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Abstract: Distantly supervised relation extraction (DSRE) utilizes an external knowledge base to au-
tomatically label a corpus, which inevitably leads to the problem of mislabeling. Existing approaches
utilize BERT to provide instances and relation embeddings to capture a wide set of relations and
address the noise problem. However, the method suffers from a single method of textual information
processing, underutilizing the feature information of entity pairs in the relation embeddings part
and being interfered with by noisy labels when classifying multiple labels. For this reason, we
propose the contextual information interaction and relation embeddings (CIRE) method. First, we
utilize BERT and Bi-LSTM to construct a neural network model to enhance contextual information
interaction by filtering and supplementing sequence information through the error repair capability
of the Bi-LSTM gating mechanism. At the same time, we combine the vector difference between
entity pairs and entity pairs in the relation embeddings layer to improve the relation embeddings
accuracy. Finally, we choose sparse softmax as the classifier, which improves the ability to control the
noise categories by controlling the number of output categories. The experimental results show that
our method significantly outperforms the baseline method and improves the AUC metric by 2.6% on
the NYT2010 dataset.

Keywords: distantly supervised relation extraction; neural network model; relation embeddings;
sparse softmax

1. Introduction

DSRE is a method first proposed by Mintz et al. [1]. The approach is based on
the assumption that if two entities exhibit a relationship in the knowledge base, then
all sentences referring to these two entities will be labeled as such. This assumption is
too strong and inevitably leads to some noisy labeling. Take Figure 1 as an example. The
distantly supervised (DS) approach labels all sentences containing “Steve Jobs” and “Apple”
as “founder” relationship types, but the third sentence in the figure does not express such a
relationship.

Figure 1. Example of a DS labeling process.

To mitigate the effect of noisy labels, Riedel et al. [2] proposed a multi-instance learning
(MIL) framework to solve the data noise problem. Zeng et al. [3] proposed a segmented
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convolutional neural network (PCNN) based on MIL. Lin et al. [4] introduced an attention
mechanism based on PCNN and proposed the APCNN model. Liu et al. [5] used the bidi-
rectional gated recurrent unit (Bi-GRU) to encode syntactic dependency trees. Yan et al. [6]
proposed PLSTM-CNN (piecewise-LSTM convolutional neural network) encoder to encode
sentences. There are also DSRE methods that attempt to enhance model effectiveness
through word-level attention [7], the fusion of external knowledge [8], entity descrip-
tions [9], relational phrases [8], and knowledge migration from pre-trained models [10].
Some researchers [11,12] have naturally transferred data-rich relational knowledge to
long-tail relations using relational hierarchies. Deep learning language representations,
such as those learned by Transformer [13] through language modeling [14], have been
shown to obtain useful linguistic and syntactic properties of text through unsupervised
pre-training alone.

The existing approach REDSandT [15] attempts to use BERT pre-trained models and
relationships between labels and entities to provide instances and label embeddings for
DSRE to enhance relation extraction (RE) and capture a wide set of relationships. However,
the method has some limitations. It uses the BERT encoder for semantic modeling of word
vectors, which is mainly used to obtain semantic information about words and is somewhat
inadequate for processing text sequences, which can limit the effectiveness of denoising.
Meanwhile, in terms of relation embeddings, the method uses the TransE model [16], which
mainly considers the vector difference representation of the relationship, which is not
sufficient for the feature representation of the overall entity pairs, resulting in the loss of
feature information of some entities during the relation embeddings process. In addition,
the method uses softmax to compute and optimize all the category labels, which may
contain noisy categories and thus can be interfered with by the noisy categories during
the normalization process, leading to high bias in the model during the fitting process and
adding unnecessary overhead.

Responding to the experiences and shortcomings of the work described above, we
propose the contextual information interaction and relation embeddings (CIRE) model,
a novel DSRE model improved based on contextual information interaction and relation
embeddings. Firstly, Bi-LSTM is added based on BERT to continue modeling text sequences
by utilizing the error repair capability of the gating mechanism to filter and supplement
the sequence information and enhance the contextual information interaction. Methods
combining BERT and Bi-LSTM have been shown to perform well in other areas, such as
sarcasm detection [17]. Meanwhile, we combine entity pairs and vector differences of
entity pairs in the relation embeddings layer to improve the relation embeddings accuracy.
Finally, we use sparse softmax as a classifier to improve the control of noisy categories by
controlling the number of output categories.

The main contributions of this paper can be summarized as follows:

• This paper proposes a novel contextual information interaction and relation embed-
dings (CIRE) method for DSRE. We utilize BERT and Bi-LSTM to construct a neural
network model. Based on acquiring semantic features based on the BERT encoder, we
utilize the Bi-LSTM gating mechanism’s error repair ability to filter and supplement
the sequence information and further model the text sequence to extract more compact
and rich semantic and sequence information.

• We improve the TransE model by building entity-guided augmented relations in a
nonlinear layer in a high-dimensional space, which improves the long-tail problem by
combining entity pairs and vector differences of entity pairs in the relation embeddings
part to form a relation-embedded representation that helps to recognize a broader
range of relations.

• We integrate CIRE-based sentence representations, relation representations, and
sentence-weighted representations at the semantic fusion layer to produce the final
enhanced sentence-level representation. Finally, we use sparse softmax as a classifier,
improving the classifier’s ability to control the noise categories by controlling the
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number of output categories so that the model fitting process reduces the bias and
effectively handles the noise category interference.

• By conducting a large number of experiments on the NYT2010 [2] dataset, we proved
that our method is effective and reasonable.

2. Related Work

RE is fundamental in many natural language processing applications, such as knowl-
edge graphs [16], machine quizzing [18,19], and knowledge graph construction. Traditional
supervised learning RE methods [20,21], although with high accuracy and reliable model
results, require many manually labeled datasets, and constructing such datasets is time
consuming and labor intensive. In 2009, Mintz et al. [1] summarized the previous research
and referred to the approach of Wu et al. [22], which proposed using a DS approach to
construct a dataset for an RE task. To mitigate the negative effects of mislabeling, some
studies [2,23,24] adopted a multi-instance learning paradigm, where sentences with the
same entity pairs are put into a sentence packet, and a packet representation is learned.
Miwa and Bansal et al. [25] introduced sequence and structural information from de-
pendency trees into neural networks. In past studies, the tree representation may have
needed to be processed and transformed to assess structural information changes in bi-
nary trees [26]. This idea of data representation and transformation can be shared in the
study of relational extraction and the entropy of structural information of binary trees.
Zhou et al. [27] combined an attention mechanism with a bidirectional long- and short-
term memory network (Bi-LSTM). Wen et al. [28] proposed a novel gated PCNN, which
takes into account the effects of entity pairs and sentence context on word encoding. Ye
and Luo [29] combined multi-label learning with convolutional neural networks. Some
researchers also use graph convolutional neural network models [30]. Recently, attention
mechanisms have attracted increasing attention in the research field [31]. The attention
mechanism became fashionable after it was first applied to recurrent neural network (RNN)
models for image categorization by the Google Mind team [32]. Subsequently, the attention
mechanism was used in a machine translation task [33], which marked the first application
of the attention mechanism in the field of natural language processing (NLP). In 2017,
the introduction of the Transformer model [13] by the Google Machine Translation team
attracted widespread attention. Subsequently, various Transformer-based models have
been widely used in NLP with state-of-the-art performance [34,35]. In our work, we use
BERT, based on the Transformer model combined with Bi-LSTM, to extract sentence fea-
tures efficiently, reduce some useless information by augmenting the data using sub-tree
parse (STP), improve the relation embeddings layer, and perform information fusion at the
semantic fusion layer, and finally classify them using sparse softmax.

3. Methodology

This section presents the details of our proposed model architecture and improvement
approach. Figure 2 depicts the proposed sentence coding framework based on DSRE: Our
model is first fed with a specific instance of RE to obtain a representation of the input, such
as positional embeddings and the encoding of byte pairs of tokens. Then, using the BERT
encoder for semantic modeling of word vectors, the output of BERT is fed into Bi-LSTM for
further sequence modeling to enhance contextual information interaction. We improve the
TransE model in high-dimensional space and shape the relation embeddings representing
entity-to-entity distance in high-dimensional vector space. As in Figure 2, for a limited
variety of entity pairs, the feature representation of the word vectors of the entity pairs is
obtained only through the BERT hidden layer to prevent overfitting. After that, we utilize
relational attention to emphasize sentences related to the underlying relations and further
reduce sentence-level noise through weights. Finally, this generates a highly expressive
sentence representation. Based on multi-instance learning, sentence representations of
specific entity pairs aggregate in a bag to generate bag representations. In order to reduce
the bias of the model during the fitting process, sparse softmax is used as a classifier, which
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enhances the ability of the classifier to control the noise categories by limiting the number
of output categories and computing only the non-zero elements in order to better adapt to
the noisy categories. The following is a specific description of our method.

Figure 2. Sentence encoder for CIRE.

3.1. Sentence Input

Given a sentence x and a pair of entity pairs <head, tail>, CIRE constructs a distributed
representation of the sentence by combining a relational attention-weighted sentence repre-
sentation, a relation embedding representation, and sentence semantic features. Figure 3
below exemplifies the overall sentence input. The following sections describe the compo-
nents of the model.

3.1.1. Input Representation

For each sentence’s input representation, we encode it as a sequence of tokens. As
shown in Figure 3, the tagging sequence of the model input contains three parts of in-
formation: the head entity type and tagging, the tail entity type and tagging, and the
tagging sequence of the STP paths of the sentence. These three parts of information are split
between them using the separators [H-SEP] and [T-SEP]. The head entity type and token,
the tail entity type and token, and the token sequence of the STP path are the most critical
information in the RE task. They are used to describe the information of entities, and the
semantic information between entities, respectively, thus helping the model recognize the
relationship between entities more accurately. In the BERT model, the beginning and the
end of the input sequences are labeled using special token symbols, i.e., [CLS] and [SEP], to
help the model process the different parts of the input sequences as well as the information
related to the task. In addition, we compress the sentences into STP paths, as shown in
Figure 3.
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Figure 3. Sequence of sentence input markers.

Sub-tree parse of input sentences: To reduce the number of noisy words in the input
sentences and to reduce the burden on the model to process long strings of text, we
compress the original sentences into a sub-tree parse (STP) representation of the input
sentences. STP preserves the sentence path connecting two entities to their least common
ancestor (LCA) parent. This focuses attention on relational markup and shortening the
length of the sentences. Using this approach improves the efficiency and accuracy of the
model and reduces training time and resource consumption. At the same time, the STP path
representation captures the relationships between phrases and clauses well and improves
the generalization ability of the model so that it can handle input texts of different lengths
and structures.

Entity type special marking: In an RE task, the type of an entity can constrain the
relationship between entities. For example, in the sentence “Steve Jobs was the co-founder
and CEO of Apple”, “Steve Jobs” and “Apple” are regarded as entities whose types
are “person” and “organization”, respectively. Because entity types provide information
about the concepts and attributes an entity represents, they can be used to constrain the
relationships between entities. In the above sentence, the relationship “founder” can only
exist between a person entity and an organization entity, not between two person entities
or two organization entities. Therefore, entity type is regarded as a vital feature in RE,
which can guide the model to extract and judge relationships. In the case where each
relationship has type constraints on the participating entities [8,36], we include entity type
information in the structured inputs of the model, as shown in Figure 3. Specifically, we
combine 18 generic entity types that result from entity recognition using the spaCy model
for NYT2010 sentences.

3.1.2. Input Embedding

The input embedding h0 of BERT is a vector representation containing the entire
structured input. This vector representation contains contextual information. Then, we
input this vector representation with contextual information into the Bi-LSTM module for
further sequence modeling of word vectors to capture the dependencies between words,
thus improving the understanding of text sequences.

Byte pair tokens encoding: To utilize the subword information, we use byte pair
encoding (BPE) to tag the input [37]. Byte pair encoding (BPE) is a commonly used
algorithm for representing text as fixed-size words or subword units. This encoding
method can effectively handle unregistered and low-frequency words, thus improving the
model’s performance. Our approach uses a tokenizer from a pre-trained model containing
30,000 tokens. To this, we added 20 specific tokens, such as [H-SEP], [T-SEP], and 18 entity
type tokens to extend it. These additional tokens have special meanings in the input
representation so that the tagger does not split them into subwords.

Position Coding: BERT learns a unique positional embedding for modeling the posi-
tion of each word in a sentence. In this way, positional encoding can combine the positional
information labeled for each input (subword) with semantic information to better capture
contextual and semantic relations. Symmetry is the property of something that remains
unchanged under some transformation. In the field of computers, symmetry is one of
the important properties of the object of study. For relation extraction, relations can have
different properties, including symmetry or asymmetry. Symmetry indicates that if there
exists a relation such that A is related to B, then there also exists the same relation such that
B is related to A. For example, a “brother” relationship is symmetric, while a “father–son”
relationship is asymmetric. Models must be aware of role and positional differences be-
tween entities to predict relationships between different entity pairs correctly. Positional
encoding, in this way, helps the model better understand the semantic information of the
input sentences and more accurately represent the meaning of words in different contexts.
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3.2. BERT

BERT (bidirectional encoder representations from Transformers) is a pre-training
model with a multi-layer Transformer encoder that learns contextual relationships between
words. The BERT encoder is unique because it is a bidirectional, non-directional pre-
training model. In order to adapt to different application scenarios, BERT has several
versions of pre-trained models to choose from. Among them, the two most commonly used
versions are BERT-base and BERT-large.

Before using a pre-trained model, we obtained the relevant embeddings for each
sentence by converting the input data into the appropriate input data format, as mentioned
above. The detailed architecture of the BERT model is shown in Figure 4. EN denotes the
input embedding, Trm represents the Transformer encoder layer, and TN is the hidden layer
output vector.

Figure 4. BERT encoder architecture.

3.3. Enhanced Text Message Processing

CIRE utilizes BERT and Bi-LSTM to construct neural network models. First, during
the fine-tuning process, we used a structured input form specific to RE to minimize changes
in the model architecture [38]. Then, we used a BERT encoder to semantically model
the word vectors to obtain the word vector representations of the input sentences, which
mainly acquired the semantic information of the words. We added the Bi-LSTM model
in the sentence encoding session to further use the word vector information to model
sequences and achieve contextual information interaction, which improves the model
prediction accuracy. Meanwhile, the middle layer output of BERT may have redundancy
and noise. Bi-LSTM utilizes the error repair capability of the gating mechanism to filter
and supplement the text sequence information to extract more compact and rich semantic
and sequence information.

3.4. Improved Constructed Sentence Representation Based on Relation Embeddings

Our approach uses a pre-trained BERT language model to convert the input sequence
into a byte-level vector representation hL as the initial features. We fine-tune the BERT
model and use its output as the input to Bi-LSTM to further filter and supplement the
sequence information to obtain the feature vectors of the sentence. Typically, in a BERT
model, the [CLS] vector of the last layer is used as the output of the whole model [10] for
downstream tasks such as input or classification operations. This is because the [CLS] vector
is a summarized representation of the entire input sequence but does not contain the specific
information needed to model each word in the sequence in detail. However, in our task, we
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believe that not every word contributes the same importance to the feature representation
of a sentence. Therefore, we chose to use the entire hidden layer containing the features
of each word vector representation for the downstream task. Our core modules include
entity attention, relation embedding, relational attention, and sentence representation. We
investigate them in the following.

3.4.1. Acquisition of Head and Tail Entities

At the relation embeddings layer, we create head entity embeddings and tail entity
embeddings by performing a summing operation on the vectors corresponding to the head
entity and tail entity tokens in hL of the last layer of the BERT model. Specifically, the BERT
model encodes the input text as a series of token vectors, and each token vector contains
the semantic information of that token in the context. By summing the token vectors
where the head and tail entities are located, we can capture the contextual information of
the head and tail entities into entity embeddings, which in turn can be used to compute
relation embeddings.

We use head attention and tail attention to capture the relevant tokens of the head
and tail entities. Through head attention, we assign a weight to each token to reflect its
relevance to the head entity. Similarly, through tail attention, we assign a weight to each
token to reflect its relevance to the tail entity. In this way, we can utilize these weights to
compute the weighted average embedding of markers related to head and tail entities for
subsequent RE tasks:

αh
it = {

1 if t = head in STP tokens
0 otherwise

(1)

αt
it = {

1 if t = tail in STP tokens
0 otherwise

(2)

T is the number of STP tokens, hit is the head entity or tail entity individual word
vectors, and the head entity and tail entity embeddings are formed by the expressions below:

hi =
T

∑
t=1

αh
it · hit (3)

ti =
T

∑
t=1

αt
it · hit (4)

3.4.2. Methods for Fusing Supplementary Entity Pair Features in the Relation
Embeddings Layer

We use the TransE model [16] to fuse entity pair vectors to formulate relation embed-
dings. The TransE model treats the embedding of the underlying relation l as the distance
(difference) between the h and t embeddings (li = ti − hi), on which we fuse the head entity
and the tail entity to perform feature supplementation to represent the relation embeddings.
The traditional TransE model uses the distance between vectors to measure the relationship
between entities. Specifically, it uses the L1 paradigm between the vectors of the head and
tail entities’ vectors to compute the distance between them. However, there is a problem
with this approach, in that the relation embeddings generated through the difference be-
tween the head entity and the tail entity in the vector space lose some of the important
features of the entities. Complete characterization of entity pairs is very important for RE
to determine the relationship. Entity pair characterization includes information such as
entity type, which helps to determine the relationship between entity pairs, for example,
names of people, places, etc. These entity pairs can provide important clues about the type
of relationship that may exist between the entities. Assuming that there is a relationship
between the entity pairs (h,t), we fuse the difference features between the head and tail
entity vectors and the entity pair vectors (denoted using “[]”), apply a linear transformation
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to shape the relational embedding of each sentence i, and finally activate it through the
Tanh layer to capture possible nonlinearities:

li = Tanh(wl [hi; ti − hi; ti] + bl) (5)

where wl is the underlying relationship weight matrix, and bl ∈ Rdt is the bias vector,
denoting that bl is a vector of real numbers of dimension dt. Relation embeddings are
labeled l to indicate possible basic relationships between two entities, not necessarily real
relationships. The embeddings of the head entity hi and the tail entity ti reflect the relevant
markings of the entities, which we capture using entity attention.

3.4.3. Sentence Representation Based on Relational Attention

Our CIRE model is trained on compressing raw sentences into a representation of STP
paths, which preserves as many tokens as possible that can express a relation, but to further
reduce sentence-level noise, we emphasize sentence tokens associated with the underlying
relation li by calculating the relational attention weights αr. We define hn as the feature
vector of the overall output of the neural network model; hni represents the feature vector
of sentence i, and n in the set is the number of sentences in the package:

αr =
exp(hni li)

∑n
j=1 exp

(
hnj li

) (6)

We then weight the final output vector hn of the CIRE model with the relation embeddings:

hn
′
=

T

∑
t=1

αr · hnit (7)

3.4.4. Methods for Constructing Final Sentence Representations

In the RE task, the relationship’s judgment needs to consider the semantic information
in the input text. Fusing the vectors output from the hidden layer, the relationship vectors,
and the weighted representation vectors in the high-dimensional feature fusion layer can
increase the model’s representational and generalization capabilities.

Ultimately, the sentence representation si ∈ Rdh∗3 is constructed at the semantic fusion
layer by fusing multiple features from relation vectors, weighted instance embeddings, and
hidden layer output vectors:

si = [hn; li; h′n] (8)

It has been proved by ablation experiments (presented later) that our proposed meth-
ods are effective.

3.5. Bag-Level Characterization

CIRE generates probability distributions over possible relationships for a bag of sen-
tences s1, s2,. . . , sn involving specific entity pairs. We cluster sentence representations
with the same entity pairs in a single package, intended to reduce noise due to mislabeled
information accompanying the data samples. However, not all sentence pair packet rep-
resentations have the same importance. To further optimize the effectiveness of packet
representation, we employ a selective attention mechanism [4]. This mechanism high-
lights sentences that are more relevant to the goal relation and, thus, better captures the
characteristics of the relation.

Selective attention represents the packet as a weighted sum of each sentence, from
which αi is computed from the learned representation of each sentence’s sentence represen-
tation with relation r:

B =
n

∑
i=1

αisi (9)
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αi =
exp(sir)

∑n
j=1 exp(sjr)

(10)

Finally, we input the packet representation B into a sparse softmax classifier to obtain
the relationship’s probability distribution. First, the input vector is exponentiated to obtain
positive values. Then, the exponentiated vector is normalized to ensure that the elements
of the output vector sum to one.

p(r) = SparseSo f tmax(Wr · B + br) (11)

Wr means the relation weight matrix and br ∈ <dr means the bias vector. Figure 5
illustrates the general architecture of the entire task.

Figure 5. Overall model architecture.

3.6. Sparse Softmax Classifier

We use a dataset containing multiple relational categories in the DSRE practical
application. The softmax classifier will compute and optimize all the labels, including
the noise categories. As a result, the normalization will be interfered with by the noise
categories, and high bias in the model fitting process occurs, which negatively affects
the training and classification performance of the model and adds unnecessary overhead.
Compared to softmax, we can better cope with the above situation by using sparse softmax,
which improves the ability of the classifier to control the noise categories by controlling
the number of output categories and calculating non-zero elements when performing
model training and optimization, which results in less bias in the model fitting process.
In addition, due to the small number of long-tailed relational samples, it is difficult for
traditional softmax classifiers to accurately categorize the few categories in this case. In
contrast, sparse softmax will tend to focus higher probability mass on a few categories,
thus better capturing the features and patterns of the few categories. Table 1 shows the
comparison between the sparse softmax and softmax formulas. Sparse softmax handles
large-scale classification problems well and reduces computational and storage overheads.
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Table 1. Comparison of softmax and sparse softmax formulas.

Origin Sparse

Softmax pi =
esi

∑n
j=1 esj pi =


esi

∑j∈Ωk
esj

, i ∈ Ωk

0, i /∈ Ωk

Cross-Entropy log

(
n

∑
i=1

esi

)
− st log

(
∑

i∈Ωk

esi

)
− st

4. Experiments
4.1. Datasets

Our experiments use an extensive benchmark DS dataset, the New York Times NYT,
which we describe in detail below.

NYT: There are two different versions of this dataset, i.e., NYT2010 [2] and NYT-
multi [39]. Taking NYT2010 as an example, we visualize the number of examples for the top
20 relationships that have the highest number of examples except for the NA relationship,
and the situation is as shown in Figure 6, which contains the relationships between locations
that have several times more examples than the other relationships have, and there is a
serious long-tail phenomenon in these 20 relationships. In our experiments, the NYT
dataset refers to NYT2010, which was constructed by aligning the triples in Freebase with
the NYT corpus, and which has 53 relations, including the NA relation, indicating no
relationship between these two entities. The training set contains 522,611 sentences, the test
set contains 172,448 sentences, the training set contains 281,270 entity pairs, and the test set
contains 96,678 entity pairs, as shown in Table 2. For ease of implementation, we provide
an enhanced version of the dataset, NYT-2010enhanced, which includes syntax tree path
(STP) and dependency tree path (SDP) versions of the input sentences and information on
the type of the head and tail entities.

Figure 6. Distribution of selected data from the NYT2010 dataset.

Table 2. Data statistics for the NYT2010 dataset. “Ins”, “EP”, and “Rel” are number of instances,
entity pairs, and number of relationships, respectively.

Train Test

Ins 522,611 172,448
EP 281,270 96,678
Rel 53 53
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4.2. Hyperparameter Settings

We refer to Christou and Tsoumakas [15] for parameterizing our proposed model, and
in our experiments, we use the BERT-base model, which has a hidden layer dimension
Dh = 768 and sets the Max_Seq_Length Dt = 64. For the hyperparameters of the model,
we adjust them manually in the course of the experiments. As in Table 3, we choose
batch size = 32 in {8, 16, 32}. In {3, 4}, we choose epoch = 3. For the learning rate, we
choose lr = 2e−5 in {2e−4, e−5, 2e−5}. In {0.2, 0.4, 0.5}, dropout p = 0.4. In {0.01, 0.001},
we choose weight decay = 0.001. In addition, we optimized the model using the Adam
optimization scheme [40]. We minimize the loss using the cross-entropy criterion that
weights the classes of the dataset to deal with the unbalanced training set. The experiments
were conducted on a PC with 43 GB of RAM and 12 virtual central processing units (vCPUs)
using an Intel(R) Xeon(R) Platinum 8255C CPU@2.50 GHz with an RTX 2080 Ti graphics
card (11 GB). Also, the experiment used the Windows 10 operating system as the operating
system software environment.

Table 3. Hyperparameter setting values.

Parameter Name Value Candidate Set

Max_seq_length 64 {32, 64, 128}
Batch size 32 {8, 16, 32, 64}

Epochs 3 {2, 3, 4, 5}
Learning rate 2e−5 {2e−4, e−5, 2e−5}

Dropout 0.4 {0.2, 0.4, 0.5}
Weight_decay 0.001 {0.01, 0.001}

4.3. Comparison Experiment

We conducted comparative experiments to compare our proposed approach with the
advanced baseline approach on the NYT2010 dataset.

4.3.1. Advanced Baseline Model

Our proposed complex model CIRE is further compared with advanced baseline
models. We compare the following models: (1) Mintz [1] is the first model proposed to
solve the DSRE problem. (2) PCNN + ATT [4] uses a selective attention mechanism to
mitigate the mislabeling problem. (3) RESIDE [8] uses graph convolutional networks
(GCNs) for RE, which enhances RE by using external knowledge such as entity descriptions
and entity types. (4) DISTRE [10] is a Transformer-based model that GPT fine-tuned for
DSRE. (5) REDSandT [15] is a BERT-based RE model. It can handle long-tail relationships
while reducing noise.

4.3.2. Evaluation Indicators

Our evaluation metrics include the precision–recall (PR) curve, the area under the
curve (AUC), the Top-N precision (P@N), the mean (P@Mean), and the distribution of the
relationships of the top 300 predictive relationships, as defined below.

The precision–recall (PR) curve, in which the horizontal axis represents the recall rate
and the vertical axis represents the precision rate, shows the relationship between the
precision rate and the recall rate at different thresholds.

The AUC is the area under the PR curve. A high AUC value indicates that the model
performs better under different thresholds.

P@N is used to measure the accuracy of the model in the first N-predicted outcomes.
By specifying different values of N, we can obtain the accuracy of the model in a range of
different numbers of predictions.

P@Mean refers to the mean of the P@N values for different N values.
Depending on the specific prediction tasks and requirements, appropriate metrics can

be selected to measure the model’s accuracy, coverage, error rate, etc. Meanwhile, it may



Symmetry 2023, 15, 1788 12 of 17

be necessary to weigh the relationship between different metrics for different application
scenarios to determine the most suitable model selection and optimization strategies. Some
researchers propose a predictive statistics method applied to structure-based prediction
models [41].

4.3.3. Analytical Comparisons with Benchmark Models

Figure 7 compares the CIRE and state-of-the-art model precision–recall curves, and
we can observe:

(1) The neural network-based approach has a more significant advantage over proba-
bilistic methods (Mintz) for information extraction. This is because neural networks can
automatically learn and extract features from textual data without artificially designing
feature templates to limit the model’s performance.

(2) RESIDE, DISTRE, REDSandT, and CIRE outperform PCNN + ATT. PCNN + ATT
has the highest accuracy rate initially but soon declines. This reveals the importance of
entity types and relationship aliases as side information and transfer knowledge.

(3) RESIDE performs better at low recall because the model gives a lot of side information.
(4) Although DISTRE exhibits a precision value of 0.45 at medium recall, the precision

is lower (2–12%) at recall < 0.25 compared to RESIDE, REDSandT, and CIRE.
(5) Overall, our model outperforms the baseline REDSandT, demonstrating the validity

of our method.

Figure 7. Precision vs. recall plot for CIRE on NYT2010 dataset.

Our model exhibits a steady decline, with the overall level above the REDSandT
baseline. This means that the model improves the precision of the prediction results
while maintaining a certain level of recall. This is because our proposed CIRE model
adds Bi-LSTM to the REDSandT model, which in turn filters and complements the text
sequence information to extract more compact and rich semantic and sequence information.
We improve the relation embeddings part by fusing and supplementing the entity pairs’
feature vectors. This utilizes the feature information of the entity pairs to enhance the
relation embedding accuracy and helps identify a broader range of relationships. Finally,
sparse softmax is used as a classifier to improve the classifier’s ability to control the noise
categories by controlling the number of output categories and calculating the non-zero
elements, which reduces bias in the model fitting process. Compared to the baseline model,
our method improves the overall recall level. The results of CIRE compared to other
baseline methods for AUC, P@N, and P@Mean on the dataset NYT2010 are presented
in Tables 4 and 5. These show that all our proposed CIRE models outperform the other
baseline models.
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Table 4. AUC values for CIRE and baseline model comparison.

DSRE Methods AUC

Mintz 0.17
PCNN + ATT 0.341

RESIDE 0.415
DISTRE 0.422

REDSandT 0.424
CIRE (ours) 0.45

Table 5. Comparison of P@N and P@Mean values for CIRE and baseline models.

DSRE Methods P@100 P@300 P@500 P@Mean

Mintz 52.3 45.0 39.7 45.67
PCNN + ATT 73 67.3 63.6 67.97

RESIDE 81.8 74.3 69.7 75.26
DISTRE 68 65.3 65 66.1

REDSandT 78 73 67.6 72.87
CIRE (ours) 79 77.7 71.2 75.97

Table 4 demonstrates a comparison of our model with the five baseline models. It
can be seen that the AUC value of our model CIRE is improved by 2.6% compared to the
baseline REDSandT model. The improvement in the AUC value implies that the model
can better distinguish between right and wrong instances and reduces the over-reliance on
mislabeling, proving our method’s effectiveness. In Table 5, although the P@100 metric of
our model is slightly lower than RESIDE, the small number of top 100 relationship instances
and the low probability that these instances are noise do not highlight the overall level. The
P@300 and P@500 values are significantly higher than the other baselines, and the average
value P@Mean reached 75.97. The improvement in our model at P@300 and P@500 means
that the model is better at ranking positive examples in the top 300 and top 500 predictions,
and the model can rank true examples ahead of negative examples, resulting in a higher
percentage of positive examples in the top 300 or top 500 predictions.

Figure 8 shows the distribution of the top 300 instance-predicted relationship types for
CIRE and the other baseline models. Of the top 300 instance-predicted relationship types,
CIRE recognizes 11 different relationship types, one of which (/person/religion) is not rec-
ognized by the other models. PCNN + ATT centrally favors a broad set of four relationship
types, while RESIDE captures three additional types compared to PCNN + ATT. The fact
that DISTRE and REDSandT can recognize more types than RESIDE and PCNN + ATT in-
dicates the importance of knowledge transfer. Our model updates the relation embeddings
based on knowledge transfer so that the relationships recognized by our model are not
highly biased towards relationships with a high number of examples. It is proved that our
model is effective in solving the long-tail problem.

4.4. Ablation Experiment

To evaluate the effectiveness of the different modular approaches of REDSandT, we
performed ablation modeling studies on the NYT2010 dataset.

CIRE without Merge.ht: Remove the head and tail entities from the fusion layer in the
improved TransE model.

CIRE without Bi-LSTM: Remove the Bi-LSTM module from CIRE.
CIRE without sparse softmax: Use softmax instead of sparse softmax in classification.
CIRE without hn: Remove hn from the feature fusion layer.
The experimental data in Tables 6 and 7 indicate that all of our modules contributed

to the validity of our final model.
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Figure 8. Distribution of predicted relationship types for the top 300 instances of CIRE and base-
line models.

Table 6. AUC values for ablation experiments.

Metrics AUC

CIRE without Merge.ht 0.429
CIRE without Bi-LSTM 0.435

CIRE without sparse softmax 0.436
CIRE without hn 0.429

CIRE 0.45

Table 7. Ablation experiment P@N value vs. P@Mean value.

Metrics P@100 P@300 P@500 P@Mean

CIRE without Merge.ht 77 70 68.4 71.8
CIRE without Bi-LSTM 76 74.7 70.2 73.63

CIRE without sparse softmax 76 74 69 73
CIRE without hn 76 74 66.8 72.3

CIRE 79 77.7 71.2 75.97

Effectiveness of Bi-LSTM for sequence information complementation: Bi-LSTM
uses the error-fixing ability of the gating mechanism to continue modeling on text sequences,
which in turn filters and complements the text sequence information to extract more
compact and rich semantic and sequence information. Therefore, removing the Bi-LSTM
module will cause the model’s performance to deteriorate. The comparison of the CIRE and
CIRE without Bi-LSTM methods shows that the AUC value of CIRE without Bi-LSTM is
reduced from 0.45 to 0.435 compared to the CIRE model. There is also a numerical decrease
in the P@N value and the P@M value, proving that adding Bi-LSTM in the sentence
encoding link effectively supplements the information of text sequences.

Effectiveness of entity pair feature supplementation at the relation embeddings
layer: In the relation embeddings layer, the vectorial difference of the entity pairs represents
the relationship based on which we fuse and supplement the feature vectors of the entity
pairs themselves to improve the relation embedding accuracy. According to the comparison
of CIRE and CIRE without Merge.ht methods, it can be seen that the AUC value of CIRE
without Merge.ht reduces from 0.45 to 0.429 compared to the CIRE model, which is the
most significant decrease and the biggest impact. The P@N value and P@Mean value are
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also reduced, proving that the fusion and supplementation of entity pairs’ features in the
relation embeddings part is effective.

Effectiveness of sparse softmax classifier: CIRE uses sparse softmax as a classifier to
improve the ability of the classifier to control the noise categories by controlling the number
of output categories and calculating the non-zero elements, which leads to a reduction
in bias in the model fitting process. Based on the comparison of CIRE and CIRE without
sparse softmax methods, it can be seen that the AUC value of CIRE without sparse softmax
is reduced from 0.45 to 0.436 as compared to the CIRE model. The P@N value and the
P@Mean value are also reduced, proving that the sparse softmax classifier is effective in
dealing with noise disturbances.

Effectiveness of fusion of sentence information output from the hidden layer: In
constructing the feature fusion layer of the final sentence representation, fusing the sentence
information output from the encoder hidden layer as the sub-information of the final
sentence representation can enhance the model’s ability to judge the relationship and
improve the model’s performance on unknown data, thus improving the accuracy of the
relation extraction task. According to the comparison of the CIRE and CIRE without hn
methods, it can be seen that the AUC value of CIRE without hn is reduced from 0.45 to 0.429
compared to the CIRE model. The P@N value and the P@Mean value are also reduced,
proving that fusing the sentence information output from the encoder hidden layer in the
feature fusion layer is effective.

It can be proved through experiments that this research has practical significance in
applications. The DSRE task is of great practical significance in automated information
extraction, large-scale relationship discovery, knowledge graph construction and appli-
cation, and domain specialization application, which can help people extract valuable
relationship information from large-scale textual data and apply it to various practical
scenarios and applications.

5. Conclusions

In this paper, to solve the problems of a single method of text information processing,
underutilization of feature information of entity pairs for relation embeddings, and misla-
beling interference for multi-label classification in the DSRE domain, we propose a novel
approach, CIRE, for DSRE. This first performs semantic modeling of word vectors using
BERT and, then, continues to model textual sequence information by utilizing the error
repair capability of Bi-LSTM’s gating mechanism to extract more compact and rich semantic
and sequence information. At the same time, we combine the entity pairs and the vector
difference of entity pairs in the relation embeddings layer, which fuses and complements
the features of entity pairs to improve the relation embedding accuracy. Finally, we choose
sparse softmax as the classifier to improve the control of noise categories by controlling the
number of output categories. After a large number of experimental results, our method
is proved to be feasible and reasonable. On the public NYT2010 dataset, the AUC metric
of our proposed method improves by 2.6% compared to the baseline method. Although
our proposed method achieves outstanding results, there is still room for improvement
in the long-tail problem. In the future, we propose better solutions for the long-tail and
noise problems.
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26. Jäntschi, L.; Bolboacă, S.D. Informational entropy of B-ary trees after a vertex cut. Entropy 2008, 10, 576–588. [CrossRef]
27. Zhou, P.; Shi, W.; Tian, J.; Qi, Z.; Li, B.; Hao, H.; Xu, B. Attention-based bidirectional long short-term memory networks for

relation classification. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), Berlin, Germany, 7–12 August 2016; pp. 207–212.

28. Wen, H.; Zhu, X.; Zhang, L.; Li, F. A gated piecewise CNN with entity-aware enhancement for distantly supervised relation
extraction. Inf. Process. Manag. 2020, 57, 102373. [CrossRef]

29. Ye, H.; Luo, Z. Deep ranking based cost-sensitive multi-label learning for distant supervision relation extraction. Inf. Process.
Manag. 2020, 57, 102096. [CrossRef]

30. Xu, J.; Chen, Y.; Qin, Y.; Huang, R.; Zheng, Q. A feature combination-based graph convolutional neural network model for
relation extraction. Symmetry 2021, 13, 1458. [CrossRef]

31. Chaudhari, S.; Mithal, V.; Polatkan, G.; Ramanath, R. An attentive survey of attention models. ACM Trans. Intell. Syst. Technol.
(TIST) 2021, 12, 1–32. [CrossRef]

32. Mnih, V.; Heess, N.; Graves, A. Recurrent models of visual attention. In Proceedings of the Advances in Neural Information
Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Volume 27.

33. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
34. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
35. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining for

language understanding. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada,
8–14 December 2019; Volume 32.

36. Liu, Y.; Liu, K.; Xu, L.; Zhao, J. Exploring fine-grained entity type constraints for distantly supervised relation extraction. In
Proceedings of the Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical
Papers, Dublin, Ireland, 23–29 August 2014; pp. 2107–2116.

37. Sennrich, R.; Haddow, B.; Birch, A. Neural machine translation of rare words with subword units. arXiv 2015, arXiv:1508.07909.
38. Dong, L.; Yang, N.; Wang, W.; Wei, F.; Liu, X.; Wang, Y.; Gao, J.; Zhou, M.; Hon, H.W. Unified language model pre-training for

natural language understanding and generation. Adv. Neural Inf. Process. Syst. 2019, 32.
39. Cabot, P.L.H.; Navigli, R. REBEL: Relation extraction by end-to-end language generation. In Proceedings of the Findings of the

Association for Computational Linguistics: EMNLP 2021, Online, 7–11 November 2021; pp. 2370–2381.
40. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
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