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Abstract: The discussion revolves around the most recent outcomes in the realm of approximating
functional integrals through calculations. Review of works devoted to the application of functional
integrals in quantum mechanics and quantum field theory, nuclear physics and in other areas is
presented. Methods obtained by the authors for approximate calculation of functional integrals
generated by nonrelativistic Hamiltonians are given. One of the methods is based on the expansion
in eigenfunctions of the Hamiltonian. In an alternate approach, the functional integrals are tackled
using the semiclassical approximation. Methods for approximate evaluation of functional integrals
generated by relativistic Hamiltonians are presented. These are the methods using functional polyno-
mial approximation (analogue of formulas of a given degree of accuracy) and methods based on the
expansion in eigenfunctions of the Hamiltonian, generating a functional integral.

Keywords: functional integrals; nonrelativistic and relativistic Hamiltonians; Schrödinger-type
equation; methods for approximate calculation of integrals

1. Introduction

Functional integrals are widely used in quantum mechanics and quantum field theory
nuclear physics and in many other areas (see [1–11] and references therein). In particular,
functional integrals are used in the description of quantum mechanical systems of particles
with different Hamiltonians.

The wide application of functional integrals stimulates the development of methods
for their approximate calculation. Significant progress has been made over the past half
century in the field of approximate calculation of functional integrals.

The motivation for writing this article was the desire to review well-known existing
methods and methods obtained by the authors in recent years for calculating functional inte-
grals.

There are various methods for computing different types of functional integrals. Since
the “Feynman measure” is not a measure in the mathematically strict sense, many different
approaches to Feynman integrals have arisen, substantiating their construction and offering
appropriate methods for their approximate calculation [12–15].

Among the methods used, we note the Monte Carlo method for the approximate
calculation of functional integrals [16–18].
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In the realm of employed techniques, the Monte Carlo method stands out as a means
to approximately compute functional integrals (as indicated in references [16–18]. This
approach hinges on expressing the target integral as the mathematical expectation of a
random variable. Its arithmetic mean of independent realizations yields an estimated value
for the integral in question.

There are methods for the approximate calculation of functional integrals, which are
based on the discretization of space and time [19–21]. The theory on the space-time lattice
leads to the need to calculate integrals of large (≥105) multiplicity, which requires the use
of powerful computers with large RAM and high speed.

Significant progress has been made in the field of methods for the approximate calcula-
tion of functional integrals, in which discretization is not required, and the argument of the
integrand remains an element of the original space. Within the framework of the approach
that does not require discretization, a method has been developed for the approximate
calculation of functional integrals based on the use of approximate formulas that are exact
on the class of functional polynomials of a given degree (see [11,16,22–25] and bibliographic
lists to them). Such formulas are called formulas of a given degree of accuracy and are
widely used to approximate the calculation of functional integrals.

For integrals arising from Hamiltonians, an additional computational approach can be
introduced in conjunction with the existing methods. This approach relies on utilizing the
Feynman–Kac formula [2], which provides an integral representation for the evolution op-
erator’s kernel. It involves expressing this kernel through the eigenvalues and eigenvectors
of the Hamiltonian.

Note that the formulas for a given degree of accuracy are especially effective for
functional integrals over the space of functions given on short intervals. For integrals
determined over large time intervals, it is necessary to take high precision formulas, which
lead to high computational costs. The method based on the eigenfunction expansion of the
Hamiltonian is effective for functional integrals defined over large time intervals. For small
time intervals, it is necessary to use a large number of terms in the expansion, which leads
to high computational costs.

To calculate functional integrals with respect to the conditional Wiener measure,
the semiclassical approximation is also considered [9]. The semiclassical approximation
uses the expansion of the action with respect to the classical trajectory [1], which can be
interpreted as an expansion in powers of Planck’s constant.

Section 2 is devoted to the calculation of functional integrals generated by nonrela-
tivistic Hamiltonians: the Hamiltonian of the harmonic oscillator, the Hamiltonian of the
anharmonic oscillator, the Hamiltonian of a one-dimensional rectangular potential well
and the Hamiltonian containing the Davidson potential. Functional integrals generated
by the nonrelativistic Hamiltonians are integrals with respect to the conditional Wiener
measure. For such integrals, the theory of formulas of a given degree accuracy is developed
in detail and there are good review papers. Therefore, in Section 2, emphasis is put on the
methods obtained by the authors for calculating integrals based on the expansion in terms
of eigenfunctions of the Hamiltonian [26,27] and the method of semiclassical approximation
of functional integrals [28].

In Section 3, the calculation of functional integrals generated by relativistic Hamil-
tonians is analyzed. This section presents the results obtained by the methods of the
authors based on approximation by polynomials (analogous to formulas of a given de-
gree of accuracy) [29] and the methods based on expansion in terms of eigenfunctions
of the Hamiltonian [30,31]. For the nonrelativistic Hamiltonian, the equation for eigen-
values and eigenfunctions has the form of the stationary Schrödinger equation for which
an approximate solution can be found. For the relativistic Hamiltonian, in the general
case, it is not possible to obtain an equation for the eigenvalues and eigenfunctions of the
Hamiltonian in the form of the stationary Schrödinger equation. Therefore, the problem of
the stationary Schrödinger equation for eigenvalues and eigenfunctions is treated in the
presence of a small parameter 1/(mc2). We also consider the construction of an equation
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of the Schrödinger type for the eigenvalues and eigenfunctions in the case of pseudospin
symmetry (the sum of the vector and scalar potentials is equal to zero).

Numerical results and comparison of approximate and exact values are presented in
both Sections 2 and 3.

All the mentioned methods presented in Sections 2 and 3 were proposed by the authors
of this review and their detailed description can be found in the original papers [26–31].

2. Calculation of Functional Integrals Generated by Nonrelativistic Hamiltonians
2.1. Method Based on Expansion in Eigenfunctions of the Hamiltonian

In this section, we consider the problem of approximate calculation of functional
integrals with respect to the conditional Wiener measure of the form∫

exp
{
−
∫ t

s
V(x(τ))dτ

}
dµxs ,xt(x) =

= lim
max

1≤j≤n
∆tj→0

∫
R
(n− 1)

...

∫
R

exp

{
−

n

∑
j=1

(tj − tj−1)V(xj)

}
×

n

∏
j=1

K0
tj−tj−1

(xj−1, xj)dx1 . . . dxn−1, (1)

if this limit exists for any partition of the interval [s, t] by points s = t0 < t1 < · · · < tn = t.

Here, xj = x(tj); K0
tj−tj−1

(xj−1, xj) = 1√
2π(tj−tj−1)

exp{− (xj−xj−1)
2

2(tj−tj−1)
} is the kernel of

the operator exp{tH0}, H0 = 1
2

∂2

∂x2 . The functional integral in Equation (1) is said to be

generated by the Hamiltonian H = 1
2

∂2

∂x2 −V.
In Equation (1), the argument of the exponential is not the action functional, but only

part of it corresponding to the potential energy. There is no kinetic term ( dx
dt )

2 under the
integral sign since it is included in the measure of integration. The measure of integration
on cylindrical sets {x(τ) : x(s) = xs, x(t) = xt, x(tj) ∈ Ij, j = 1, 2, . . . , n− 1}, Ij are Borel
sets from R, using functions K0

tj−tj−1
(xj−1, xj) is defined by the expression

∫
In−1

(n− 1)
...

∫
I1

n

∏
j=1

K0
tj−tj−1

(xj−1, xj)dx1 . . . dxn−1.

That is, the functional integral defined by Equation (1) is an integral over the countably
additive conditional Wiener measure in a mathematically rigorous sense [2].

In this paper, to calculate functional integrals in Equation (1), we consider a new
method. This method is based on the use of the Feynman–Kac formula [2], which gives
an integral representation for the kernel K(xs, xt) of the evolution operator exp{tH} =
exp{t(H0 −V)}, and express the kernel K(xs, xt) with the use of eigenvalues and eigenvec-
tors of the Hamiltonian H.

K(xs, xt) satisfies the equality [2]

K(xs, xt) =
∫

exp
{
−
∫ t

s
V(x(τ))dτ

}
dµxs ,xt(x). (2)

The kernel K(xs, xt) can also be represented as [32]

K(xs, xt) =
∞

∑
n=0

ψn(xs)ψn(xt) exp{−λn(t− s)},

where −λn, ψn(x) are the eigenvalues and eigenvectors of the operator H = 1
2

∂2

∂x2 −V.
Thus, the following statement is true.

Statement 1. The functional integral defined by Equation (1) satisfies the equality
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∫
exp

{
−
∫ t

s
V(x(τ))dτ

}
dµxs ,xt(x) =

∞

∑
n=0

ψn(xs)ψn(xt) exp{−λn(t− s)}.

To calculate −λn, ψn(x) we consider functions on the interval [−A ≤ x ≤ A], A is
some positive number, and the operator H = 1

2
∂2

∂x2 −V is approximated by a finite difference
operator with matrix H̄ with dimension (N− 1)× (N− 1), resulting from the approximation
of the second derivative at the node xj by the expression h−2(xj+1 − 2xj + xj−1)

H̄ =


b1 c1 · · · 0 0
a1 b2 · · · 0 0
...

...
. . .

...
...

0 0 · · · bN−2 cN−2
0 0 · · · aN−2 bN−1

 =

=
1
h2


−1− h2V1

1
2 0 · · · 0

1
2 −1− h2V2

1
2 · · · 0

0 1
2 −1− h2V3 · · · 0

...
...

...
. . .

...
0 0 0 · · · −1− h2VN−1

, (3)

where Vj = V(xj) = V(−A + jh), 1 ≤ j ≤ N − 1, h = 2A
N .

To calculate the eigenvalues −λ̄n of a three-diagonal matrix H̄, one can use the Sturm
sequence method [33]. Consider the following sequence of polynomials, known as the
Sturm sequence

D0(λ) = 1, D1(λ) = b1 − λ, Dj(λ) = (bj − λ)Dj−1(λ)− aj−1cj−1Dj−2(λ),

2 ≤ j ≤ N − 1.
For an arbitrary λ, we define the function s(λ) as the number of coincidences of signs

in successive members of the sequence

D0(λ), D1(λ), D2(λ), . . . , DN−1(λ),

Moreover, if Dj(λ) = 0, we take the sign of Dj−1(λ) as the sign of this term. Then the
value of the function s(λ) is equal to the number of eigenvalues of the matrix H̄ greater
than or equal to λ.

To calculate the eigenvectors ψ̄j of the three-diagonal matrix H̄, one can use the
backward iteration method [33]. Using the computed −λn, ψn(x), 0 ≤ n ≤ m, and the
approximate formula

∫
exp

{
−
∫ t

s
V(x(τ))dτ

}
dµxs ,xt(x) ≈

m

∑
n=0

ψn(xs)ψn(xt) exp{−λn(t− s)} (4)

we obtain the numerical values of the functional integral in Equation (1).

2.2. Harmonic Oscillator

In this section, we consider the approximate calculation of the functional integral in
Equation (1) in the case V(x) = 1

2 (−1 + x2). This integral is generated by the Hamiltonian
of the harmonic oscillator

H =
1
2

∂2

∂x2 −
1
2
(−1 + x2).

For a given potential V(x), using the Sturm sequence method, we obtain approximate
values for eigenvalues −λ̄0, −λ̄1 of three diagonal matrix H̄. For A = 4, N = 20, −λ̄0 =
0.0022, −λ̄1 = −0.9736. For comparison, exact values are −λ0 = 0, −λ1 = −1.
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Using the backward iteration method, we find approximations of the eigenvectors
ψ̄0, ψ̄1 of three diagonal matrix H̄.

Figures 1–4 for A = 4, N = 20 show the exact and approximate values for the functions
ψ0(x) and ψ1(x) together with the corresponding absolute and relative errors of calculations,
respectively. The exact values for ψ0(x), ψ1(x) are obtained from the expressionsVersion December 18, 2022 submitted to Symmetry 2 of 2

0.4

0.5

0.6

0.7

0.8

−1 −0.5 0 0.5 1

exact values

approximate values

x

ψ0(x)

Figure 1. Exact and approximate values of ψ0(x).

Version December 18, 2022 submitted to Symmetry 2 of 2
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Figure 2. Absolute and relative errors ∆ψ0, resp. εψ0 of the approximation of the function ψ0(x).
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Figure 3. Exact and approximate values of ψ1(x).
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Figure 4. Absolute and relative errors ∆ψ1, resp. εψ1 of the approximation of the function ψ1(x).

ψ0(x) = 4

√
1
π

exp
{
− x2

2

}
, ψ1(x) = − 4

√
1
π

√
2 x exp

{
− x2

2

}
.

Using the calculated eigenvalues −λ0, −λ1, eigenvectors ψ0, ψ1, and Equation (4), we
obtain the numerical values of the functional integral.

In Figures 5–8 below for A = 4, N = 20, s = 0 and different values xs = xt, exact and
approximate functional integral (1) values are given at t = 1 and t = 5, together with the
corresponding absolute and relative errors of calculations, respectively. The exact values
for the functional integral at s = 0 are obtained from the expression [2,32]



Symmetry 2023, 15, 1785 7 of 39
Version December 18, 2022 submitted to Symmetry 2 of 2

0

0.1

0.2

0.3

0.4

0.5

0.6

−3 −2 −1 0 1 2 3

exact values

approximate values

x

K(x, x)

Figure 5. Exact and approximate values of the functional integral at t = 1.
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Figure 6. Absolute and relative errors ∆K, resp. εK of the approximation of the functional integral
K(x, x) at t = 1.

K(xs, xt) =
exp{t/2}√
2π sinh(t)

exp
{
−exp{t}(exp{−t}xt − xs)2

2 sinh(t)
− x2

t + x2
s

}
.

Figures 5 and 7 show that the use of two terms in Equation (4) gives a good approxi-
mation of the functional integral.
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Figure 7. Exact and approximate values of the functional integral K(x, x) at t = 5.
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Figure 8. Absolute and relative errors ∆K, resp. εK of the approximation of the functional integral
K(x, x) at t = 5.

2.3. Anharmonic Oscillator

In this section, we consider the approximate calculation of the functional integral in
Equation (1) in the case V(x) = 1

2 (x2 + x4). This integral is generated by the Hamiltonian
of the anharmonic oscillator

H =
1
2

∂2

∂x2 −
1
2
(x2 + x4).
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Using the calculated eigenvalues −λ0, −λ1, eigenvectors ψ0, ψ1 and Equation (4), we
obtain the numerical values of the functional integral. In Figures 9–12 for A = 4, N = 40,
s = 0, m = 0 and m = 1, approximate values of the functional integral in Equation (1) are
given for various values of xs = xt at t = 1 and t = 2, together with the corresponding
absolute and relative errors of calculations, respectively.Version December 21, 2022 submitted to Symmetry 2 of 2
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approximate values     

approximate values     

x

(m = 0)

(m = 1)

Knum(x, x)

Figure 9. Approximate values of the functional integral at m = 0, m = 1, t = 1.
Version December 21, 2022 submitted to Symmetry 2 of 2
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Figure 10. Absolute and relative differences ∆Knum(x∗) = Km=0(x∗, x∗) − Km=1(x∗, x∗), resp.
εKnum(x∗) = Km=0(x∗, x∗)/Km=1(x∗, x∗)− 1 of the approximations of the functional integral K(x, x)
at t = 1.
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Figure 11. Approximate values of the functional integral for m = 0, m = 1, t = 2.
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Figure 12. Absolute and relative differences ∆Knum(x∗) = Km=0(x∗, x∗) − Km=1(x∗, x∗), resp.
εKnum(x∗) = Km=0(x∗, x∗)/Km=1(x∗, x∗)− 1 of the approximations of the functional integral K(x, x)
at t = 2.

2.4. One-Dimensional Rectangular Potential Well

In this section, we consider the approximate calculation of the functional integral
in Equation (1) in the case V(x) = −π2/(8a) at −a < x < a, V(x) = +∞ at |x| ≥ a.
This integral is generated by the Hamiltonian of a one-dimensional rectangular well with
absolutely rigid walls

H =
1
2

∂2

∂x2 −V(x).
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Using the calculated eigenvalues −λ0, −λ1, eigenvectors ψ0, ψ1, and Equation (4), we
obtain the numerical values of the functional integral. In Figures 13–16 for a a = 1, N = 40,
s = 0, m = 0, and m = 1, approximate values of the functional integral in Equation (1) are
given for various values of xs = xt at t = 1 and t = 2, together with the corresponding
absolute and relative errors of calculations, respectively.Version December 21, 2022 submitted to Symmetry 2 of 2
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Figure 13. Approximate values of the functional integral for m = 0, m = 1, t = 1.
Version December 21, 2022 submitted to Symmetry 2 of 2
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Figure 14. Absolute and relative differences ∆Knum(x∗) = Km=0(x∗, x∗) − Km=1(x∗, x∗), resp.
εKnum(x∗) = Km=0(x∗, x∗)/Km=1(x∗, x∗)− 1 of the approximations of the functional integral K(x, x)
at t = 1.
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Figure 15. Approximate values of the functional integral for m = 0, m = 1, t = 2.
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Figure 16. Absolute and relative differences ∆Knum(x∗) = Km=0(x∗, x∗) − Km=1(x∗, x∗), resp.
εKnum(x∗) = Km=0(x∗, x∗)/Km=1(x∗, x∗)− 1 of the approximations of the functional integral K(x, x)
at t = 2.

2.5. Davidson Potential

When describing particles in quantum mechanics, potentials are used that contain a
variable in the denominator, for example, the Coulomb potential V(x) = −c

x , the shifted
Coulomb potential V(x) = −c1/x + c2, the Kratzer potential V(x) = c1/x2 − c2/x + c3,
the Davidson potential V(x) = c1x2 + c2/x2 and others [34]. The expression c2/x2 can be
interpreted as a repulsive potential due to the centrifugal force. Therefore, this expression
is usually called the centrifugal potential [35].
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In this section, we consider the approximate calculation of the functional integral
in Equation (1) in the case V(x) = 1

2 (
5

16x2 + x2), where V(x) = +∞ for x ≤ 0. That is,
the Davidson potential is considered with the coefficients c1 = 1/2, c2 = 5/32.

Using the calculated eigenvalues −λ0, −λ1, eigenvectors ψ0, ψ1, and Equation (4), we
obtain the numerical values of the functional integral.

Figures 17 and 18 show the exact and approximate values of the integral K(xs, xt)
defined by Equation (2), xs = xt = x at s = 0, N = 40, m = 0 and m = 1 for t = 1, together
with the corresponding absolute and relative errors of calculations, respectively.Version December 18, 2022 submitted to Symmetry 2 of 2
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Figure 17. Exact and approximate values of the integral K(x, x), s = 0, t = 1, N = 40, m = 0 and m = 1.
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Figure 18. Absolute and relative errors ∆KD, resp. εKD of the approximation of the integral KD(x, x),
at s = 0, t = 1, N = 40, m = 0, and m = 1.



Symmetry 2023, 15, 1785 14 of 39

Figures 19–24 show the exact and approximate values of the integral K(xs, xt) de-
fined by Equation (2), xs = xt = x at s = 0, m = 1, N = 10, N = 40 for t = 1 and
t = 2, together with the corresponding absolute and relative errors of calculations, respec-
tively.Version December 18, 2022 submitted to Symmetry 2 of 2
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Figure 19. Exact and approximate values of the integral K(x, x), s = 0, t = 1, m = 1, N = 10,
and N = 40.
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Figure 20. Absolute and relative errors ∆KD, resp. εKD of the approximation of the integral KD(x, x),
at s = 0, t = 2, m = 1, N = 10, and N = 40.
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Figure 21. Exact and approximate values of the integral K(x, x), s = 0, t = 2, N = 40, m = 0,
and m = 1.
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Figure 22. Absolute and relative errors ∆KD, resp. εKD of the approximation of the integral KD(x, x),
at s = 0, t = 2, N = 40, m = 0, and m = 1.

Figures 17 and 21 demonstrate that for various values of t, the approximate values are
closer to the exact values for larger m. Figures 19 and 23 show that for various values of t,
the approximate values are closer to the exact values for larger N.
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Figure 23. Exact and approximate values of the integral K(x, x), s = 0, t = 2, m = 1, N = 10,
and N = 40.
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Figure 24. Absolute and relative errors ∆KD, resp. εKD of the approximation of the integral KD(x, x),
at s = 0, t = 2, m = 1, N = 10, and N = 40.

The exact values for the functional integral are obtained from the formula [36–38]

K(xs, xt) =
∫

exp
{
−
∫ t

s
(c2x2(τ) +

c3

x2(τ)
)dτ

}
dµxs ,xt(x) =

=
γ
√

xsxt

2 sinh( γ(t−s)
2 )

exp
{
−γ

4
(x2

s + x2
t ) coth(

γ(t− s)
2

)

}
Iµ

(
γxsxt

2 sinh γ(t−s)
2

)
,
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where γ =
√

8c2, µ = 1
2
√

1 + 8c3, Iµ are the modified Bessel functions of order µ.

2.6. Semiclassical Approximation for the Calculation of Functional Integrals

This section deals with functional integrals∫
exp

{
−1

h̄

∫ t

s
V(x(τ))dτ

}
dµxs ,xt(x), (5)

which are defined by (1), where

K0
tj−tj−1

(xj−1, xj) =
1√

2πh̄(tj − tj−1)
exp

{
−

(xj − xj−1)
2

2h̄(tj − tj−1)

}

is the kernel of exp{ t
h̄ H0}, H0 = h̄2

2
∂2

∂x2 , h̄ is the parameter that takes positive real values.
Using the Feynman–Kac formula [2], the kernel Kt−s(xs, xt) of the operator evolution

exp{ t
h̄ H}, H = h̄2

2
∂2

∂x2 −V(x), is represented through the functional integral

Kt−s(xs, xt) =
∫

exp
{
−1

h̄

∫ t

s
V(x(τ))dτ

}
dµxs ,xt(x).

In this section, we consider a semiclassical approximation for calculating the indicated
functional integrals [9,39,40]. The semiclassical approximation uses the expansion of the
action with respect to the classical trajectory [1], which can be interpreted as an expansion
in powers of the Planck constant. In this section, we describe the method of semiclassical
approximation of functional integrals and perform a numerical analysis of the accuracy
of the semiclassical approximation of functional integrals. For numerical analysis, we
compare the results obtained with the help of semiclassical approximation and with the
help of the method of calculating functional integrals based on the expansion in terms of
eigenfunctions of the Hamiltonian generating the functional integral. When approximat-
ing the functional integrals based on the expansion in terms of the eigenfunctions of the
Hamiltonian, one can estimate the accuracy of the obtained approximate values. The semi-
classical approximation can be used for a fairly wide range of problems. For example,
the semiclassical approximation is used in the calculation of functional integrals used in
field theory, in particular, in the theory of gravitation. However, to estimate the accuracy of
the semiclassical approximation, a comparison with the results obtained by other methods
is necessary.

2.6.1. Description of the Method

To calculate the functional integral in Equation (5), rewrite it as

Kt−s(xs, xt) =
∫

D[x] exp
{
−1

h̄

∫ t

s

[
1
2
(ẋ(τ))2 + V

(
x(τ)

)]
dτ

}
, (6)

where

D[x] = lim
n→∞

n−1

∏
i=1

dxi√
2πh̄(ti − ti−1)

1√
2πh̄(tn − tn−1)

.

The quantity 1
2 (ẋ(τ))2 + V(x(τ)) can be considered as the Lagrangian of the system

L(ẋ, x, τ), and the value S =
∫ t

s L(ẋ, x, τ) dτ as the action. Using the principle of least
action [1] it is possible to single out from all possible trajectories the classical trajectory
xcl, for which the action S takes an extremal value. The classical trajectory is found as a
solution of the Euler–Lagrange equations

d
dt

[
∂L
∂ẋ

]
− ∂L

∂x
= 0.



Symmetry 2023, 15, 1785 18 of 39

Further, to calculate the integral, expansion of the action S with respect to the classical
trajectory xcl can be used

S[x(τ)] ≈ S[xcl(τ)] +
1
2

δ2S[xcl(τ)].

The second variation δ2S[xcl(τ)] can be written as

δ2S[xcl(τ)] =
∫ t

s
δx Λ δx dτ,

where x = xcl + δx,

Λ =
∂2L
∂x2 |x=xcl +

∂2L
∂x∂ẋ

|x=xcl

d
dt
− d

dt
∂2L

∂ẋ∂x
|x=xcl −

d
dt

∂2L
∂ẋ2 |x=xcl

d
dt

.

Thus, the integral in Equation (6) can be written in the form

Kt−s(xs, xt) = exp
{
−1

h̄
S[xcl(τ)]

} ∫
D[y] exp

{
− 1

2h̄

∫ t

s
y Λ y dτ

}
, (7)

where integration is performed over trajectories y = δx, satisfying the conditions y(s) = 0,
y(t) = 0,

D[y] = lim
n→∞

n−1

∏
i=1

dyi√
2πh̄(ti − ti−1)

1√
2πh̄(tn − tn−1)

.

To calculate the integral in Equation (7), we use the expansion

∞

∑
j=1

ajuj,

where the functions uj are eigenfunctions of the operator Λ with eigenvalues λj. Then, the
integral in Equation (7) can be written as

K =
∫

D[y] exp
{
− 1

2h̄

∫ t

s
y Λ y dτ

}
= J

∫
D[a] exp

{
− 1

2h̄

∞

∑
j=1

λja2
j

}
, (8)

where J is the Jacobian of the transition from the variable y to the variable a,

D[a] = lim
n→∞

n−1

∏
i=1

dai.

Since the Jacobian J is invariant under the operators Λ [1,40], then

K
∞

∏
j=1

λ
1
2
j = Kfree

∞

∏
j=1

λ
1
2
free,j ,

where

Kfree = J
∫

D[a] exp

{
− 1

2h̄

∞

∑
j=1

λfree,ja2
j

}
,

and λfree,j are the eigenvalues of the operator Λ = − d2

dt2 .
Similar to Equation (8)

Kfree =
∫

D[y] exp
{
− 1

2h̄

∫ t

s
y Λfree y dτ

}
=
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= lim
n→∞

∫
· · ·

∫ n−1

∏
i=1

dyi√
2πh̄(ti − ti−1)

1√
2πh̄(tn − tn−1)

exp

{
−

n−1

∑
i=0

(yi+1 − yi)
2

2h̄(ti+1 − ti)

}
=

=
1√

2πh̄(t− s)
.

Consequently,

K = Kfree

∞

∏
j=1

λ
1
2
free,j

λ
1
2
j

=
1√

2πh̄(t− s)

∞

∏
j=1

λ
1
2
free,j

λ
1
2
j

. (9)

Thus, from Equations (8) and (9), it follows that the integral in Equation (7) is written
in the form

Kt−s(xs, xt) = exp
{
−1

h̄
S[xcl(τ)]

}
1√

2πh̄(t− s)

∞

∏
j=1

λ
1
2
free,j

λ
1
2
j

. (10)

In our case L(ẋ, x, τ) = 1
2 (ẋ(τ))2 + V(x(τ)). Consequently, the trajectory xcl satisfies

the equation
..
xcl(τ)−V

′
(xcl(τ)) = 0. (11)

Consequently,∫ t

s

.
x2

cl(τ) dτ =
.
xcl(t)xcl(t)−

.
xcl(s)xcl(s)−

∫ t

s
V
′
(xcl(τ))xcl(τ) dτ,

S[xcl(τ)] =
∫ t

s

[
V(xcl(τ))−

1
2

V
′
(xcl(τ))xcl(τ)

]
dτ+

+
1
2
( .
xcl(t)xcl(t)−

.
xcl(s)xcl(s)

)
. (12)

Approximate values of the function xcl(τ), s ≤ τ ≤ t, are found by solving Equation (11)
using the grid method for solving nonlinear boundary value problems [41].

The operator Λ in our case has the form

Λ = V
′′
(xcl(τ))−

d2

dt2 .

This operator is approximated by a finite difference operator with a matrix Λ̄ of
dimension (N − 1)× (N − 1), obtained as a result of approximating the second derivative
at the node tj by the expression ∆t−2(tj+1 − 2tj + tj−1),

Λ̄ =
1

∆t2


2 + ∆t2V1 −1 0 · · · 0
−1 2 + ∆t2V2 −1 · · · 0
0 −1 2 + ∆t2V3 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2 + ∆t2VN−1

, (13)

where Vj = V
′′
(xcl(j∆t)), 1 ≤ j ≤ N − 1, ∆t = (t− s)/N.

We replace the operator Λfree = − d2

dt2 with a matrix of dimension (N − 1)× (N − 1)
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Λ̄free =
1

∆t2


2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2

.

Then, ∏N−1
j=1 λj = det Λ̄, ∏N−1

j=1 λfree,j = det Λ̄free.

Thus, substituting approximate values for S[xcl(τ)] and ∏N−1
j=1 λ

1
2
free,j/λ

1
2
j in

Equation (10), we obtain a semiclassical approximation of the functional integral in
Equation (5).

2.6.2. Numerical Results

In this section, we consider a numerical analysis of the accuracy of the semiclassical
approximation of functional integrals using the example of an anharmonic oscillator, i.e., for
the Hamiltonian H = h̄2

2
∂2

∂x2 −V(x) and potential V(x) = 1
2 x2 + 1

2 x4. The functional integral
has the form

Kt−s(xs, xt) =
∫

exp
{
− 1

2h̄

∫ t

s

[
x2(τ) + x4(τ)

]
dτ

}
dµxs ,xt(x). (14)

In this case, Kt−s(xs, xt) is calculated by Equation (10), where the trajectory xcl satisfies
the equation

..
xcl(τ)− xcl(τ)− 2x3

cl(τ) = 0.

From Equation (12), we obtain that

S[xcl(τ)] = −
1
2

∫ t

s
x4

cl(τ) dτ +
1
2
( .
xcl(t)xcl(t)−

.
xcl(s)xcl(s)

)
.

Values Vj in Equation (13) have the form Vj = 1 + 6x2
cl(j∆t), 1 ≤ j ≤ N − 1, ∆t =

(t− s)/N.
To estimate the error of the semiclassical approximation of the integral in Equation (5),

we calculate this integral using an approximate method based on the expansion in terms
of the eigenfunctions of the Hamiltonian. In this method, Kt−s(xs, xt) is calculated by
Equation (4), where λj and ψj—eigenvalues and eigenvectors of the matrix in Equation (3),
Vj =

1
2 (−A + jh)2 + 1

2 (−A + jh)4, 1 ≤ j ≤ N − 1.
For comparison, Figure 25 shows the values of integral in Equation (14) at s = 0, t = 1,

h̄ = 1, xs = 0, −3 ≤ xt ≤ 3, obtained using the semiclassical approximation and using the
expansion in terms of the eigenfunctions of the Hamiltonian. Figure 26 shows the values of
integral in Equation (14) at s = 0, t = 1, h̄ = 0.1, xs = 0, −1.5 ≤ xt ≤ 1.5, obtained using
the semiclassical approximation and using the expansion in terms of eigenfunctions of
the Hamiltonian.

Figures 25 and 26 show that the semiclassical approximation approximates the func-
tional integral well, and not only for small values h̄.

Thus, in this section, a numerical analysis of the accuracy of the semiclassical approxi-
mation of functional integrals is carried out. For numerical analysis, we used a comparison
of the results obtained using the semiclassical approximation and using the method of
calculating functional integrals based on the expansion in terms of eigenfunctions of the
Hamiltonian generating the functional integral.
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Figure 25. Semiclassical approximation of the integral Kt−s(xs, xt) defined by (14) and integral values
obtained by expansion in terms of eigenfunctions of the Hamiltonian, s = 0, t = 1, h̄ = 1, xs = 0.
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Figure 26. Semiclassical approximation of the integral Kt−s(xs, xt) defined by (14) and integral values
obtained by expansion in terms of eigenfunctions of the Hamiltonian, s = 0, t = 1, h̄ = 0.1, xs = 0.

3. Calculation of Functional Integrals Generated by Relativistic Hamiltonians
3.1. Method Based on Approximation by Polynomials

In this section, we consider matrix-valued functional integrals generated by the Hamil-
tonian H = aα ∂

∂x + bβ. Exact formulas for functional integrals of functional polynomials
are proposed and methods based on approximation by polynomials are considered (an ana-
logue of formulas with a given degree of accuracy). The results of a numerical experiment
are also presented.
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3.1.1. Analytical Results

The matrix-valued functional integral over the space of functions x(τ), τ ∈ [0, t] is
defined by the equality ∫

F(x(·))dµ(x) = (15)

= lim
max

j
∆tj→0

∫
RN

F

(
N

∑
j=1

xjχ]tj−1,tj ]
(·)
)

1

∏
j=N

S(∆tj, ∆xj)dx1 . . . dxN ,

if this limit exists as max
j

∆tj → 0 for any partition of the interval [0, t] by points 0 = t0 <

t1 < . . . < tN = t. Here, ∆tj = tj − tj−1, ∆xj = xj − xj−1, xj = x(tj), j = 1, . . . , N, χ]tj−1,tj ]
(·)

is the characteristic function of the interval [tj−1, tj]. S(t, x) is the fundamental solution of
the equation [42,43]

∂S(t, x)
∂t

= aα
∂S(t, x)

∂x
+ bβS(t, x), (16)

where a, b are real parameters, α, β are anticommuting quantities (operators or matrices),
i.e., αβ + βα = 0. We also assume that α2 = β2 = E.

The following theorem is true for the integral (16) [29].

Theorem 1. Let the functional integral be defined by Equation (15) and the transition function
S(t, x) be defined by Equation (16). Let also the functions f j(τ), 1 ≤ j ≤ d be Riemann integrable
on [s, t]. Then, the following equality holds:∫ ∫ t

s
f1(τ)dx(τ) · · ·

∫ t

s
fd(τ)dx(τ)dµ(x) = (17)

= (−a)d
∫ t

s
(d)

∫ t

s

d

∏
k=1

fk(τk)
d

∏
k=0

exp
{
(τmk − τmk+1)(−1)kbβ

}
dτ1 . . . dτdαd,

where (m1, . . . , md) is a permutation of (1, . . . , d) such that τm1 ≥ τm2 ≥ . . . ≥ τmd , τm0 = t,
τmd+1 = s.

Let us give one more exact formula, which will be needed when comparing approxi-
mate values with exact ones [29].

Statement 2. Let the functional integral be defined by Equation (15) and the transition function
S(t, x) be defined by Equation (16). Then, the following equality holds:∫

exp
{∫ t

s
f (τ)dx(τ)

}
dµ(x) =

←
T exp

{∫ t

s

(
− a f (τ)α + bβ

)
dτ

}
, (18)

where the symbol
←
T exp denotes the chronologically ordered exponential, which is defined by the

equality

←
T exp

{∫ t

s

(
− a f (τ)α + bβ

)
dτ

}
= lim

max
j

∆tj→0

1

∏
j=N

exp
{

∆tj
(
− a f (τj−1)α + bβ

)}
.

Equations (17) and (18) are exact formulas for functional integrals. Equation (17) can
be used for approximate calculation of the integrals∫

F
(∫ t

s
f1(τ)dx(τ), . . . ,

∫ t

s
fd(τ)dx(τ)

)
dµ(x).
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Statement 3. Let the functions f j(τ), 1 ≤ j ≤ d be Riemann integrable on [s, t]. Let the
function F(u1, . . . , ud) be expanded into a series ∑∞

p1,...,pd=0 Fp1,...,pd up1
1 · · · u

pd
d and the series

∑∞
p1,...,pd=0 |Fp1,...,pd ||u1|p1 · · · |ud|pd converges for uj = acj, cj >

∫ t
s | f j(τ)|dτ, 1 ≤ j ≤ d. Then,∫

F
(∫ t

s
f1(τ)dx(τ), . . . ,

∫ t

s
fd(τ)dx(τ)

)
dµ(x) =

∞

∑
p1,...,pd=0

Fp1,...,pd× (19)

(−a)P
∫ t

s
(P)

∫ t

s

P

∏
k=1

gk(τk)
P

∏
k=0

exp
{
(τmk − τmk+1)(−1)kbβ

}
dτ1 . . . dτPαP

and the series converges in this equality. Here, P = p1 + . . . + pd, gi(τ) = fk(τ), ∑k−1
m=0 pm ≤

i < ∑k
m=0 pm, p0 = 1, 1 ≤ k ≤ d, (m1, . . . , mP) is a permutation of (1, . . . , P) such that

τm1 ≥ τm2 ≥ . . . ≥ τmP , τm0 = t, τmP+1 = s. Proof follows from the expansion of the function
F(u1, . . . , ud) and Equation (17). The following statement is also true [29].

Statement 4. Let the functional integral be defined by Equation (15) and the transition function

S(t, x) be defined by Equation (16). Let α =

(
0 1
1 0

)
, β =

(
1 0
0 −1

)
. Then, the elements of the

integral
∫

exp
{
−
∫ t

s x2(τ)dτ
}

dµ(x) with indices (1, 2) and (2, 1) are equal to zero.

In the functional integral defined in Equation (15), the function S(t, x) takes matrix
values and the functional F takes real values. One can consider a functional integral for
which both the function S(t, x) and the functional F take matrix values. For example,

the functional F has the form exp
{∫ t

s
[
βΦ
(
x(τ)

)
+ V

(
x(τ)

)]
dτ
}

, where β =

(
1 0
0 −1

)
.

In this case, the functional integral is defined in the following way:∫
exp

{∫ t

s

[
βΦ
(

x(τ)
)
+ V

(
x(τ)

)]
dτ

}
dµ(x) =

= lim
max

j
∆tj→0

∫
R
(n)

...

∫
R

1

∏
j=n

[
exp

{
(tj − tj−1)

[
βΦ
(
xj
)
+ V

(
xj
)]}
×

S(tj − tj−1, xj − xj−1)

]
dx1 . . . dxn, (20)

if this limit exists for any partition of the interval [s, t] by points s = t0 < t1 < · · · < tn = t.
Here, xj = x(tj) and the transition function S(tj − tj−1, xj − xj−1) satisfied Equation (16).

For these integrals, one can prove a statement similar to Statement 4.

Statement 5. Let the functional integral be defined by (20) and the transition function S(t, x) be

defined by Equation (16) , where α =

(
0 −1
1 0

)
, β =

(
1 0
0 −1

)
. Let Φ(x) = x2/2, V(x) =

−x2/2. Then, the elements of the integral

I =
∫

exp
{∫ t

s

[
βΦ
(
x(τ)

)
+ V

(
x(τ)

)
] dτ

}
dµ(x)

with indices (1, 2) and (2, 1) are equal to zero.

Statements 4 and 5 will be needed to compare exact and approximate values.

3.1.2. Numerical Results

Before using Equation (19) for approximate calculations, consider the estimate for
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(−a)P
∫ t

s
(P)

∫ t

s

P

∏
k=1

gk(τk)
P

∏
k=0

exp
{(

τmk − τmk+1

)
(−1)kbβ

}
dτ1 . . . dτP.

Let the functions | f j(τ)| ≤ C, 1 ≤ j ≤ d and β =

(
1 0
0 −1

)
. Under the assumptions

made, to evaluate the indicated expression, it suffices to estimate

|a|PCP

∣∣∣∣∣
∫ t

s
(P)

∫ t

s

P

∏
k=0

exp
{(

τmk − τmk+1

)
(−1)k|b|

}
dτ1 . . . dτP

∣∣∣∣∣
and

|a|PCP

∣∣∣∣∣
∫ t

s
(P)

∫ t

s

P

∏
k=0

exp
{(

τmk − τmk+1

)
(−1)k(−|b|)

}
dτ1 . . . dτP

∣∣∣∣∣.
For even P ∣∣∣∣∣

∫ t

s
(P)

∫ t

s

P

∏
k=0

exp
{(

τmk − τmk+1

)
(−1)k|b|

}
dτ1 . . . dτP

∣∣∣∣∣ =
= P!

∣∣∣∣∫ t

s

∫ τP

s
. . .
∫ τ3

s

∫ τ2

s
exp{(t− 2τP + 2τP−1 − · · · − 2τ2 + 2τ1 − s)|b|}dτ1 · · · dτP

∣∣∣∣ =
=

P!
2|b|

∣∣∣∣ ∫ t

s

∫ τP

s
· · ·

∫ τ4

s

∫ τ3

s

[
exp

{(
t− 2τP + 2τP−1 − · · ·+

+2τ3 − s
)
|b|
}
− exp

{(
t− 2τP + 2τP−1 − · · ·+−2τ2 + s

)
|b|
}]

dτ2 . . . dτP

∣∣∣∣ ≤
(t− s)P!

2|b|

∣∣∣∣ ∫ t

s

∫ τP

s
· · ·

∫ τ5

s

∫ τ4

s
exp

{
(t− 2τP + 2τP−1 − · · ·+ 2τ3 − s)|b|

}
dτ3 · · · dτP

∣∣∣∣.
Continuing the estimates, we obtain as a result∣∣∣∣∣

∫ t

s
(P)

∫ t

s

P

∏
k=0

exp
{(

τmk − τmk+1

)
(−1)k|b|

}
dτ1 · · · dτP

∣∣∣∣∣ ≤ P!
(t− s)P/2

(2|b|)P/2 exp{(t− s)|b|}.

For odd P, a similar inequality is true∣∣∣∣∣
∫ t

s
(P)

∫ t

s

P

∏
k=0

exp{(τmk − τmk+1)(−1)k|b|}dτ1 . . . dτP

∣∣∣∣∣ ≤ P!
(t− s)

P−1
2

(2|b|) P+1
2

exp{(t− s)|b|}.

Estimates are obtained similarly: for even P∣∣∣∣∣
∫ t

s
(P)

∫ t

s

P

∏
k=0

exp
{(

τmk − τmk+1

)
(−1)k(−|b|)

}
dτ1 · · · dτP

∣∣∣∣∣ ≤ P!
(t− s)

P−2
2

(2|b|) P+2
2

exp{(t− s)|b|},

for odd P∣∣∣∣∣
∫ t

s
(P)

∫ t

s

P

∏
k=0

exp
{(

τmk − τmk+1

)
(−1)k(−|b|)

}
dτ1 · · · dτP

∣∣∣∣∣ ≤ P!
(t− s)

P−1
2

(2|b|) P+1
2

exp{(t− s)|b|}.

Since in the given estimates |a| is in the numerator, and |b| in the denominator, we
find that Equation (19) is effective for small |a| and large |b|.

As an example, consider the approximation of the integral∫
exp

{∫ t

s
λ(τ)dx(τ)

}
dµ(x).
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Using the expansion in Equation (19) , we obtain that

∫
exp

{∫ t

s
λ(τ)dx(τ)

}
dµ(x) ≈

n

∑
a1=0

1
a1!

(−a)a1×

∫ t

s
(a1)

∫ t

s

a1

∏
k=1

λ(τk)
a1

∏
k=0

exp
{(

τmk − τmk+1

)
(−1)kbβ

}
dτ1 · · · dτa1 αa1 =

=
n

∑
a1=0

(−a)a1

∫ t

s
(a1)

∫ t

τ3

∫ t

τ2

a1

∏
k=1

λ(τk)×

exp{(t− 2τ1 + 2τ2 − · · ·+ (−1)a12τa1 − (−1)a1 s)bβ} dτ1 · · · dτa1 αa1 .

It follows from Equation (18) that for λ ≡ 1 the exact value of the integral is equal to∫
exp

{∫ t

s
λ(τ)dx(τ)

}
dµ(x) = exp{(t− s)(−aα + bβ)} =

= cosh
(
(t− s)

√
a2 + b2

)
+
−aα + bβ√

a2 + b2
sinh

(
(t− s)

√
a2 + b2

)
.

For t = 2, s = 1, λ ≡ 1, α =

(
1 0
0 −1

)
, β =

(
0 1
1 0

)
, b = 1 and small a = 0.1, the exact

value of the integral is
(

1.431 1.177
1.177 1.667

)
.

Approximate values for n = 0 and n = 1 are
(

1.543 1.175

1.175 1.543

)
,

(
1.426 1.175

1.175 1.661

)
, respectively.

For t = 2, s = 1, λ ≡ 1, α =

(
1 0
0 −1

)
, β =

(
0 1
1 0

)
, a = 1 and large b = 10, the exact

value of the integral is
(

10414 11507
11507 12715

)
.

Approximate values for n = 0 and n = 1 are
(

11014 11014

11014 11014

)
,

(
9912 11014

11014 12115

)
, respectively.

3.2. Functional Integrals Generated by the Matrix Equation

The method for calculating functional integrals based on the expansion in terms of
eigenfunctions of the Hamiltonian generating the functional integral is applicable to the
nonrelativistic Hamiltonian, since the equation for the eigenvalues and eigenfunctions of
the nonrelativistic Hamiltonian has the form of the stationary Schrödinger equation, for
which one can find an approximate solution. For the relativistic Hamiltonian, in the general
case, it is not possible to obtain an equation for the eigenvalues and eigenfunctions of the
Hamiltonian in the form of the stationary Schrödinger equation.

In this section, the derivation of the stationary Schrödinger equations for eigenvalues
and eigenfunctions in the presence of a small parameter 1/(mc2) will be considered. To ob-
tain the stationary Schrödinger equation, an approximation is used, which is obtained by
expanding into a series in powers of 1/(mc2) up to terms of the smallest order.

3.2.1. Analytical Results

In this section, we consider matrix-valued functional integrals, which, following the
works [42,43], are defined on the space of functions x(τ), s ≤ τ ≤ t, satisfying the condition
x(s) = 0 and the Lipschitz condition with order equal to one, that is for any s ≤ r1 < r2 ≤ t,
|x(r1)− x(r2)| ≤ M|r2 − r1.| The integrals are defined by the equality

∫
exp

{
−
∫ t

s
V
(

x(τ)
)
dτ

}
dµ(x) = lim

max
j

∆tj→0

∫
R
(n)

...

∫
R

exp
{
−

n

∑
j=1

(
tj − tj−1

)
V
(

xj
)}
×
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1

∏
j=n

S
(
tj − tj−1, xj − xj−1

)
dx1 · · · dxn, (21)

if this limit exists for any partition of the interval [s, t] by points s = t0 < t1 < · · · < tn = t.
Here, xj = x

(
tj
)
; S
(
tj − tj−1, xj − xj−1

)
is the transition function, which is the funda-

mental solution of the equation [42,43]

∂S(t, x)
∂t

= aα
∂S(t, x)

∂x
+ bβS(t, x), (22)

where a, b are real parameters, α, β are anticommuting matrices, i.e., αβ + βα = 0.
This integral is related to the kernel of the evolution operator [42,43], namely∫

exp
{
−
∫ t

s
V
(

x(τ)
)
dτ

}
dµ(x) =

∫ +∞

−∞
K(0, xt)dxt,

where K(xs, xt) is the kernel of the operator exp{tH}, H = aα ∂
∂x + bβ−V(x).

Our goal is to use the expansion of the function K(xs, xt) in terms of eigenfunctions of
the Hamiltonian H to calculate the functional integral.

For the relativistic Hamiltonian H, the parameters a and b have the form a = −c,
b = −mc2, where m is the particle mass and c is the speed of light [44]. Therefore, we
consider the calculation of eigenvalues and eigenvectors of the operator H for large values
|b|. We will also assume that

α =

(
0 1
1 0

)
, β =

(
1 0
0 −1

)
.

Under the above assumptions, the equations for the eigenvalues E and eigenfunctions(
ϕ(x), ψ(x)

)T (T is the transposition sign) of the operator H have the form

a∂xψ(x) + bϕ(x)−V(x)ϕ(x) = Eϕ(x),

a∂x ϕ(x)− bψ(x)−V(x)ψ(x) = Eψ(x).

Denote E
′
= E + b. Then,(

E
′ − 2b + V(x)

)
ϕ(x) = a∂xψ(x),(

E
′
+ V(x)

)
ψ(x) = a∂x ϕ(x).

(23)

From these equalities, we obtain an equation for ψ(x)(
E
′
+ V(x)

)
ψ(x) = a∂x

(
E
′ − 2b + V(x)

)−1
a∂xψ(x). (24)

For large |b|, the approximate equality is true [44]

(
E
′ − 2b + V(x)

)−1
≈ (−2b)−1

(
1− E

′
+ V(x)
−2b

)
.

With the help of this equality, Equation (24) is transformed into

(
E
′
+ V(x)

)
ψ(x) =

a2

−2b

([
1− E

′
+ V(x)
−2b

]
∂2

x +
V
′
(x)

2b
∂x

)
ψ(x).
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Multiplying both sides of this equality by
[

1− E
′
+V(x)
−2b

]−1
≈ 1−

(
E
′
+ V(x)

)
/(2b),

we obtain[
a2

−2b
∂2

x −
(

1 +
E
′
+ V(x)
−2b

)(
E
′
+ V(x)

)
+

a2

−2b

(
1 +

E
′
+ V(x)
−2b

)
V
′
(x)

2b
∂x

]
ψ(x) ≈

≈
[

a2

−2b
∂2

x −
(

E
′
+ V(x)

)
−
(
E
′
+ V(x)

)2

−2b
+

a2

−2b
V
′
(x)

2b
∂x

]
ψ(x) ≈ 0. (25)

To find the eigenvalues E
′

and eigenfunctions ψ(x), consider the unperturbed operator

a2

−2b
∂2

x −V(x)

and assume that the eigenvalues E
′
0n and eigenfunctions ψ0n(x) are known for it, that is,

the exact solutions of the equation(
a2

−2b
∂2

x −V(x)
)

ψ0n(x) = E
′
0nψ0n(x)

are known.
The eigenvalues E

′
0n will be calculated approximately using the Sturm sequence

method [33]. The eigenfunctions ψ0n(x) will be calculated approximately by the backward
iteration method [33]. Then we seek the eigenvalues E

′
n and eigenfunctions ψn(x) of the

perturbed operator with ε = 1/(−2b) in the form [45]

E
′
n = E

′
0n + εE

′
1n + ε2E

′
2n + · · ·

ψn(x) =
∞

∑
j=0

cjψ0j(x), cj = c0j + εc1j + ε2c2j + · · · (26)

For an eigenvector with number n, c0j = 1 for j = n, c0j = 0 for j 6= n.
To find the first order corrections to the eigenvalues and eigenvectors, we substitute

Equation (26) into (25) . As a result, we obtain

∑
j=0

(
E
′
0j − E

′
0n − εE

′
1n

)(
c0j + εc1j

)
ψ0j(x)−

−ε
(

E
′
0n + V(x)

)2
∑
j=0

c0jψ0j(x)− ε
a2

−2b
V
′
(x) ∂x ∑

j=0
c0jψ0j(x) = 0.

Taking into account that

∑
j=0

(
E
′
0j − E

′
0n

)
c0jψ0j(x) = 0

the last equality will be written in the form

∑
j=0

(
E
′
0j − E

′
0n

)
c1jψ0j(x)− E

′
1nψ0n(x)−

−
(

E
′
0n + V(x)

)2
ψ0n(x)− a2

−2b
V
′
(x) ∂xψ0n(x) = 0. (27)

We introduce the notation
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Vjn = −
∫ +∞

−∞
ψ0j(x)

(
E
′
0n + V(x)

)2
ψ0n(x) dx− a2

−2b

∫ +∞

−∞
ψ0j(x)V

′
(x) ∂xψ0n(x) dx.

The scalar product of vectors ψij(x), ψkl(x) is defined through the integral

∫ +∞

−∞
ψij(x)ψkl(x)dx.

Multiplying both sides of Equation (27) scalarly by the vector ψ0n(x), we obtain the
expression for E

′
1n

E
′
1n = Vnn.

Multiplying both sides of Equation (27) scalarly by the vector ψ0j(x), we obtain the
expression for c1j, j 6= n

c1j =
Vjn

E′0n − E′0j
.

The coefficient c1n must be chosen so that the function ψ0n(x) + ε ∑j=0 c1jψ0j(x) is
normalized up to and including terms of the first order. To this end it is necessary to put
c1n = 0 [45].

Thus, with the first-order correction, the eigenvector is given by

ψ1n(x) = ψ0n(x) + ε ∑
j 6=n

Vjn

E′0n − E′0j
ψ0j(x). (28)

It follows from Equation (23) that the functions ϕij(x), i = 0, 1, j = 0, 1, 2, . . . are
expressed in terms of ψij(x) by the formula

ϕij(x) =
a
−2b

1−
E
′
ij + V(x)

−2b

 ∂xψij(x).

Thus, the functions (ϕij(x), ψij(x))T are eigenfunctions of the operator H with eigen-
values E

′
ij − b, where i = 0, 1 are the orders of smallness, j = 0, 1, 2, . . . are the numbers

of eigenvalues.
For a fixed i, the vectors (ϕij(x), ψij(x))T are generally not orthogonal for different

values of j. For their orthogonalization, the Gram-Schmidt process can be used. In this case,
orthogonal vectors are constructed according to the rule

ηi0 = (ϕi0(x), ψi0(x))T , ηij = (ϕij(x), ψij(x))T −
j−1

∑
k=0

〈(ϕij(x), ψij(x))T , ηik〉
〈ηik, ηik〉

ηik, (29)

where 〈(η1(x), η2(x))T , (ξ1(x), ξ2(x))T〉 =
∫ +∞
−∞ η1(x)ξ1(x)dx +

∫ +∞
−∞ η2(x)ξ2(x)dx.

To expand the kernel of the operator exp{tH} with respect to the vector ηij, one can
use the formula

K(xs, xt) = ∑
j=0
〈ηij, ηij〉−1 exp{tH}ηij(xt)η

T
ij (xs).

Since, according to Equation (29) , ηij can be written as ηij = ∑
j
k=0 ck(ϕik(x), ψik(x))T ,

where ck are some constants, exp{tH}ηij(xt) can be written as

exp{tH}ηij(xt) =
j

∑
k=0

ck exp
{

t(E
′
ik − b)

}(
ϕik(x), ψik(x)

)T .

Thus, the following statement is true.
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Statement 6. The functional integral defined in Equation (21) satisfies the approximate formula∫
exp

{
−
∫ t

s
V(x(τ))dτ

}
dµ(x) ≈ (30)

∫ +∞

−∞
∑
j=0
〈ηij, ηij〉−1

j

∑
k=0

ck exp
{

t(E
′
ik − b)

}(
ϕik(xt), ψik(xt)

)T
ηT

ij (0) dxt,

where E
′
ij − b are the approximate eigenvalues of the Hamiltonian H, (ϕij(x), ψij(x))T are

non-normalized approximate eigenfunctions of the Hamiltonian H, ηij are normalized
approximate eigenfunctions of the Hamiltonian H, i = 0, 1 are the orders of smallness,
j = 0, 1, 2, . . . are the numbers of eigenvalues, ck are the expansion coefficients of the
normalized functions by non-normalized functions.

3.2.2. Numerical Results

As an example, consider the calculation of the functional integral in Equation (21)

in the case when the transition function S is determined by Equation (22) , α =

(
0 1
1 0

)
,

β =

(
1 0
0 −1

)
, V(x) = x2/8.

For the zero order of smallness (i = 0) and zero eigenvalue (j = 0), Equation (30) has
the form ∫

exp
{
−
∫ t

s
V(x(τ))dτ

}
dµ(x) ≈

∫ +∞

−∞

〈
(ϕ00, ψ00), (ϕ00, ψ00)

〉−1×

exp
{

t(E
′
00 − b)

}(
ϕ00(xt), ψ00(xt)

)T(
ϕ00(0), ψ00(0)

)
dxt =

=
〈(

ϕ00, ψ00
)
,
(

ϕ00, ψ00
)〉−1 exp

{
t(E

′
00 − b)

}
×∫ +∞

−∞ ϕ00(xt)dxt ϕ00(0)
∫ +∞
−∞ ϕ00(xt)dxtψ00(0)∫ +∞

−∞ ψ00(xt)dxt ϕ00(0)
∫ +∞
−∞ ψ00(xt)dxtψ00(0)

.

For s = 0, t = 2, a = −4, b = −16, m = 1, A = 5 ([−A, A] is the interval on
which approximate eigenfunctions are considered), N = 100 (N is the number of intervals
into which the interval [−A, A] is divided for approximate calculation of eigenvalues
and eigenfunctions) E

′
00 ≈ −0.2499,

∫ +∞
−∞ ψ00(xt) dxt ≈ 2.2366,

∫ +∞
−∞ ϕ00xt) dxt ≈ 0.00048,

ψ00(0) ≈ 0.6318, ϕ00(0) ≈ 0.002,
〈
(ϕ00, ψ00), (ϕ00, ψ00)

〉−1 ≈ 0.9923.
Thus, for the zero order of smallness (i = 0) and zero eigenvalue (j = 0)

exp{tb}
∫

exp
{
−
∫ t

s
V(x(τ))dτ

}
dµ(x) ≈

(
10−6 2 · 10−4

2 · 10−3 0.8507

)
.

For the zero order of smallness (i = 0) and the first eigenvalue (j = 1), the term with
j = 1 in Equation (30) has the form〈

(ϕ01, ψ01), (ϕ01, ψ01)
〉−1 exp

{
t(E

′
01 − b)

}
×

∫ +∞
−∞ ϕ01(xt)dxt ϕ01(0)

∫ +∞
−∞ ϕ01(xt)dxtψ01(0)∫ +∞

−∞ ψ01(xt)dxt ϕ01(0)
∫ +∞
−∞ ψ01(xt)dxtψ01(0)

.

For s = 0, t = 2, a = −4, b = −16, m = 1, A = 5, N = 100 E
′
01 ≈ −0.7498,∫ +∞

−∞ ψ01(xt) dxt ≈ 10−6,
∫ +∞
−∞ ϕ01(xt) dxt ≈ 0.01747, ψ01(0) ≈ 8 · 10−7, ϕ01(0) ≈ 0.08,〈

(ϕ01, ψ01), (ϕ01, ψ01)
〉−1 ≈ 0.9804.
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Thus, for the zero order of smallness (i = 0), the term with j = 1 in Equation (30) for
exp{tb}

∫
exp

{
−
∫ t

s V
(
x(τ)

)
dτ
}

dµ(x) gives the contribution

(
2 · 10−4 2 · 10−9

2 · 10−8 2 · 10−13

)
.

For the zero order of smallness (i = 0) and the second eigenvalue (j = 1) at s = 0,
t = 2, a = −4, b = −16, m = 1, A = 5, N = 100, η02 =

(
η02,1, η02,2

)
≈
(

ϕ02(x), ψ02(x)
)T

+

0.0109
(

ϕ00(x), ψ00(x)
)T , 〈η02, η02〉−1 ≈ 0.9626. The term with j = 2 in Equation (30) has

the form

〈η02, η02〉−1 exp
{

t(E
′
02 − b)

}
×

∫ +∞
−∞ ϕ02(xt)dxtη02,1(0)

∫ +∞
−∞ ϕ02(xt)dxtη02,2(0)∫ +∞

−∞ ψ02(xt)dxtη02,1(0)
∫ +∞
−∞ ψ02(xt)dxtη02,2(0)

+

+0.0109〈η02, η02〉−1 exp
{

t
(

E
′
00 − b

)}∫ +∞
−∞ ϕ00(xt)dxtη02,1(0)

∫ +∞
−∞ ϕ00(xt)dxtη02,2(0)∫ +∞

−∞ ψ00(xt)dxtη02,1(0)
∫ +∞
−∞ ψ00(xt)dxtη02,2(0)

.

E
′
02 ≈ −1.2506,

∫ +∞
−∞ ψ02(xt) dxt ≈ 1.5408,

∫ +∞
−∞ ϕ02(xt) dxt ≈ 9 · 10−4, ψ02(0) ≈

−0.4484, ϕ02(0) ≈ 7 · 10−3, η02,1(0) ≈ 7 · 10−3, η02,2(0) ≈ −0.4421,
〈
(ϕ02, ψ02), (ϕ02, ψ02)

〉−1

≈ 0.9626.
Thus, for the zero order of smallness (i = 0), the term with j = 2 in Equation (30) for

exp{tb}
∫

exp
{
−
∫ t

s V
(
x(τ)

)
dτ
}

dµ(x) gives the contribution

(
5 · 10−7 −3 · 10−5

9 · 10−4 −0.0596

)
.

For the zero order of smallness (i = 0) and for the same values of the parameters,
taking into account the contribution of three terms, we obtain

exp{tb}
∫

exp
{
−
∫ t

s
V
(
x(τ)

)
dτ

}
dµ(x) ≈

(
2 · 10−4 2 · 10−4

2 · 10−3 0.7911

)
. (31)

For the first order of smallness (i = 1) and zero eigenvalue (j = 0) Equation (30) has
the form ∫

exp
{
−
∫ t

s
V
(
x(τ)

)
dτ

}
dµ(x) ≈

〈
(ϕ10, ψ10), (ϕ10, ψ10)

〉−1×

exp
{

t
(

E
′
10 − b

)}∫ +∞
−∞ ϕ10(xt)dxt ϕ10(0)

∫ +∞
−∞ ϕ10(xt)dxtψ10(0)∫ +∞

−∞ ψ10(xt)dxt ϕ10(0)
∫ +∞
−∞ ψ10(xt)dxtψ10(0)

.

It follows from Equation (28) that for s = 0, t = 2, a = −4, b = −16, m = 1, A = 5,
N = 100

ψ10(x) ≈ ψ00(x) + 10−4ψ01(x) + 0.0014ψ02(x),

ϕ10(x) ≈ ϕ00(x) + 10−4 ϕ01(x) + 0.0014ϕ02(x).

With the specified parameters

E
′
10 ≈ −0.2494,

∫ +∞

−∞
ψ10(xt) dxt ≈ 2.2388,

∫ +∞

−∞
ϕ10(xt) dxt ≈ 0.00048,

ψ10(0) ≈ 0.6312, ϕ10(0) ≈ 0.002,
〈
(ϕ10, ψ10), (ϕ10, ψ10)

〉−1 ≈ 0.9923.

Thus, for the first order of smallness (i = 1) and zero eigenvalue (j = 0)
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exp{tb}
∫

exp
{
−
∫ t

s
V
(
x(τ)

)
dτ

}
dµ(x) ≈

(
6 · 10−7 2 · 10−4

2 · 10−3 0.8516

)
.

For the first order of smallness (i = 1) and the first eigenvalue (j = 1) for the specified
parameters, from Equation (28) expressing ψ11(x) in terms of ψ0j(x), j = 0, 1, 2, we obtain

ψ11(x) ≈ ψ01(x) + 3 · 10−4 ψ00(x)− 7 · 10−6 ψ02(x),

ϕ11(x) ≈ ϕ01(x) + 3 · 10−4 ϕ00(x)− 7 · 10−6 ϕ02(x).

After orthogonalization, we obtain

η11 =
(
η11,1, η11,2

)
≈
(

ϕ11(x), ψ11(x)
)T − 4 · 10−4 (ϕ10(x), ψ10(x)

)T ,

〈η11, η11〉−1 ≈ 0.9804.
The term with j = 1 in Equation (30) has the form

〈
η11, η11

〉−1 exp
{

t
(
E
′
11 − b

)}
×

∫ +∞
−∞ ϕ11(xt)dxtη11,1(0)

∫ +∞
−∞ ϕ11(xt)dxtη11,2(0)∫ +∞

−∞ ψ11(xt)dxtη11,1(0)
∫ +∞
−∞ ψ11(xt)dxtη11,2(0)

−

4 · 10−4〈η11, η11〉−1 exp
{

t
(
E
′
10 − b

)}∫ +∞
−∞ ϕ10(xt)dxtη11,1(0)

∫ +∞
−∞ ϕ10(xt)dxtη11,2(0)∫ +∞

−∞ ψ10(xt)dxtη11,1(0)
∫ +∞
−∞ ψ10(xt)dxtη11,2(0)

.

With the specified parameters

E
′
11 ≈ −0.7552,

∫ +∞

−∞
ψ11(xt) dxt ≈ 6 · 10−4,

∫ +∞

−∞
ϕ11(xt) dxt ≈ 0.01747,

ψ11(0) ≈ 2 · 10−4, ϕ11(0) ≈ 8 · 10−2, η11,1(0) ≈ 8 · 10−2, η11,2(0) ≈ −5 · 10−5.

Thus, for the first order of smallness (i = 1), the term with j = 1 in Equation (30) for
exp{tb}

∫
exp

{
−
∫ t

s V
(
x(τ)

)
dτ
}

dµ(x) gives the contribution

(
3 · 10−4 −2 · 10−7

−3 · 10−5 −3 · 10−8

)
.

For the first order of smallness (i = 1) and the second eigenvalue (28) expressing
ψ12(x) in terms of ψ0j(x), j = 0, 1, 2, we obtain

ψ12(x) ≈ ψ02(x)− 0.0069ψ00(x) + 0.0179ψ01(x),

ϕ12(x) ≈ ϕ02(x)− 0.0069ϕ00(x) + 0.0179ϕ01(x).

After orthogonalization, we obtain

η12 = (η12,1, η12,2) ≈ (ϕ12(x), ψ12(x))T+ 0.016(ϕ10(x), ψ10(x))T− 0.018(ϕ11(x), ψ11(x))T ,

〈η12, η12〉−1 ≈ 0.9626.
The term with j = 2 in Equation (30) has the form

〈η12, η12〉−1 exp
{

t
(
E
′
12 − b

)}
×

∫ +∞
−∞ ϕ12(xt)dxtη12,1(0)

∫ +∞
−∞ ϕ12(xt)dxtη12,2(0)∫ +∞

−∞ ψ12(xt)dxtη12,1(0)
∫ +∞
−∞ ψ12(xt)dxtη12,2(0)

+

+0.016〈η12, η12〉−1 exp
{

t
(
E
′
10 − b

)}∫ +∞
−∞ ϕ10(xt)dxtη12,1(0)

∫ +∞
−∞ ϕ10(xt)dxtη12,2(0)∫ +∞

−∞ ψ10(xt)dxtη12,1(0)
∫ +∞
−∞ ψ10(xt)dxtη12,2(0)

−
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−0.018〈η12, η12〉−1 exp
{

t
(
E
′
11 − b

)}∫ +∞
−∞ ϕ11(xt)dxtη12,1(0)

∫ +∞
−∞ ϕ11(xt)dxtη12,2(0)∫ +∞

−∞ ψ11(xt)dxtη12,1(0)
∫ +∞
−∞ ψ11(xt)dxtη12,2(0)

.

With the specified parameters

E
′
12 ≈ −1.2677,

∫ +∞

−∞
ψ12(xt) dxt ≈ 1.5254,

∫ +∞

−∞
ϕ12(xt) dxt ≈ 10−3,

ψ12(0) ≈ −0.4528, ϕ12(0) ≈ 8 · 10−3, η12,1(0) ≈ 7 · 10−3, η12,2(0) ≈ −0.4427.

Thus, for the first order of smallness (i = 1), the term with j = 2 in Equation (30) for
exp{tb}

∫
exp

{
−
∫ t

s V
(
x(τ)

)
dτ
}

dµ(x) gives the contribution

(
−2 · 10−7 −2 · 10−6

10−3 −0.0607

)
.

For the first order of smallness (i = 1) and for the same values of the parameters,
taking into account the contribution of three terms, we obtain

exp{tb}
∫

exp
{
−
∫ t

s
V
(
x(τ)

)
dτ

}
dµ(x) ≈

(
2 · 10−4 2 · 10−4

3 · 10−3 0.7909

)
. (32)

Thus, Equations (31) and (32) give approximate values of the functional integral for
zero and first orders of smallness, respectively. These formulas take into account the first
three eigenfunctions of the Hamiltonian H.

Statement 4 implies that for the elements of the matrix

exp{tb}
∫

exp
{
−
∫ t

s
V
(
x(τ)

)
dτ

}
dµ(x)

with indices (1, 2) and (2, 1) for V(x) = x2/8 the exact values are known and they are equal
to zero. For comparison, Figures 27 and 28 show the approximate values of the elements of
the matrix-valued integral with indices (1, 2) and (2, 1) for various values N.Version December 21, 2022 submitted to Symmetry 2 of 2
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Figure 27. Approximate values of the element of the matrix valued integral with index (1, 2), s = 0,
t = 2, a = −4, b = −16, m = 1, A = 5, i = 0, j = 0.
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Figure 28. Approximate values of the element of the matrix valued integral with index (2, 1), s = 0,
t = 2, a = −4, b = −16, m = 1, A = 5, i = 0, j = 0.

Figures 27 and 28 show that the approximate values of the elements of the matrix-
valued integral tend to the exact value as the number of intervals N increases into which the
interval [−A, A] is divided for the approximate calculation of eigenvalues
and eigenfunctions.

3.3. Functional Integrals Generated by the Dirac Equation with Pseudospin Symmetry

As noted earlier, for the relativistic Hamiltonian, in the general case, it is not possible
to obtain an equation for the eigenvalues and eigenfunctions of the Hamiltonian in the
form of the stationary Schrödinger equation. In the previous section, we considered the
derivation of the stationary Schrödinger equation for eigenvalues and eigenfunctions in the
presence of a small parameter 1/(mc2). To obtain the stationary Schrödinger equation an
approximation was used, which is obtained by expanding in a series in powers of 1/(mc2)
up to terms of the smallest order.

In this section, we consider the case of pseudospin symmetry [46] (the sum of the
vector and scalar potentials is equal to zero). In this case, an equation of the Schrödinger
type is constructed for the eigenvalues and eigenfunctions. Then, a method is constructed
for calculating functional integrals based on the expansion in terms of eigenfunctions of
the relativistic Hamiltonian generating the functional integral.

3.3.1. Analytical Results

In this section, matrix-valued functional integrals are considered, which are defined
on the space of functions x(τ), s ≤ τ ≤ t, satisfying the condition x(s) = 0. The integrals
are defined by the equality∫

exp
{∫ t

s

(
βΦ
(

x(τ)
)
+ V

(
x(τ)

))
dτ

}
dµ(x) =

= lim
max

j
∆tj→0

∫
R
(n)

...

∫
R

1

∏
j=n

exp
{(

tj − tj−1
)(

βΦ
(
xj
)
+ V

(
xj
))}
×
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1

∏
j=n

S
(
tj − tj−1, xj − xj−1

)
dx1 · · · dxn, (33)

if this limit exists for any partition of the interval [s, t] by points s = t0 < t1 < · · · < tn = t.
Here, xj = x(tj); S

(
tj − tj−1, xj − xj−1

)
is the transition function, which is the funda-

mental solution of the equation [42,43]

∂S(t, x)
∂t

= aα
∂S(t, x)

∂x
+ bβ S(t, x), (34)

where a, b are real parameters and α, β are anticommuting matrices, i.e., αβ + βα = 0.
This integral can be written as [42,43]∫

exp
{∫ t

s

(
βΦ
(
x(τ)

)
+ V

(
x(τ)

))
dτ

}
dµ(x) =

∫ +∞

−∞
K(0, xt) dxt, (35)

where K(xs, xt) is the kernel of the evolution operator exp{tH} with the relativistic Hamil-
tonian H = aα ∂/∂x + bβ + βΦ(x) + V(x) corresponding to the Dirac equation.

The functional Φ(x) is called the scalar potential, the functional V(x) is called the
vector potential. It follows from Equation (35) that to calculate the functional integral,
one can use the expansion of the function K(xs, xt) in terms of the eigenfunctions of the
Hamiltonian H that generates the functional integral.

To satisfy the condition of pseudospin symmetry and anticommutability of matrices α,
β, we assume that

α =

(
0 −1
1 0

)
, β =

(
1 0
0 −1

)
.

Under the above assumptions, the equations for the eigenvalues E and eigenfunctions(
ϕ(x), ψ(x)

)T (T is the transposition sign) of the operator H have the form

−a ∂xψ(x) + bϕ(x) + Φ(x)ϕ(x) + V(x)ϕ(x) = Eϕ(x),

a ∂x ϕ(x)− bψ(x)−Φ(x)ψ(x) + V(x)ψ(x) = Eψ(x).
(36)

When constructing an equation of the Schrödinger type for eigenvalues and eigen-
functions, we consider the case of pseudospin symmetry, i.e., Φ(x) + V(x) = 0. Then,
Equations (36) take the form

a ∂xψ(x)−
(
b− E

)
ϕ(x) = 0,

a ∂x ϕ(x) +
(
− b + 2V(x)− E

)
ψ(x) = 0.

From these equalities, we obtain the equation for ψ(x)[
∂2

x +
(b− E)2V(x)

a2 − b2 − E2

a2

]
ψ(x) = 0. (37)

The function ϕ(x) is expressed in terms of the function ψ(x) by the equality

ϕ(x) =
a

b− E
∂xψ(x). (38)

To find Ej and ψj(x), satisfying Equation (37), we use the Sturm sequence method [33]

to find an approximate eigenvalue λj of the operator ∂2
x +

(b−E)2V(x)
a2 . Calculate E

′
j =

−
√

b2 − λja2. We select Ej so that Ej ≈ E
′
j with a given accuracy. These Ej are chosen

as approximate eigenvalues. Then, using the reverse iteration method [33], we find the
eigenvectors ψj(x).
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Using Equation (38) , we find functions
(

ϕj(x), ψj(x)
)T that are eigenfunctions of the

operator H with eigenvalues Ej.

The vectors
(

ϕj(x), ψj(x)
)T are generally not orthogonal for different values j. To or-

thogonalize them, one can use the Gram–Schmidt process. In this case, orthogonal vectors
are constructed according to the rule

η0 =
(

ϕ0(x), ψ0(x)
)T , ηj =

(
ϕj(x), ψj(x)

)T −
j−1

∑
k=0

〈(
ϕj(x), ψj(x)

)T , ηk
〉

〈ηk, ηk〉
ηk, (39)

where
〈(

η1(x), η2(x)
)T ,
(
ξ1(x), ξ2(x)

)T
〉
=
∫ +∞
−∞ η1(x)ξ1(x) dx +

∫ +∞
−∞ η2(x)ξ2(x) dx.

To expand the kernel of the operator exp{tH} in vectors ηj, one can use the formula

K(xs, xt) = ∑
j=0

〈
ηj, ηj

〉−1[exp{tH}ηj
]
(xt)η

T
j (xs).

From this relation and Equation (35) we obtain the expression for the
functional integral ∫

exp
{∫ t

s

(
βΦ
(

x(τ)
)
+ V

(
x(τ)

))
dτ

}
dµ(x) =

= ∑
j=0

∫ +∞

−∞

〈
ηj, ηj

〉−1[exp{tH}ηj
]
(xt)η

T
j (0) dxt.

(40)

Since ηj are expressed in terms of the eigenvectors of the operator H, exp{tH}ηj can

be written in terms of exp{tEk} and
(

ϕk(x), ψk(x)
)T , 0 ≤ k ≤ j.

Thus, the following statement is true.

Statement 7. The functional integral defined by Equations (33) and (34) satisfies Equation (40) ,
where

(
ϕj(x), ψj(x)

)T are unnormalized eigenfunctions of the Hamiltonian H, ηj are normalized
eigenfunctions of the Hamiltonian H.

3.3.2. Numerical Results

Let us consider the application of the proposed method to the calculation of the
functional integral in Equation (35) where Φ(x) = x2/2, V(x) = −x2/2.

If we consider only the term with j = 0 in Equation (40) , we obtain∫
exp

{∫ t

s

[
βΦ
(

x(τ)
)
+ V

(
x(τ)

)]
dτ

}
dµ(x) ≈

≈
∫ +∞

−∞

〈
η0, η0

〉−1
[exp{tH}η0](xt)η

T
0 (0) dxt,

η0 =
(

ϕ0(x), ψ0(x)
)T . Therefore, this approximate equality can be rewritten as

∫
exp

{∫ t

s

[
βΦ
(

x(τ)
)
+ V

(
x(τ)

)]
dτ

}
dµ(x) ≈

(∫ +∞

−∞
ϕ2

0(x) dx +
∫ +∞

−∞
ψ2

0(x) dx
)−1
×

exp{tE0}

∫ +∞
−∞ ϕ0(xt)dxt ϕ0(0)

∫ +∞
−∞ ϕ0(xt)dxtψ0(0)∫ +∞

−∞ ψ0(xt)dxt ϕ0(0)
∫ +∞
−∞ ψ0(xt)dxtψ0(0)

.

For s = 0, t = 1, a = 1, b = 1, A = 5 ([−A, A] is the interval on which approximate
eigenfunctions are considered), N = 90 (N is the number of intervals into which the interval
[−A, A] is divided for approximate calculation of eigenvalues and eigenfunctions)
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E0 ≈ −1.617,
∫ +∞

−∞
ψ0(xt) dxt ≈ 1.669,

∫ +∞

−∞
ϕ0(xt) dxt ≈ 0,

ψ0(0) ≈ 0.8478, ϕ0(0) ≈ −0.0292,
∫ +∞

−∞
ϕ2

0(x) dx +
∫ +∞

−∞
ψ2

0(x) dx ≈ 1.1181.

Thus, ∫
exp

{∫ t

s

[
βΦ
(
x(τ)

)
+ V

(
x(τ)

)]
dτ

}
dµ(x) ≈

(
0 0

−0.0087 0.2512

)
.

Let us now calculate the contribution from the term with j = 1 in Equation (40) . In this
case, the vector (ϕ1(x), ψ1(x))T is orthogonal to the vector (ϕ0(x), ψ0(x))T . Consequently,
η1 = (ϕ1(x), ψ1(x))T . Therefore, the term with j = 1 in Formula (41) can be written as[∫ +∞

−∞
ϕ2

1(x) dx +
∫ +∞

−∞
ψ2

1(x) dx
]−1
×

exp{tE1}

∫ +∞
−∞ ϕ1(xt)dxt ϕ1(0)

∫ +∞
−∞ ϕ1(xt)dxtψ1(0)∫ +∞

−∞ ψ1(xt)dxt ϕ1(0)
∫ +∞
−∞ ψ1(xt)dxtψ1(0)

.

For s = 0, t = 1, a = 1, b = 1, A = 5, and N = 90

E1 ≈ −2.581,
∫ +∞

−∞
ψ1(xt) dxt ≈ 10−5,

∫ +∞

−∞
ϕ1(xt) dxt ≈ 0,

ψ1(0) ≈ 4 · 10−6, ϕ1(0) ≈ −0.4753,
∫ +∞

−∞
ϕ2

1(x) dx +
∫ +∞

−∞
ψ2

1(x) dx ≈ 1.5745.

Thus, the term with j = 1 contributes(
0 0

−2 · 10−7 2 · 10−12

)
.

Let us now calculate the contribution from the term with j = 2 in Equation (40) .
The vector

(
ϕ2(x), ψ2(x)

)T is orthogonal to the vector
(

ϕ1(x), ψ1(x)
)T , but not orthogo-

nal to the vector
(

ϕ0(x), ψ0(x)
)T . Therefore, based on Equation (39) η2 =

(
η2,1, η2,2

)
≈(

ϕ2(x), ψ2(x)
)T

+ 0.081
(

ϕ0(x), ψ0(x)
)T . Consequently, the term with j = 2 in Equation (40)

can be written as [∫ +∞

−∞
η2

2,1(x) dx +
∫ +∞

−∞
η2

2,2(x) dx
]−1
×

exp{tE2}

∫ +∞
−∞ ϕ2(xt)dxtη2,1(0)

∫ +∞
−∞ ϕ2(xt)dxtη2,2(0)∫ +∞

−∞ ψ2(xt)dxtη2,1(0)
∫ +∞
−∞ ψ2(xt)dxtη2,2(0)

+

+0.081 ·
[∫ +∞

−∞
η2

2,1(x) dx +
∫ +∞

−∞
η2

2,2(x) dx
]−1
×

exp{tE0}

∫ +∞
−∞ ϕ0(xt)dxtη2,1(0)

∫ +∞
−∞ ϕ0(xt)dxtη2,2(0)∫ +∞

−∞ ψ0(xt)dxtη2,1(0)
∫ +∞
−∞ ψ0(xt)dxtη2,2(0)

.

For s = 0, t = 1, a = 1, b = 1, A = 5, and N = 90

E2 ≈ −3.379,
∫ +∞

−∞
ψ2(xt) dxt ≈ −1.1035,

∫ +∞

−∞
ϕ2(xt) dxt ≈ 0,

ψ2(0) ≈ 0.6421, ϕ2(0) ≈ −0.0849,
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∫ +∞

−∞
η2

2,1(x) dx +
∫ +∞

−∞
η2

2,2(x) dx ≈ 1.2655, η2,1(0) ≈ −0.0873, η2,2(0) ≈ 0.7108.

Thus, the term with j = 2 contributes(
0 0

0.0007 −0.006

)
.

Taking into account the contribution of three terms, we obtain

∫
exp

{∫ t

s

[
βΦ
(
x(τ)

)
+ V

(
x(τ)

)]
dτ

}
dµ(x) ≈

(
0 0

−0.0080 0.2452

)
.

Statement 5 implies that for the elements of the matrix

exp
∫

exp
{∫ t

s

[
βΦ
(
x(τ)

)
+ V

(
x(τ)

)]
dτ

}
dµ(x)

with indices (1, 2) and (2, 1) for V(x) = −x2/2, Φ(x) = x2/2, the exact values are known
and they are equal to zero. For comparison, Figure 29 shows the approximate values of the
elements of the matrix valued integral with index (2, 1) for different values N.

Figure 29 shows that the approximate values of the elements of the matrix valued
integral tend to the exact value as the number of intervals N increases into which the interval
[−A, A] is divided for the approximate calculation of the eigenvalues and eigenfunctions.Version December 21, 2022 submitted to Symmetry 2 of 2
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Figure 29. Approximate values of the element of the matrix valued integral with index (2, 1), s = 0,
t = 1, a = 1, b = 1, A = 5.

4. Conclusions

The method of functional integration finds ever wider application in various fields of
science. Therefore, it becomes necessary to develop methods for the approximate calcula-
tion of functional integrals and generalize existing and newly obtained methods to new
types of functional integrals. The methods we have proposed for calculating functional in-
tegrals generated by nonrelativistic Hamiltonians complement existing methods. As noted,
formulas for a given degree of accuracy are especially effective for functional integrals over
the space of functions defined on intervals of small length. For integrals determined over
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large time intervals, it is necessary to take formulas with a high degree of accuracy, which
leads to high computational costs.

The efficiency of existing methods for the approximate calculation of functional inte-
grals based on discretization of space and time also decreases with increasing time intervals.
The method for calculating integrals based on expansion in terms of eigenfunctions of
the Hamiltonian is effective for functional integrals defined over large time intervals.
At present, the theory of approximate calculation of functional integrals generated by
nonrelativistic Hamiltonians is well developed. The theory of approximate calculation of
functional integrals generated by relativistic Hamiltonians is less developed. Therefore,
generalizations of methods based on the approximation by polynomials and methods
based on expansion in terms of eigenfunctions of a Hamiltonian to the case of relativistic
Hamiltonians are very useful and desirable.

In further studies, it is planned to generalize these methods to functional integrals
generated by stochastic models. In particular, it is planned to generalize the existing meth-
ods to functional integrals arising from the study of one-step processes by combinatorial
and operator methods.
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