expressions, we have

∂ϕ(x1, x2)

∂x1
− ∂ϕ(x1, x2)

∂x2

sgn
= ∆1 + ∆2,

where

∆1 =
[
e−x−1

2 + e−x−1
2 − e−(x−1

1 +x−1
2 −c−1)

][
(e−x−1 − e−x−1

2 ) + (x−2
2 − x−2

2 )
e−(x−1

1 +x−1
2 −c−1)

(x−1
1 + x−1

2 − c−1)2

]
,

∆2 =
e−(x−1

1 +x−1
2 )

x1 + x2 − c−1x1x2

[
c−1(x1 − x2) +

x2
1

x2
2
(1− c−1x2)(1− e−(x−1

1 −c−1))

−
x2

2
x2

1
(1− c−1x1)(1− e−(x−1

2 −c−1))

]
.
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It is not difficult to show that ∆1
sgn
= x1 − x2. Moreover, since both x/(1 − c−1x)

and x(1 − e−(1/x−c−1)) are non-negative and increasing functions in x ∈ R+, we have
that x2(1− e−(1/x−c−1))/(1− c−1x) increases in x ∈ R+. Using this fact, we can see that

∆2
sgn
= x1 − x2. Hence, we have

∂ϕ(x1, x2)

∂x1
− ∂ϕ(x1, x2)

∂x2

sgn
= x1 − x2,

and now the required result follows readily from Lemma 1.

Proof of Lemma 3. First, observe that φ is a symmetric function. Then, upon taking partial
derivatives of φ(x1, x2) with respect to x1 and x2, respectively, we find

∂φ(x1, x2)

∂x1
= 1−

x−2
1

(x−1
1 + x−1

2 − c−1)2
and

∂φ(x1, x2)

∂x2
= 1−

x−2
2

(x−1
1 + x−1

2 − c−1)2
.

We then find

(x1 − x2)

(
∂φ(x1, x2)

x1
− ∂φ(x1, x2)

x2

)
sgn
= (x1 − x2)(x−2

2 − x−2
1 )

≥ 0,

which, based on Lemma 2, yields φ to be Schur-convex on (0, c)× (0, c), as required.

Proof of Theorem 1. The mean residual function of X2:2 is given by

mX2:2(x) =

∫ ∞

x
F̄X2:2(t)dt

F̄X2:2(x)

=

e−(λ1+λ3)x

λ1 + λ3
+

e−(λ2+λ3)x

λ2 + λ3
− e−(λ1+λ2+λ3)x

λ1 + λ2 + λ3

e−(λ1+λ3)x + e−(λ2+λ3)x − e−(λ1+λ2+λ3)x
, x ≥ 0.

If we replace λi with µi, for i = 1, 2, in the above function, the mean residual function
of Y2:2 is similarly obtained. Now, we shall show that mX2:2(x) ≥ mY2:2(x) for all x ≥ 0 when

((λ1 + λ3)
−1, (λ2 + λ3)

−1)
m
� ((µ1 + λ3)

−1, (µ2 + λ3)
−1). For this response, in Lemma 3,

let us set

c = λ−1
3 , xi = (λi + λ3)

−1, yi = (µi + λ3)
−1, for i = 1, 2.

Then, it readily follows that

((λ1 + λ3)
−1, (λ2 + λ3)

−1)
m
� ((µ1 + λ3)

−1, (µ2 + λ3)
−1)⇒ mX2:2(0) ≥ mY2:2(0).

Now, consider the function ϕ in Lemma 2 with c = (λ3x)−1, x > 0. Then, the mean
residual functions of X2:2 and Y2:2 can be rewritten as, for x > 0,

mX2:2(x) = xϕ((λ1x + λ3x)−1, (λ2x + λ3x)−1),

mY2:2(x) = xϕ((µ1x + λ3x)−1, (µ2x + λ3x)−1).

Based on Lemma 2, it readily follows that

((λ1 + λ3)
−1, (λ2 + λ3)

−1)
m
� ((µ1 + λ3)

−1, (µ2 + λ3)
−1)⇒ mX2:2(x) ≥ mY2:2(x),

which completes the proof of the theorem.
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Proof of Theorem 2. The distribution functions of R(X, n) and R(Y , n) can be expressed as

FR(X ,n)(x) = φ(θx) and FR(Y ,n)(x) = φ(ηx), x > 0,

where φ : E+n −→ R is given by

φ(θ) =
∑n

i=1 θi ∏j 6=i(1− e−θjx)

∑n
i=1 θi

, x ≥ 0.

We then need to show that

η ∈ Θn(θ) =⇒ φ(θ) ≤ φ(η).

To this end, in view of Lemma 4, it is enough to prove that φ(θ) is increasing along the
vectors α1 and α2. The gradient of φ along α1 is

∇α1 φ =
∂φ(θ)

∂θ1

sgn
=

[
∏
j 6=1

(1− e−θj) + e−θ1 ∑
i 6=1

θi ∏
j 6=1,i

(1− e−θj)

]
n

∑
i=1

θi −
n

∑
i=1

θi ∏
j 6=i

(1− e−θj)

= ∏
j 6=1

(1− e−θj)
n

∑
i=1

θi + e−θ1 ∑
i 6=1

θi ∏
j 6=1,i

(1− e−θj)
n

∑
i=1

θi −
n

∑
i=1

θi ∏
j 6=i

(1− e−θj)

≥ ∏
j 6=1

(1− e−θj)
n

∑
i=1

θi −
n

∑
i=1

θi ∏
j 6=i

(1− e−θj)

sgn
=

n

∑
i=1

θi

[
1

1− e−θ1
− 1

1− e−θi

]
=

n

∑
i=2

θi
(e−θ1 − e−θi )

(1− e−θ1)(1− e−θi )

≥ 0 ,

where the final inequality follows from the fact that θ1 ≤ · · · ≤ θn. So, φ(θ) is increasing
along the vector α1. On the other hand, since ∑n

i=2 βi = 1, we have

∇α2 φ = θ1
∂φ(θ)

∂θ1
−

n

∑
k=2

βkθk
∂φ(θ)

∂θk

=
n

∑
k=2

βk

[
θ1

∂φ(θ)

∂θ1
− θk

∂φ(θ)

∂θk

]
=

n

∑
k=2

βk Ak, say.

But, as in the proof of [28], we find, for k = 2, · · · , n,

∆k
sgn
= [A(θ1 + θk + B) + B]

[
θ1e−θ1

(1− e−θ1)
− θ1e−θk

(1− e−θk )

]
+ (θk − θ1)(A− B)(1− e−θ1)(1− e−θk ) + (θ1 + θ2 + B)θ1θ2(e−θ1 − e−θ2),

where

A = ∑
i 6=1,k

θi

1− e−θi
and B = ∑

i 6=1,k
θi.
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It is clear that A ≥ B, which along with the assumption that θ1 ≤ · · · ≤ θn and the
decreasing property of xe−θx/(1− e−x) in x ∈ (0, ∞), yields∇α2 φ ≥ 0. Hence, φ(θ) is also
increasing along α2, completing the proof of the lemma.

Proof of Theorem 3. The reversed hazard rate function of R(X, n) is given by

rR(X ,n)(x) =
∑i 6=j

θi
1−e−θi x ×

θje
−θj x

1−e−θj x

∑n
i=1

θi
1−e−θi

, x > 0.

We can rewrite the above reversed hazard rate function as rR(X ,n)(x) = φ(θx)/x, for
x > 0, where φ : E+n −→ R is given by

φ(θ) =
∑i 6=j

θi
1−e−θi

× θje
−θj

1−e−θj

∑n
i=1

θi
1−e−θi

.

Similarly, the reversed hazard rate function of R(Y , n) can be expressed as rR(Y ,n)(x) =
φ(ηx)/x, for x > 0. Then, we have to prove that φ satisfies the conditions of Lemma 5. To
compute the gradient of φ(θ) along the vector α1, we first rewrite φ(θ) as

φ(θ) =

θ1
1−e−θ1

∑n
j=2

θje
−θj

1−e−θj
+ θ1e−θ1

1−e−θ1
∑n

i=2
θi

1−e−θi
+ ∑n

i=2 ∑j 6=1,i
θi

1−e−θi
× θje

−θj

1−e−θj

θ1
1−e−θ1

+ ∑n
i=2

θi
1−e−θi

=
a(θ1)∑n

j=2 b(θj) + b(θ1)∑n
i=2 a(θi) + ∑n

i=2 ∑j 6=1,i a(θi)b(θj)

a(θ1) + ∑n
i=2 a(θi)

=
a(θ1)B + b(θ1)A + C

a(θ1) + A
,

where

a(θ) =
θ

1− e−θ
, b(θ) =

θe−θ

1− e−θ
, A =

n

∑
i=2

a(θi) , B =
n

∑
j=2

b(θj)

C =
n

∑
i=2

∑
j 6=1,i

a(θi)b(θj).

Then, we find

∇α1 φ =
∂φ(θ)

∂θ1
sgn
=

[
a′(θ1)B + b′(θ1)A

]
(a(θ1) + A)− a′(θ1)[a(θ1)B + b(θ1)A + C]

= b′(θ1)A[a(θ1) + A] + a′(θ1)[AB− b(θ1)A− C]
= I + I I, say.

Note that b(x) is decreasing in x ∈ (0, ∞), which yields I ≤ 0. Furthermore, we can
see that AB− C = ∑n

i=2 a(θi)b(θi) and so

AB− b(θ1)A− C =
n

∑
i=2

a(θi)b(θi)− b(θ1)
n

∑
i=2

a(θi)

=
n

∑
i=2

a(θi)[b(θi)− b(θ1)]

≤ 0,
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where the last inequality follows from the decreasing property of b and the assumption
that θ1 ≤ · · · ≤ θn. Because a(x) is increasing in x ∈ (0, ∞), we can then conclude from the
above discussion that I I ≤ 0. Hence, φ(θ) is decreasing along α1. On the other hand, since
∑n

i=2 βi = 1, it follows that

∇α3 φ =
∂φ(θ)

∂θ1
−

n

∑
k=2

βk
∂φ(θ)

∂θk

=
n

∑
k=2

βk

[
∂φ(θ)

∂θ1
− ∂φ(θ)

∂θk

]
=

n

∑
k=2

βkψk, say.

Using an argument similar to the one used in the proof of Theorem 2 of [28], we find
ψk ≤ 0 for all k = 2, · · · , n, which means that φ(θ) is also decreasing along α3, completing
the proof of the theorem.
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